Under some circumstances, a star can collapse into an extremely dense object made mostly of neutrons and called a neutron star. The density of a neutron star is roughly 1014 times as great as that of ordinary solid matter. Suppose we represent the star as a uniform, solid, rigid sphere, both before and after the collapse. The star's initial radius was 8.0×105 km (comparable to our sun); its final radius is 16 km. the original star rotated once in 35 days, find the angular speed of the neutron star.

Answers

Answer 1

Answer:

The angular speed wf of the neutron star is calculated to be [tex]5.19*10^{3} [/tex] rad/s

Explanation:

The reason for such a rapid spin-rate is due to the principle of angular momentum. The angular momentum of a system can be given as:

Angular Momentum (L) = Mass * Radius^2 * Angular Velocity (w)

Applying this principle to our context, we would say that the angular momentum of the star before and after collapsing is constant. In order to not break this principle, we know that the mass of the star did not change but the radius shrank by a significant amount after collapsing, and so in order to keep the angular momentum (L) constant after collapse, the star had to increase it's angular velocity, which is evident in our answer.

The calculations of the answer are as follows:

Star's Initial Radius Ri = [tex]8.0 * 10^{5}[/tex] km ( [tex]8.0 * 10^{8}[/tex] m)

Star's Initial Angular Velocity wi = [tex]\frac{2\pi} {35 days * 24 hrs * 3600 sec}[/tex] = [tex]2.077 * 10^{-6}[/tex] rad/sec

Star's final radius Rf = [tex]16 * 10^{3}[/tex] m

Now, we can equate the initial and final states of the star i.e. the angular momentum of star before and after the collapse as following:

Li = Lf (where i and f denote initial and final state)

Solving of Final Angular Velocity we have:

wf = wi * (Ri / Rf) ^ 2

Plugging in our known values:

wf = [tex]2.077 * 10^{-6}[/tex] x [tex](\frac{8 * 10^{8}}{16 * 10^{3}} )^{2}[/tex] = 5.19 * 10^3 rad/s

Answer 2

Final answer:

The neutron star's angular speed is found by using the conservation of angular momentum. With the star's initial rotation period of 35 days, the initial angular speed is calculated and then adjusted for the changes in the radius of the star upon collapse. The resulting angular speed of the neutron star is approximately 6.57 x 10³ radians/second.

Explanation:

When a star collapses into a neutron star, its angular momentum is conserved. To calculate the neutron star's angular velocity, we use conservation of angular momentum. The original star rotated once every 35 days, and we can convert this period into angular speed, \, using the formula \ = [tex](2\pi)[/tex] / T, where T is the period of rotation in seconds.

Firstly, convert the days into seconds: 35 days × 24 hours/day × 3600 seconds/hour = 3,024,000 seconds. Now, calculate the initial angular speed: \initial = [tex](2\pi)[/tex] / 3,024,000 = 2.08 x 10⁻⁶ radians/second.

Since angular momentum L = I\ must be conserved (where I is the moment of inertia and \ is the angular velocity), and I = (2/5)mR² for a sphere, where m is mass and R is the radius, the relation can be expressed as I-initial\initial = I-final\final. Mass m cancels out and assuming the radius R changes from 8.0 x 10⁵ km to 16 km, we can solve for \final.

The final angular velocity \final = (Rinitial2 / Rfinal2) \initial = ((8.0 x 10⁵ km)² / (16 km)²) (2.08 x 10⁻⁶ radians/second) = (6.4 x 10¹¹ / 256) (2.08 x 10⁻⁶ radians/second) = 6.57 x 10³ radians/second.

Therefore, the angular speed of the neutron star is approximately 6.57 x 10³ radians/second, significantly faster than its predecessor due to the drastic reduction in radius.


Related Questions

The mass of a spacecraft is about 435 kg . An engine designed to increase the speed of the spacecraft while in outer space provides 0.09-N thrust at maximum power.By how much does the engine cause the craft's speed to change in 1 week of running at maximum power? Describe any assumptions you made.

Answers

Answer:

Δ v =  125 m/s

Explanation:

given,

mass of space craft = 435 Kg

thrust = 0.09 N

time = 1 week

       = 7 x 24  x 60 x 60 s

change in speed of craft = ?

Assuming no external force is exerted on the space craft

now,

[tex]T= m_s a[/tex]

[tex]a=\dfrac{T}{m_s}[/tex]

[tex]a =\dfrac{0.09}{435}[/tex]

a = 2.068 x 10⁻⁴ m/s²

using equation of motion

Δ v = a t

Δ v = 2.068 x 10⁻⁴ x 7 x 24 x 60 x 60

Δ v =  125 m/s

a bike travels at a constant speed for 4.00 m/s for 5.00 seconds. How far does it go

Answers

Answer:

20 metres

Explanation:

Speed = distance ÷ time

[tex]s = \frac{d}{t} [/tex]

If we substitute the values:

[tex]4 = \frac{d}{5} [/tex]

[tex]20 = d[/tex]

Answer: 20m

Explanation:

Speed = Distance/time taken

Speed = 4.00m/s

Time taken = 5.00s

Distance = D = ?

We insert the values in the formula

4.00m/s = D/5.00s

Multiply through by 5

D = 20m

What type of wave is shown above?
A. transverse wave
B. longitudinal wave
C. surface wave
D. electromagnetic wave

Answers

Answer:

its a A. Transverse wave

Approximate the work required to lift a 2.5-kg object to a height of 6.0 meters. A student applies a force to a cart to pull it up an inclined plane at a constant speed during a physics lab. A force of 20.8 N is applied parallel to the incline to lift a 3.00-kg loaded cart to a height of 0.450 m along an incline which is 0.636-m long. Determine the work done upon the cart and the subsequent potential energy change of the cart. Eddy, whose mass is 65-kg, climbs up the 1.6-meter high stairs in 1.2 s. Approximate Eddy's power rating.

Answers

Answer:

Explanation:

(a)mass [tex]m= 2.5 kg [/tex]

height [tex]h=6 m[/tex]

work required to raise

[tex]W=mgh[/tex]

[tex]W=2.5\times 9.8\times 6=147 J[/tex]

(b)Force [tex]F=20.8 N[/tex]

mass of cart [tex]m=3 kg[/tex]

length of track [tex]s=0.636 m[/tex]

[tex]Work\ done=F\cdot s[/tex]

Work done[tex]=20.8\cdot 0.636=13.22 J[/tex]

(c)mass of eddy [tex]m_e=65 kg[/tex]

height climbed [tex]h=1.6 m[/tex]

time [tex]t=1.2 s[/tex]

Energy required [tex]E=mgh=65\times 9.8\times 1.6=1019.2 J[/tex]

[tex]power=\frac{E}{t}=\frac{1019.2}{1.2}=849.33 W[/tex]

Final answer:

The work done in lifting the 2.5 kg object is 147 J, in moving the 3-kg cart is 13.2 J, and the power used by Eddy in climbing stairs is 851.7 W.

Explanation:

To solve these problems, we need to apply principles of physics, specifically related to work, energy, and power. For the first question, we use the concept of gravitational potential energy, which is calculated by multiplying together the object's mass, the acceleration due to gravity (~9.81 m/s² on Earth), and the height to which the object is lifted. Thus for the 2.5-kg object, the work done or energy required to lift it to a height of 6.0 meters is: W = m * g * h = 2.5 kg * 9.8 m/s² * 6.0 m = 147 J.

Next, for the 3-kg cart, since the cart moves at constant speed, we can say the work done is equal to the change in potential energy. Therefore, the work done is W = m * g * h = 3.0 kg * 9.8 m/s² * 0.450 m = 13.2 J.

Fianlly, for Eddy's case, power is defined as the work done per unit time. If Eddy lifts his own mass to the height of 1.6 m, the work done (again considering as change in gravitational potential energy) is W = m * g * h = 65 kg * 9.8 m/s² * 1.6 m = 1022 J. Given that he does this work in 1.2 seconds, the power expended would be P = W / t = 1022 J / 1.2 s = 851.7 W.

Learn more about Work, Energy, Power here:

https://brainly.com/question/31746536

#SPJ11

A man goes for a walk, starting from the origin of an xyz coordinate system, with the xy plane horizontal and the x axis eastward. Carrying a bad penny, he walks 1300 m east, 2400 m north, and then drops the penny from a cliff 640 m high

(a) In unit-vector notation, what is the displacement of the penny from start to its landing point?
(b) When the man returns to the origin, what is the magnitude of his displacement for the return trip?

Answers

a) Displacement of penny = 1300 i + 2400 j - 640 kb) Magnitude of his displacement = 2729.47 m

Explanation:

a) He walks 1300 m east, 2400 m north, and then drops the penny from a cliff 640 m high.

1300 m east = 1300 i

2400 m north = 2400 j

Drops the penny from a cliff 640 m high = -640 k

Displacement of penny = 1300 i + 2400 j - 640 k

b) Displacement of man for return trip = -1300 i - 2400 j

    [tex]\texttt{Magnitude = }\sqrt{(-1300)^2+(-2400)^2}=2729.47m[/tex]

    Magnitude of his displacement = 2729.47 m

Answer:

Explanation:

d1 = 1300 m east

d2 = 2400 m north

d3 = 640 m downward

(a)

The displacement of penny is given by

[tex]\overrightarrow{d}=\overrightarrow{d_{1}}+\overrightarrow{d_{2}}+\overrightarrow{d_{3}}[/tex]

[tex]\overrightarrow{d}=1300\widehat{i}+2400 \widehat{j}-640\widehat{k}[/tex]

(b) For the return journey of man, the displacement is given by

[tex]\overrightarrow{d}=-\overrightarrow{d_{1}}-\overrightarrow{d_{2}}[/tex]

[tex]\overrightarrow{d}=-1300\widehat{i}-2400 \widehat{j}[/tex]

The magnitude of the displacement is given by

[tex]d=\sqrt{1300^{2}+2400^{2}}=2729.47 m[/tex]

A 0.47 kg mass is attached to a spring with a spring constant of 130 N/m so that the mass is allowed to move on a horizontal friction-less surface. The mass is released from rest when the spring is compressed 0.12 m. A) Find the force on the mass at the instant the spring is released. B) Find the acceleration of the mass at the instant the spring is released.

Answers

Answer:

F= 15.6 N,   a= 33.2 m/s^2

Explanation:

mass= m = 0.47 kg

spring constant= k = 130N/m

spring compression = x = 0.12 m

a).

force on the mass= F = k*x

F = 130 * 0.12 N

F= 15.6 N

b).

Acceleration of mass= a=?

F= ma

a=F / m

a= 15.6/ 0.47 m/s^2

a= 33.2 m/s^2

Final answer:

The force on the mass when the spring is released is 15.6 N, and the acceleration of the mass at that instant is approximately 33.19 m/s^2, calculated using Hooke's Law and Newton's second law, respectively.

Explanation:

Understanding Spring Force and Acceleration

To find the force on the mass at the instant the spring is released (in part A), we use Hooke's Law, which states that the force exerted by a spring (F) is equal to the negative spring constant (k) times the displacement from equilibrium (x), so F = -kx. Here, k = 130 N/m and x = 0.12 m, so the force is F = 130 N/m * 0.12 m = 15.6 N. The negative sign indicates that the force is in the opposite direction of the displacement.

To find the acceleration of the mass at the instant the spring is released (in part B), we apply Newton's second law, which relates force (F), mass (m), and acceleration (a) as F = ma. Rearranging for acceleration, we get a = F/m. Substituting the values, we have a = 15.6 N / 0.47 kg = approximately 33.19 m/s2.

A child pushes horizontally on a box of mass m which moves with constant speed v across a horizontal floor. The coefficient of friction between the box and the floor is μ. At what rate does the child do work on the box?

Answers

Answer:

Rate of child doing work on box = μmgv (Unit is Watt)

Explanation:

Rate of child doing work on box = Work done / time = Power  

Power = Horizontal force x Velocity

We are aware that the Velocity in this case is v.

As the object is moving with constant velocity, the acceleration would be zero and the applied horizontal force will be equal to friction force. So in our case,  

Horizontal force = friction force

We know that the coefficient of friction is the ratio of friction force to Normal force,

μ = friction force / Normal force

Normal Force = mg,  where m is the mass and g is the gravitational acceleration

Friction force = μ x Normal Force

Friction force = μmg

Power = μmgv (Unit of power is Watt)

Answer:

P = μ*mg*v

Explanation:

A child pushes horizontally on a box of mass m which moves with constant speed v across a horizontal floor. The coefficient of friction between the box and the floor is μ.  The rate at which the child works is calculated as shown below:

mass of the box = m; coefficient of friction is μ; speed = v.

In order to push the box, the child must exert a force equal to or more than the frictional force.

force = coefficient of friction*weight of the box

f = μ*mg

In addition, to calculate the rate of work (i.e. power). We have:

Power = force*velocity (or speed)

Therefore:

P = μ*mg*v

The gold foil experiment led to the conclusion that each atom in the foil was composed mostly of empty space because most alpha particles directed at the foil
(1) passed through the foil
(2) remained trapped in the foil
(3) were deflected by the nuclei in gold atoms
(4) were deflected by the electrons in gold atoms

Answers

Answer:

(1) passed through the foil

Explanation:

Ernest Rutherford conducted an experiment using an alpha particle emitter projected towards a gold foil and the gold foil was surrounded by a fluorescent screen which glows upon being struck by an alpha particle.

When the experiment was conducted he found that most of the alpha particles went away without any deflection (due to the empty space) glowing the fluorescent screen right at the point of from where they were emitted. While a few were deflected at reflex angle because they were directed towards the center of the nucleus having the net effective charge as positive. And some were acutely deflected due to the field effect of the positive charge of the proton inside the nucleus. All these  conclusions were made based upon the spot of glow on the fluorescent screen.

Answer:

Option 1

Explanation:

The correct answer is option 1

The gold foil experiment was conducted by Rutherford. This experiment was conducted to study the Atom.

In the experiment Alpha rays from the emitter are passed through gold foil and there was a receiver that was present there to intercept the alpha rays.

The outcome of the result was that most of the alpha particle pass through foil undeflected and very few rays revert back on the original path from the heavy mass present at the center.

Later this heavy mass was known Nucleus.

Hence, most alpha particles passed through the foil.

Two point charges are separated by a distance of 10.0 cm. One has a charge of -25 μC and the other +50 μC. (a) Determine the direction and magnitude of the electric field at a point P between the two charges that is 2.0 cm from the negative charge. (b) If an electron (mass = 9.11 x 10-31 kg) is placed at rest at P and then released, what will be its initial acceleration (direction and magnitude)?

Answers

Answer:

a)

6.33 x 10⁸ N/C

Direction : Towards negative charge.

b)

1.11125 x 10²⁰ m/s²

Direction : Towards positive charge.

Explanation:

a)

[tex]Q_{1}[/tex] = magnitude of negative charge = 25 x 10⁻⁶ C

[tex]Q_{2}[/tex] = magnitude of positive charge = 50 x 10⁻⁶ C

[tex]r_{1}[/tex] = distance of negative charge from point P = 0.02 m

[tex]r_{2}[/tex] = distance of positive charge from point P = 0.08 m

Magnitude of electric field at P due to negative charge is given as

[tex]E_{1} = \frac{kQ_{1}}{r_{1}^{2} } = \frac{(9\times10^{9})(25\times10^{-6})}{0.02^{2} } = 5.625\times10^{8} N/C[/tex]

Magnitude of electric field at P due to positive charge is given as

[tex]E_{2} = \frac{kQ_{2}}{r_{2}^{2} } = \frac{(9\times10^{9})(50\times10^{-6})}{0.08^{2} } = 0.703125\times10^{8} N/C[/tex]

Net electric field at P is given as

[tex]E = E_{1} + E_{2}\\E = 5.625\times10^{8} + 0.703125\times10^{8} \\E = 6.33\times10^{8} N/C[/tex]

Direction:

Towards the negative charge.

b)

[tex]m[/tex] = mass of the electron placed at P = 9.31 x 10⁻³¹ C

[tex]Q_{1}[/tex] = magnitude of charge on electron = 1.6 x 10⁻¹⁹ C

Acceleration of the electron due to the electric field at P is given as

[tex]a = \frac{qE}{m}\\ a = \frac{(1.6\times10^{-19})(6.33\times10^{8})}{(9.11\times10^{-31})}\\a = 1.11125\times10^{20} ms^{-2}[/tex]

Direction: Towards the positive charge Since a negative charge experience electric force in opposite direction of the electric field.

Answer:

Explanation:

qA = - 25 x 10^-6 C

qB = 50 x 10^-6 C

AP = 2 cm

BP = 8 cm

(a)

Electric field at P due to the charge at A

[tex]E_{A}=\frac{kq_{A}}{AP^{2}}[/tex]

[tex]E_{A}=\frac{9\times 10^{9}\times 25\times 10^{-6}}{0.02^{2}}[/tex]

EA = 5.625 x 10^8 N/C

Electric field at P due to the charge at B

[tex]E_{B}=\frac{kq_{B}}{BP^{2}}[/tex]

[tex]E_{A}=\frac{9\times 10^{9}\times 50\times 10^{-6}}{0.08^{2}}[/tex]

EB = 0.70 x 10^8 N/C

The resultant electric field at P due to both the charges is

E = EA+ EB = (5.625 + 0.7) x 10^8

E = 6.325 x 10^8 N/C towards left

(b)  mass of electron, m = 9.1 x 10^-31 kg

Let a be the acceleration of electron

Force on electron, F = charge of electron x electric field

F = q x E

[tex]a = \frac{qE}{m}[/tex]

[tex]a = \frac{1.6\times 10^{-19}\times 6.325\times 10^{8}}{9.1\times 10^{-31}}[/tex]

a = 1.11 x 10^20 m/s^2

How long would it take for 3.5 C of charge to pass through a cross-sectional area of a wire in which a current of 5 mA passes?

Answers

Answer:

The time taken for the charge to pass through the wire = 700 s or 11.67 minutes or 0.194 hours

Explanation:

Electric Charge: This is defined as the product of electric current to time in a an electric circuit. The S.I unit of charge is Coulombs (C).

Mathematically, it is represented as

Q = it.......................... Equation 1

Where Q =quantity of charge, I = current, t = time

making t the subject of formula in equation 1,

t = Q/I ....................... Equation 2

Given: Q = 3.5 C, I = 5 mA.

Conversion: We convert from mA to A

I.e 5 mA = (5 × 10⁻³) A = 0.005 A.

Substituting these values into equation 2

t = 3.5/0.005

t = 700 seconds  

or

(700/60) minutes = 11.67 minutes

or

(700/3600) hours = 0.194 hours.

Therefore the time taken for the charge to pass through the wire = 700 s or 11.67 minutes or 0.194 hours

700 second will take for 3.5 C of charge to pass through a cross-sectional area of a wire in which a current of 5 mA passes.

Partical charge and current based problem:

What information do we have?

Charges of partical = 3.5 C

Current = 5 mA = (5 × 10⁻³) A

Charge = (Curernt)(time)

Q = iT

T = Q / i

Time taken = 3.5 / (5 × 10⁻³)

Time taken = 700 seconds or 11.67 minutes

Find out more information about 'Current'.

https://brainly.com/question/23323183?referrer=searchResults

The force that attracts earth to an object is equal to and opposite the force that earth exerts on the object. Explain why earth's acceleration is not equal to and opposite the object's acceleration.

Answers

Answer:

Because of heavy mass

Explanation:

When force acts on a body it tends to accelerate the body. The acceleration produced in the body depends on two things:

1). Magnitude of force

2). Mass of the body

F= ma

⇒ a = F/m  

As the force exerted on earth and another object are the equal in magnitude but opposite in direction. This forces will accelerate the object toward the earth but can't accelerate the earth as earth has very high mass.

a = F/m

This force tends to accelerate the earth but but due to earth's inertia the earth does not accelerate.

A ball of mass 24 g is attached to a cord of length 0.463 m and rotates in a vertical circle. What is the minimum speed the ball must have at the top of the circle so the cord does not become slack? The acceleration of gravity is 9.8 m/s 2 . Answer in units of m/s.

Answers

Answer:2.13 m/s

Explanation:

Given

mass of ball [tex]m=24 gm[/tex]

Length of cord [tex]L=0.463 m[/tex]

acceleration due to gravity [tex]g=9.8 m/s^2[/tex]

minimum velocity after which cord will slack

[tex]\frac{mv^2}{r}=mg[/tex]

[tex]v=\sqrt{rg}[/tex]

[tex]v=\sqrt{0.463\times 9.8}[/tex]

[tex]v=2.13 m/s[/tex]

Suppose that you have a reflection diffraction grating with n= 125 lines per millimeter. Light from a sodium lamp passes through the grating and is diffracted onto a distant screen. PART A
Two visible lines in the sodium spectrum have wavelengths 498\rm nm and 569 \rm nm. What is the angular separation \Delta \theta of the first maxima of these spectral linesgenerated by this diffraction grating?
PART B
How wide does this grating need to be to allow you to resolvethe two lines 589.00 and 589.59 nanometers, which are a well knownpair of lines for sodium, in the second order (m=2)?

Answers

Answer:

[tex]0.54^{\circ}[/tex]

3.99322032 mm

Explanation:

n = Lines per mm = 125

Seperation between slits is given by

[tex]d=\dfrac{1}{n}\\\Rightarrow d=\dfrac{1}{125}\\\Rightarrow d=0.008\ mm[/tex]

[tex]\lambda_1[/tex] = 498 nm

[tex]\lambda_2[/tex] = 569 nm

We have the expression

[tex]dsin\theta_1=m\lambda_1[/tex]

For first maximum m = 1

[tex]\theta_1=sin^{-1}\dfrac{m\lambda_1}{d}\\\Rightarrow \theta_1=sin^{-1}\dfrac{1\times 498\times 10^{-9}}{0.008\times 10^{-3}}\\\Rightarrow \theta_1=3.57^{\circ}[/tex]

[tex]\theta_2=sin^{-1}\dfrac{m\lambda_2}{d}\\\Rightarrow \theta_2=sin^{-1}\dfrac{1\times 569\times 10^{-9}}{0.008\times 10^{-3}}\\\Rightarrow \theta_2=4.08^{\circ}[/tex]

Angular separation is given by

[tex]\Delta \theta=\theta_2-\theta_1\\\Rightarrow \Delta \theta=4.08-3.57\\\Rightarrow \Delta \theta=0.54^{\circ}[/tex]

Angular separation is [tex]0.54^{\circ}[/tex]

Now

[tex]\lambda_1[/tex] = 589 nm

[tex]\lambda_2[/tex] = 589.59 nm

[tex]\Delta \lambda=\lambda_2-\lambda_1\\\Rightarrow \Delta \lambda=589.59-589\\\Rightarrow \Delta \lambda=0.59]\ nm[/tex]

We have the relation

[tex]\dfrac{\lambda}{\Delta \lambda}=mN\\\Rightarrow N=\dfrac{\lambda}{m\Delta \lambda}\\\Rightarrow N=\dfrac{589}{2\times 0.59}\\\Rightarrow N=499.15254[/tex]

Width is given by

[tex]w=\dfrac{N}{n}\\\Rightarrow w=\dfrac{499.15254}{125}\\\Rightarrow w=3.99322032\ mm[/tex]

The width is 3.99322032 mm

The angular separation  \theta of the first maxima of these spectral lines generated by this diffraction grating is 0.54°

The width which this grating needs to be to allow you to resolve the two lines 589.00 and 589.59 nanometers is 3.99322032 mm

Calculations and Parameters:

n = Lines per mm

= 125

The Separation between slits is given by:

d= 1/n

d= 1/125

= 0.008mm.

Where

line 1 = 498nm

line 2 = 569nm

The first maximum m= 1 will be:

θ1=  3.57°

θ2= 4.08°

The angular separation would be:

θ2- θ1= 0.54°.

Now, to find the width is:

w= N/n

= 499.15254/125

= 3.99322032 mm.

Read more about angular separation here:
https://brainly.com/question/10118582

A mountain 10.0 km from a person exerts a gravitational force on him equal to 2.00% of his weight. (a) Calculate the mass of the mountain. (b) Compare the mountain’s mass with that of Earth. (c) What is unreasonable about these results? (d) Which premises are unreasonable or inconsistent?

Answers

The mass of the mountain is 3.002 × 10^16 kg and its fraction of Earth's mass is approximately 4.92 × 10^-8. These results are unreasonable due to the large mass of the mountain compared to Earth and the assumptions made in the question.

To calculate the mass of the mountain, we can use Newton's Law of Universal Gravitation. The gravitational force exerted by the mountain is equal to 2.00% of the person's weight. Since weight is equal to mass multiplied by acceleration due to gravity, we can set up the equation:

0.02mg = GMm / d^2

where G is the gravitational constant, M is the mass of the mountain, m is the mass of the person, and d is the distance between them. Since the person's weight is equal to mg, we can rewrite the equation as:

0.02mg = (GMm / d^2)

Dividing both sides by mg gives us:

0.02 = (GM / d^2)

Now we can solve for the mass of the mountain (M):

M = (0.02d^2 / G)

Substituting the given values (d = 10.0 km, G = 6.673 × 10^-11 Nm²/kg²),

M = (0.02 × 10000^2) / (6.673 × 10^-11)

M = 3.002 × 10^16 kg

The mass of the mountain is 3.002 × 10^16 kg.

Comparing the mass of the mountain with that of Earth, we can use the equation:

Mountain's Mass / Earth's Mass = 3.002 × 10^16 / (6 × 10^24)

Mountain's Mass / Earth's Mass = 4.92 × 10^-8

The mass of the mountain is approximately 4.92 × 10^-8 of Earth's mass.

These results are unreasonable because the mass of the mountain and its fraction of Earth's mass are too large. It is unlikely for a mountain to have such a massive mass compared to the entire Earth.

The premises that are unreasonable or inconsistent in this scenario are the assumption that the gravitational force exerted by the mountain is 2.00% of the person's weight and the assumption that the distance between the mountain and the person is 10.0 km.

Learn more about Mass and Gravitation here:

https://brainly.com/question/30429836

#SPJ6

The calculated mass of the mountain is 2.937 × 10¹⁷ kg, which is 4.91 × 10⁻⁸ of Earth's mass. This result is unreasonable because the mass and fraction are too large. The assumption about the gravitational force exerted by the mountain is inconsistent.

Let's start by calculating the mass of the mountain, given the gravitational force it exerts.

(a)

Given data:

Distance between person and mountain, r = 10.0 km = 10,000 mGravitational force exerted by mountain on person, F = 2.00% of the person's weight

The weight of the person is W = mg, where m is the mass of the person and g is the gravitational acceleration (9.8 m/s²).

The gravitational force F is given by Newton's law of gravitation: F = G * (m_p * M) / r², where:

G = gravitational constant (6.674 × 10-11 N·m²/kg²)m_p = mass of the personM = mass of the mountain

Given that F = 0.02 * mg, we can equate:

0.02 * mg = G * (m * M) / (10,000 m)²

Cancel out m and solve for M:

M = (0.02 * g * (10,000 m)²) / G

M = 2.937 × 10¹⁷ kg

(b)

Mass of Earth ME = 5.972 × 10²⁴ kg

Fraction of Earth's mass = M / ME

Fraction = 2.937 × 10¹⁷ kg / 5.972 × 10²⁴ kg = 4.91 × 10⁻⁸

(c)

The mass of the mountain and its fraction of the Earth's mass are excessively large. Such a massive mountain would be geologically and physically improbable.

(d)

The gravitational force assumed to be exerted by the mountain is too large. In reality, a mountain would exert a much smaller percentage of gravitational force on a person.

When testing an PNP transistor with an ohmmeter, what are the high or low resistance values expected for a good transistor?

Answers

Answer:

0.45 V and 0.9 V.

Explanation:

To test a PNP transistor with an ohmmeter,

Plug the positive lead from the multimeter to the transistor EMITTER (E). Plug the negative meter into the transistor BASE (B). If you are using a PNP resistor you must watch OL that is over limit, the voltage decrease will indicate between 0.45V and 0.9V if you are measuring it.

Final answer:

Testing a PNP transistor with an ohmmeter should yield high resistance values when the base is negative relative to the emitter or collector, and low resistance values when the base is positive relative to the emitter or collector.

Explanation:

When testing a PNP transistor with an ohmmeter, the high or low resistance values that are expected for a good transistor are as follows: When you measure between the base and the emitter or collector, you should see a high resistance value (in the range of megaohms) if the base is negative with respect to the emitter or collector. Conversely, you should see a low resistance value (in the range of a few hundred Ohms) when the base is positive with respect to the emitter or collector.

Learn more about PNP Transistor Testing here:

https://brainly.com/question/37173137

#SPJ3

The moon orbits the earth at a distance of 3.85 x 10^8 m. Assume that this distance is between the centers of the earth and the moon and that the mass of the earth is 5.98 x 10^24 kg. Find the period for the moon's motion around the earth. Express the answer in days and compare it to the length of a month.

Answers

Answer:

27.5 days

0.92 month

Explanation:

[tex]r[/tex] = radius of the orbit of moon around the earth = [tex]3.85\times10^{8} m[/tex]

[tex]M[/tex] = Mass of earth = [tex]5.98\times10^{24} m[/tex]

[tex]T[/tex] = Time period of moon's motion

According to Kepler's third law, Time period is related to radius of orbit as

[tex]T^{2} = \frac{4\pi ^{2} r^{3}  }{GM}[/tex]

inserting the values, we get

[tex]T^{2} = \frac{4(3.14)^{2} (3.85\times10^{8})^{3}  }{(6.67\times10^{-11})(5.98\times10^{24})}\\T = 2.3754\times10^{6} sec[/tex]

we know that

1 day = 24 hours = 24 x 3600 sec = 86400 s

[tex]T = 2.3754\times10^{6} sec \frac{1 day}{86400 sec} \\T = 27.5 days[/tex]

1 month = 30 days

[tex]T = 27.5 days \frac{1 month}{30 days} \\T = 0.92 month[/tex]

Final answer:

The period for the moon's motion around the earth is approximately 0.59 days, which is much shorter than the length of a month.

Explanation:

To find the period for the moon's motion around the earth, we can use Kepler's third law. According to Kepler's third law, the square of the period of a planet's orbit is directly proportional to the cube of its average distance from the center of the orbit.

We are given that the moon orbits the earth at a distance of 3.85 x 10^8 m. We can use this information to calculate the period as follows:

Convert the given distance to meters: 3.85 x 10^8 m.Calculate the period using Kepler's third law equation:
T^2 = (4π^2/GM) * r^3
where T is the period, G is the gravitational constant (6.67430 × 10^-11 m^3 kg^-1 s^-2), M is the mass of the earth (5.98 x 10^24 kg), and r is the distance between the centers of the earth and the moon.Substitute the known values into the equation and solve for T:
T^2 = (4π^2/(6.67430 × 10^-11 m^3 kg^-1 s^-2)) * (5.98 x 10^24 kg) * (3.85 x 10^8 m)^3
T^2 ≈ 2.97 x 10^7 s^2
T ≈ √(2.97 x 10^7) s ≈ 5.14 x 10^3 s.Convert the period from seconds to days:
1 day = 24 hours × 60 minutes × 60 seconds = 86,400 seconds.
T ≈ 5.14 x 10^3 s / 86,400 s/day ≈ 0.59 days.

Hence, the period for the moon's motion around the earth is approximately 0.59 days. This is much shorter than the length of a month, which is about 30 days. Therefore, the moon completes multiple orbits around the earth in one month.

The rumble feature on a video game controller is driven by a device that turns electrical energy into mechanical energy. This device is best referred to as

Answers

Answer:

MOTOR

Explanation:

The device which changes electrical energy into mechanical energy is known as motor

Loops of wire in a magnetic field make up motors. The magnetic field produces a torque on the loops when current flows through them, turning a shaft as a result.

What is electric motor?

Electrical energy is transformed into mechanical energy by electric motors. When we turn on the fan, for instance, the electric motor begins to transform the electrical energy into mechanical energy.

The fan blades then begin whirling as a result of the mechanical energy, giving them the capacity to perform work.

On either side of the controller, there is a motor. This engine has an uneven weight linked to it.

This indicates that one side of it is heavier than the other. The imbalance of the weight causes the controller to vibrate when the motor turns.

Therefore, Mechanical work is created as a result of the conversion of electrical energy.

Learn more about electric motor here:

https://brainly.com/question/8974674

#SPJ2

N2 is non-reactive, however, if you can get it to react with H2, it does so in a 1:3 mole ratio (N2:H2) and releases 92.0 kJ of thermal energy. That means which if these statements are true?

A. This reaction is exothermic.
B. This reaction has a negative enthalpy of reaction.
C. All of the above are true.
D. This reaction has a negative enthalpy of reaction.

Answers

Answer:

C. all above is true.

Explanation:

Energy releasing reactions are exothermic. Total energy of products ( [tex]  N_2 H_2[/tex]  ) is less than the total energy of reactants ( [tex]  H_2 + N_2 [/tex] ) gives negative enthalpy change.

hint: prefix exo- means "outside, external".

Which statement is true regarding radioactive particles subjected to an electric field?

Answers

Answer:There are three types of radiation

Alpha, Beta and Gamma radiation

Explanation: In an electric field produced by two parallel charged plates alpha particle would be deflected toward a - plate following a parabolic path, beta rays toward a +plate following a parabolic path and gamma radiation either - or + source.

Please !!! I really need help !!! How do I understand these ?!!!!

Answers

Answer

The answer for the first one I think is false.

The second one would be true i think. I hope i got it right and have a wonderful day

Answer:

True

False

Explanation:

From 0 to E, the train moves a distance of 55 m.

From F to J, the train moves a distance of 59 m.

The total distance is 55 + 59 = 114 m.

The displacement is the difference between the final position and initial position.  Here, the distance between J and 0 is -4 m.

The edge of a cube was found to be 30 cm with a possible error in measurement of 0.5 cm. Use differentials to estimate the maximum possible error, relative error, and percentage error in computing the volume of the cube and the surface area of the cube. (Round your answers to four decimal places.)

Answers

Answer:

In computing the volume of a cube,

Maximum possible error = +/-1350cm³

Relative error = 0.05

Percentage error = 5%

In computing the surface area of a cube,

Maximum possible error = +/-180cm²

Relative error = 0.0333

Percentage error = 3.33%

Explanation:

A cube is a three dimensional solid object with six (6) faces, twelve (12) edges and eight(8) vertices.

The volume of a cube = x³

Where x= length of the edge of a cube

X = 30cm +/- 0.5cm

Differentiate V with respect to x (V = Volume of a cube)

dV/dx = 3 x²

dV = 3 x² . dx

dV= 3 × 30² × (+/-0.5)

= 2700(+/-0.5)

= +/-1350cm³

Maximum possible error =

+/- 1350cm³

Relative error = Maximum error /surface area

= ΔV/V

Recall that V = x³

V= (30)³

A = 27000cm³

Substitute the values for and V into the formula for Relative error

Relative error = 1350 / 270000

Relative error = 0.05

% error = Relative error × 100

= 0.05× 100

= 5%

Surface Area of a cube = 6x²

A = 6x²

Differentiate A with respect to x

dA/dx= 12x

dA = 12x . dx

dA= 12 × 30 (0.5)

= +/- 180cm²

Maximum possible error =

+/- 180cm²

Relative error = Maximum error / total area

= dA/dx

Recall that A = 6x²

A = 6(30)²

A = 5400cm²

Substitute the values for and A into the formula for Relative error

Relative error = 180/ 5400

Relative error = 0.0333(4 decimal place)

% error = Relative error × 100

= 0.0333 × 100

= 3.33%

Final answer:

Use of differentials to estimate maximum and relative errors in volume and surface area calculations for a cube.

Explanation:

Differentials for Cube:

Maximum possible error in volume: 30*(0.5) = 15 cm³Relative error in volume: 15/30 = 0.5Percentage error in volume: (0.5)*100% = 50%

Surface Area:

Maximum possible error in surface area: 6*(30)*(0.5) = 90 cm²Relative error in surface area: 90/(6*30) = 0.25Percentage error in surface area: (0.25)*100% = 25%

A projector is placed on the ground 22 ft. away from a projector screen. A 5.2 ft. tall person is walking toward the screen at a rate of 3 ft./sec. How fast is the height of the person's shadow changing when the person is 13 ft. from the projector

Answers

Answer:

y = 67.6 feet,   y = 114.4/ (22 - 3t)

Explanation:

For this exercise let's use that light travels in a straight line and some trigonometric relationships, the symbols are in the attached diagram

Large triangle Projector up to the screen

         tan θ = y / L

For the small triangle. Projector up to the person

         tan θ = y₀ / (L-d)

The angle is the same, so we equate the two equations

         y₀ / (L -d) = y / L

         y = y₀  L / (L-d)

The distance from the screen (d), we look for it with kinematics

         v = d / t

        d = v t

we replace

         y = y₀ L / (L - v t)

         y = 5.2 22 / (22 - 3 t)

         y = 114.4 (22 - 3t)⁻¹

This is the equation of the shadow height change as a function of time

For the suggested distance the shadow has a height of

           y = 114.4 / (22-13)

           y = 67.6 feet

Based on Planet Z's size, orbital distance, and rotation rate, which of the following properties is it likely to have?
erosion due to liquid water
polar ice caps
a surface crowded with impact craters
seasons
active volcanoes
strong winds and violent storms
an atmosphere produced by outgassing
active tectonics

Answers

Answer:

Planet Z will have the following properties;

Active Volcanoes

Active Tectonics

An Atmosphere produced by outgassing

Explanation:

The little terrestrial worlds have heat shorter than the much bigger terrestrial worlds, so the bigger worlds tend to have active volcanism and tectonics. These active volcanism and tectonics are likely to erase ancient craters. The active volcanism and tectonics would create an atmosphere by producing gases.

It is know that the Terrestrial worlds that are not far from the star have higher surface temperature.

Fast rate of rotation can cause winds and strong storms but here it is slower compared to earth. Also, a tilt of axis causes seasons.

The properties the star have are active volcanoes, active tectonics and an atmosphere produced by outgassing.

Final answer:

Planet Z's characteristics such as geological activity, seasons, and atmosphere can be inferred from its size, orbital distance, and rotation rate. A planetary mass similar to Earth's suggests active geology and an atmosphere from outgassing, while a proper distance from the sun allows for liquid water and polar ice caps. The planet's rotation influences the presence of seasons and potential for strong winds and violent storms.

Explanation:

Based on Planet Z's size, orbital distance, and rotation rate, it is possible to infer several characteristics that this planet might have. The level of geological activity on a planet is often proportional to its mass, suggesting that planets similar in size to Earth and Venus are more likely to exhibit geological activity such as active volcanoes or tectonics. Similarly, a planet's distance from its sun can influence the presence of liquid water, with those at optimum distances having the potential for erosion due to liquid water and possibly polar ice caps. A slower rotation might lead to more extreme temperature differences between day and night, which could impact atmospheric conditions and lead to strong winds and violent storms due to the larger temperature gradient.

Planetary rotation also contributes significantly to the development of seasons; hence, how Planet Z rotates will affect whether it experiences seasons. A planet that has active geology and volcanism will likely have an atmosphere that is at least partially produced by outgassing, as seen on Earth, and could also support active tectonics. Lastly, if the planet is not geologically active, it may have a surface crowded with impact craters, similar to the Moon and Mercury, which have less geological activity to renew their surfaces.

A flat uniform circular disk has a mass of 3.97 kg and a radius of 85.7 cm. It is suspended in a horizontal plane by a vertical wire attached to its center. If the disk is rotated 2.42 rad about the wire, a torque of 0.0688 N·m is required to maintain that orientation. Calculate
(a) the rotational inertia of the disk about the wire,
(b) the torsion constant, and
(c) the angular frequency of this torsion pendulum when it is set oscillating.

Answers

Answer:

1.457881265 kgm²

0.02842 Nm/rad

0.13962 rad/s

Explanation:

M = Mass = 3.97 kg

R = Radius = 85.7 cm

[tex]\tau[/tex] = Torque = 0.0688 Nm

[tex]\theta[/tex] = Angle of rotation = 2.42 rad

Moment of inertia about the center of the disk is given by

[tex]I=\dfrac{1}{2}MR^2\\\Rightarrow I=\dfrac{1}{2}\times 3.97\times 0.857^2\\\Rightarrow I=1.457881265\ kgm^2[/tex]

The rotational inertia of the disk about the wire is 1.457881265 kgm²

Torque is given by

[tex]\tau=\kappa \theta\\\Rightarrow \kappa=\dfrac{\tau}{\theta}\\\Rightarrow \kappa=\dfrac{0.0688}{2.42}\\\Rightarrow \kappa=0.02842\ Nm/rad[/tex]

The torsion constant is 0.02842 Nm/rad

Time period is given by

[tex]T=2\pi\sqrt{\dfrac{I}{\kappa}}[/tex]

Angular frequency is given by

[tex]\omega=\dfrac{2\pi}{T}\\\Rightarrow \omega=\sqrt{\dfrac{\kappa}{I}}\\\Rightarrow \omega=\sqrt{\dfrac{0.02842}{1.457881265}}\\\Rightarrow \omega=0.13962\ rad/s[/tex]

The angular frequency of this torsion pendulum when it is set oscillating is 0.13962 rad/s

If a small sports car collides head-on with a massive truck, which vehicle experiences the greater impact force? Which vehicle experiences the greater acceleration? Explain your answers.

Answers

Answer:

Small sports car.

Explanation:

Lets take

mass of the small car = m

mass of the truck = M

As we know that when car collide with the massive truck then due to change in the moment of the car both car as well as truck will feel force.We also know that from Third law of Newton's ,it states that every action have it reaction with same magnitude but in the opposite direction.

Therefore

F = m a

a=Acceleration of the car

[tex]a=\dfrac{F}{m}[/tex]

F= M a'

a'=Acceleration of the massive truck

[tex]a'=\dfrac{F}{M}[/tex]

Here given that M > m that is why a > a'

Therefore car will experiences more acceleration.

A 5.0-kg cannonball is fired over level ground with a velocity of 2.00 ⨯ 102 m/s at an angle of 25° above the horizontal. Just before it hits the ground its speed is 150 m/s. Over the entire trip, find the change in the thermal energy of the cannonball and air.

Answers

Answer:

E=147898.01J

Explanation:

A 5.0-kg cannonball is fired over level ground with a velocity of 2.00 ⨯ 102 m/s at an angle of 25° above the horizontal. Just before it hits the ground its speed is 150 m/s. Over the entire trip, find the change in the thermal energy of the cannonball and air

firstly , we look for the time of flight it takes to make the projectile path

T=2Usin∅/g

take g= 9.81m/s

T=2*200sin25/(9.81)

T=17.23Secs

energy is force *distance

E=f*d

f=m*g

f=5*9.81

f=49.05N

s=distance

s=(v+u)T/2

s=(150+200)17.23/2

s=3015.25m

49.05N*3015.25m

E=147898.01J

A space station in the form of a large wheel, 283 m in diameter, rotates to provide an "artif icial gravity" of 9.5 m/s 2 for people located at the outer rim. What is the frequency of the rotational motion for the wheel to produce this effect? Answer in units of rev/min.

Answers

Answer:

The frequency of the rotational motion for the wheel to produce this effect is 2.473 rev/min.

Explanation:

Given that,

Acceleration = 9.5 m/s²

Diameter = 283 m

We need to calculate the frequency of the rotational motion for the wheel to produce this effect

Using formula of rotational frequency

[tex]a= r\omega^2[/tex]

[tex]\omega=\sqrt{\dfrac{a}{r}}[/tex]

Where, r = radius

a = acceleration

[tex]\omega[/tex] = rotational frequency

Put the value into the formula

[tex]\omega=\sqrt{\dfrac{9.5\times2}{283}}[/tex]

[tex]\omega=0.259\ rad/s[/tex]

The frequency in rev/min

[tex]\omega=0.259\times\dfrac{60}{2\pi}[/tex]

[tex]\omega=2.473\ rev/min[/tex]

Hence, The frequency of the rotational motion for the wheel to produce this effect is 2.473 rev/min.

Calculate the electric potential V(h) inside the capacitor as a function of height h. Take the potential at the bottom plate to be zero.Express V(h) in terms of E and h.V(h) =

Answers

Answer:

V(h) = Eh

Explanation:

I will assume that the capacitor is a parallel-plate capacitor.

By Gauss' Law, electric field inside the capacitor is

[tex]E = \frac{\sigma}{\epsilon_0} = \frac{Q}{\epsilon_0 A}[/tex]

The relation between electric field and potential is

[tex]V_{ab} = -\int\limits^b_a {\vec{E}(h)} \, d\vec{h}  = \int\limits^h_0 {\frac{Q}{\epsilon_0 A}} \, dh \\V(h) - V(0) = V(h) - 0 = Eh\\V(h) = Eh[/tex]

The important thing in this question is that the electric field inside the parallel plate is constant. So, the potential is also constant and proportional to the distance, h.

Final answer:

The electric potential V(h) inside a capacitor as a function of height h, with zero potential at the bottom plate, is V(h) = Eh, using the relationship between the electric field E and potential V where E is constant.

Explanation:

To calculate the electric potential V(h) inside a capacitor as a function of height h, with the potential at the bottom plate taken to be zero, you can use a relation between the electric field E and the potential V. Given that E = V/d, where d is the separation between the plates, and that the electric field E is uniform, we have the relationship E = -dV/dh (the negative sign indicates the direction of the potential decrease). Integrating this equation from 0 to h, where V(0) = 0, gives us V(h) = -Eh. However, we can ignore the negative sign because we are interested in magnitude.

So, the final expression for V(h) inside the capacitor, in terms of the electric field E and the height h above the bottom plate, is:

V(h) = Eh

Your car has stalled and you need to push it. You notice as the car gets going that you need less and less force to keep it going. Suppose that for the first 15 m your force decreased at a constant rate from 210 N to 45 N. How much work did you do on the car?

Answers

Answer:

675 Joules

Explanation:

Considering that work can be calculated with the following formula:

W = Fx D

Where:

W = work

F = force

D = distance

We can directly use this formula in case the applied force remains constant

In case the force does not remain constant, we can calculate the work as a change, this is :

ΔW = ΔFxΔD

For this scenario, we have:

W₁ = F₁xD₁

F₁ = 210 N, D = 0 m

W₁ = 210Nx0m = 0 Joules

W₂ = F₂xD₂

F₂ = 45 N , D₂ = 15 m

W₂ = 45Nx15m = 675 Joules

Finally: ΔW = Total work performed when moving the car 15 m

ΔW = W₂ - W₁ = 675 Joules - 0 Joules = 675 Joules

Final answer:

The amount of work done on the car while pushing it is 1575 Joules.

Explanation:

Work is defined as the product of force and displacement. In this case, the force required to keep the car moving decreases as the car gets going. Work can be calculated using the formula:

Work = Force × Distance

Given that the force decreased from 210 N to 45 N over a distance of 15 m, we can calculate the work done as follows:

Work = (210 N + 45 N) / 2 × 15 m = 1575 J

Therefore, the amount of work done on the car while pushing it is 1575 Joules.

A motorcycle rides on the vertical walls around the perimeter of a large circular room. The friction coefficient between the motorcycle tires and the walls is µ. How does the minimum µ needed to prevent the motorcycle from slipping downwards change with the motorcycle’s speed, s?
a) µ ∝ s0b) µ ∝ s−1/2c) µ ∝ s−1d) µ ∝ s−2e) none of these

Answers

Answer:

option D

Explanation:

given,

coefficient of friction between wall and tire = µ

speed of motorcycle = s

friction force = f = μ N

where normal force will be equal to centripetal force

[tex]N = \dfrac{mv^2}{r}[/tex]

for motorcycle to not to slip weight should equal to the centripetal force

 now,

[tex]m g =\mu \dfrac{mv^2}{r}[/tex]

[tex]\mu =\dfrac{rg}{s^2}[/tex]

where "rg" is constant

[tex]\mu\ \alpha \ \dfrac{1}{s^2}[/tex]

[tex]\mu\ \alpha \ s^{-2}[/tex]

Hence, the correct answer is option D

   

Other Questions
Alerts from the National Terrorism Advisory System apply only to the United States and its possessions. (Introduction to Antiterrorism, Page 12) True or False A 15.85g piece of iron absorbs 1086.75 joules of heat energy and its temperature changes from 25 degrees Celsius to 175 degrees celcius. Calculate the specific heat capacity of iron. What did the ottomans gain when they attacked Constantinople The first thing you must be able to do to get at the main idea of a paragraph is to identify the topic - the subject of theparagraph. Think of the paragraph as a wheel with the topic being the hub - the central core around which the whole wheel(or paragraph) spins. (A) Your strategy for topic identification is simply to ask yourself the question, "What is this about?" Keepasking yourself that question as you read a paragraph, until the answer to your question becomes clear. (B) Sometimes you canspot the topic by looking for a word or two that repeat. Usually you can state the topic in a few words. (Let us try this topic-finding strategy. (D) Reread the first paragraph on this page - the first paragraph under the heading Grasping the Main IdeaAsk yourself the question, What is this paragraph about?' To answer, say to yourself in your mind, "The author keeps talkingabout paragraphs and the way they are designed. This must be the topic - paragraph organization' Reread the secondparagraph of the same section. Ask yourself "What is this paragraph about?' Did you say to yourself. This paragraph is aboutdifferent ways to organize a paragraph? That is the topic. Next, reread the third paragraph and see if you can find the topic ofthe paragraph. How? Write the topic in the margin next to this paragraph. Remember, getting the main idea of a paragraph iscrucial to reading- When a paragraph contains two main ideas, it should be divided into two paragraphs. Choose the letter at the point where thepassage should be dividedA)AB)BC)CD)D Which of the following files stores information about local Dropbox installation and account, email IDs linked with the account, current version/build for the local application, the host_id, and local path information?A.filecache.db B.config.db C.sigstore.db D.host.db . The Harivansa says, "An abode without birds is like a meat without seasoning." meaning? Write a method called all Less that accepts two arrays of integers and returns true if each element in the first array is less than the element at the same index in the second array. For example, if the two arrays passed are {45, 20, 300} and {50, 41, 600}, your method should return true. If the arrays are not the same length, you should return false.Test your method and print out to the screen in main() function the following callsa. all Less(arr1, arr2); (where arr1 = [1,2,3,4,5], arr2 = [4,5,6,7,8])b. all Less(arr1, arr2); (where arr1 = [1,2,3,4,5], arr2 = [5,6,7,8])c. all Less(arr1, arr2); (where arr1 = [5,2,3,4,1], arr2 = [4,5,6,7,8])d. all Less(arr1, arr2); (where arr1 = [5,5,3,4,5], arr2 = [9,9,9,9,1]) the concept and full method Hydrogen is unique among the elements because ________. 1. It is not really a member of any particular group. 2. Its electron is not at all shielded from its nucleus. 3. It is the lightest element. 4. It is the only element to exist at room temperature as a diatomic gas. 5. It exhibits some chemical properties similar to those of groups 1A and 7A. What is the Scientific Revolution? When you multiply fractions and the first number is a whole number is you answer a whole or fraction? Candace is a confident, disciplined, motivated, hardworking team player. She pushes her teammates to perform to their full potential but guides them and does not control them. What does Candaces commitment to her team show ____ leaders cause changes in individuals and social systems. a. Transactional b. Transformational c. Transnational d. Transregional What is the line through the points (2,3) and (19,17) All of the following are suggested health promotion practices for American Indians and Alaskan Natives excepta) Recognize that there is a great diversity among the tribes, so assumptions should be avoidedb) Holistic practices should be utilized to plan care and treatmentc) be aware of superstitions and their impactd) Elders should be afforded no more respect than others The system consists of a 20-lb disk A, 4-lb slender rod BC, and a 1-lb smooth collar C. If the disk rolls without slipping, determine the velocity of the collar at the instant the rod becomes horizontal. The system is released from rest when != 45. Which of the following journal entries is created to adjust for a deferral? A. Unearned Revenue Revenue B. Interest Expense Interest Payable C. Cash Revenue D. Accounts Receivable Unearned Revenue Find sin(a)&cos(B), tan(a)&cot(B), and sec(a)&csc(B). . Greet the customer and thank them for contacting our company2. Let the customer know their order has been delayed, as caused by a severe blizzard on the East coast.3. Express sympathy for the inconvenience caused.4. Let them know that they can call customer support 8a - 8p EST, Mon - Fri: 555-555-55555. Sign off with a professional formal tone You missed a monthly payment on your mortgage. Your monthly payment is $1,278. Your mortgage holder places a 5%penalty on all late monthly payments. What is your total penalty cost?