The system consists of a 20-lb disk A, 4-lb slender rod BC, and a 1-lb smooth collar C. If the disk rolls without slipping, determine the velocity of the collar at the instant the rod becomes horizontal. The system is released from rest when != 45°.

Answers

Answer 1
Final answer:

The velocity of the collar at the instant the rod becomes horizontal can be determined using the conservation of angular momentum principle. By calculating the moment of inertia of the disk and equating the initial and final angular momenta, we can solve for the final angular velocity. Since the disk rolls without slipping, the final linear velocity of the disk can be determined using the equation v' = Rω'.

Explanation:

To determine the velocity of the collar at the instant the rod becomes horizontal, we can use conservation of angular momentum. Since the disk rolls without slipping, its angular momentum is conserved. The angular momentum is given by the product of the moment of inertia and the angular velocity. When the rod becomes horizontal, the angular velocity of the disk is equal to the velocity of the collar.

We can calculate the moment of inertia of the disk using the formula I = (1/2)MR^2, where M is the mass of the disk and R is its radius. Substituting the values, we get I = (1/2)(20 lb)(2 ft)^2. We also know that the angular momentum is conserved, so the initial angular momentum is equal to the final angular momentum. The initial momentum is Iω, where ω is the initial angular velocity. The final momentum is Iω', where ω' is the final angular velocity.

Since the disk rolls without slipping, the linear velocity of the disk is equal to the radius times the angular velocity, v = Rω. So, the final linear velocity of the disk is equal to the final angular velocity times the radius, v' = Rω'. Substituting the values, we can solve for ω'.

Learn more about Conservation of Angular Momentum here:

https://brainly.com/question/1597483

#SPJ3


Related Questions

The St. Louis Arch has a height of 192 m. Suppose that a stunt woman of mass 84 kg jumps off the top of the arch with an elastic band attached to her feet. She reaches the ground at zero speed. The acceleration of gravity is 9.81 m/s 2 . Find her kinetic energy after 2.6 s of the flight. Assume the elastic band has no length and obeys Hooke’s Law. Answer in units of kJ

Answers

Final answer:

The kinetic energy of the stunt woman after 2.6 s of flight is 27578.835 kJ.

Explanation:

To find the kinetic energy of the stunt woman after 2.6 s of flight, we can use the formula for kinetic energy:

KE = 0.5 mv^2

where KE is the kinetic energy, m is the mass, and v is the velocity.

First, let's find the velocity of the stunt woman after 2.6 s of flight. We can use the equation:

v = u + at

where v is the final velocity, u is the initial velocity (0 m/s), a is the acceleration due to gravity (-9.81 m/s^2), and t is the time (2.6 s).

Substituting the values, we get:

v = 0 + (-9.81) * 2.6

v = -25.446 m/s

Since the stunt woman reaches the ground at zero speed, her final velocity is 0 m/s. Therefore, her velocity is -25.446 m/s after 2.6 s of flight.

Now, let's plug the values of mass (84 kg) and velocity (-25.446 m/s) into the formula for kinetic energy:

KE = 0.5 * 84 * (-25.446)^2

KE = 0.5 * 84 * 650.701716

KE = 27578.835 kJ

Therefore, the stunt woman's kinetic energy after 2.6 s of flight is 27578.835 kJ.

Suppose that you release a small ball from rest at a depth of 0.600 m below the surface in a pool of water. If the density of the ball is 0.300 that of water and if the drag force on the ball from the water is negligible, how high above the water surface will the ball shoot as it emerges from the water? Neglect any transfer of energy to the splashing and waves produced by the emerging ball.

Answers

Answer:

1.4m

Explanation:

We go out to sunbathe on a warm summer day. If we soak up 80 British thermal units per hour​ [BTU/h] of​ energy, how much will the temperature of 65 comma 000​-gram person increase in 2 hours ​[h] in units of degrees Celsius​ [°C]? We assume that since our bodies are mostly water they have the same specific heat as water ​(4.18 joules per gram degree Celsius​ [J/(g degrees Upper C​)]).

Answers

Answer:

0.62127°C

Explanation:

[tex]1\ BTU=1055\ J[/tex]

[tex]80\ BTU/h=80\times 1055=84400\ J/h[/tex]

Heat absorbed by body in 2 hours

[tex]Q=84400\times 2\\\Rightarrow Q=168800\ J[/tex]

m = Mass of person = 65000 g

c = Specific heat of water = 4180 J/kg°C

[tex]\Delta T[/tex] = Change in temperature

Heat is given by

[tex]Q=mc\Delta T\\\Rightarrow 168800=65\times 4180\times \Delta T\\\Rightarrow \Delta T=\dfrac{168800}{65\times 4180}\\\Rightarrow \Delta T=0.62127\ ^{\circ}C[/tex]

The increase in temperature will be 0.62127°C

My Notes A container is divided into two equal compartments by a partition. One compartment is initially filled with helium at a temperature of 240 K; the other is filled with nitrogen at a temperature of 315 K. Both gases are at the same pressure. If we remove the partition and allow the gases to mix, what will be their final temperature?

Answers

Answer:

[tex]final-temperature = T_{f} = 252.51K[/tex]

Explanation:

we can solve this problem by using the first law of thermodynamics.

    [tex]\Delta U= Q-W[/tex]

Q= heat added

U= internal energy

W= work done by system

                        [tex]E_{final}= E_{initial}[/tex]

[tex]C_{v} (N_{2}) C_{v}(He) T_{f} =C_{v}( N_{2}) T_{N_{2} } C_{v} (He) T_{He}[/tex]    (1)

[tex]C_{v}(N_{2})=1.04\frac{KJ}{Kg K}[/tex]

[tex]C_{v}(He)=5.193\frac{KJ}{Kg K}[/tex]

now

From equation 1

[tex]T_{f}=\frac{C_{v}( N_{2}) T_{N_{2} } C_{v} (He) T_{He}}{C_{v} (N_{2}) C_{v}(He)}[/tex]

[tex]T_{f} = \frac{315\times1.04+5.193\times240}{1.04+5.193}[/tex]

[tex]T_{f} = 252.51K[/tex]

Select the statement that correctly completes the description of phase difference.
Phase difference describes:
O the difference in the phase angle between any two waves at any given position along the waves.
O the shift between the positions of corresponding crests of two waves of the same frequency.
O the difference in the frequencies of two waves at a given time.
O the displacement of a wave particle from its undisturbed position at the origin.

Answers

Final answer:

Phase difference denotes the difference in phase angle between two waves at a given point, occurring when waves are separated by a whole number of multiples of wavelengths.

Explanation:

Phase difference describes the difference in the phase angle between any two waves at any given position along the waves. When the waves have the same frequency and the difference in their path lengths is an integer multiple of the wavelength, the waves are said to be in phase. This means these points are separated by a whole number multiple of whole wave cycles or wavelengths. For example, sound waves can illustrate a phase shift when they have different path lengths. It is also important to understand that the wavelength is defined as the distance between any two adjacent points that are in phase.

Since we cannot physically collect data from stars and most other objects in the universe, almost all of the information we obtain from the universe comes from analyzing the light, or spectra, from those objects. The study of light is known as spectroscopy. As we have seen in this simulation, every blackbody emits light with an easily identified pattern known as the blackbody curve. This is the particular way the total light emitted by a blackbody varies with its frequency. The exact form of the curve depends only on the body's temperature. Since we can treat stars as blackbodies, this is incredibly useful in astronomy that shows us that the color of a star is also indicative of its temperature. Use the simulation to determine the surface temperature of the following star: Betelgeuse is a red supergiant star in the constellation Orion. Knowing that Betelgeuse has peak intensity in the red and infrared wavelengths, adjust the intensity scale and temperature until you can determine the approximate surface temperature of the star. a. 3500K b. 4800K c. 7700K d. 11,000 K

Answers

Answer:

3500 K

Explanation:

b = Wien's displacement constant = [tex]2.89\times 10^{-3}\ mK[/tex]

Wavelength range = 700 nm to 10⁶ m. Let us take 825 nm

[tex]\lambda_m=825\ nm[/tex]

From Wien's displacement law we have

[tex]\lambda_m=\dfrac{b}{T}\\\Rightarrow T=\dfrac{b}{\lambda_m}\\\Rightarrow T=\dfrac{2.89\times 10^{-3}}{825\times 10^{-9}}\\\Rightarrow T=3500\ K[/tex]

The surface temperature of Betelguese is 3500 K

You are in a submarine and are at the surface of the ocean but out in the deep sea. There is a big storm and you want to dive down deep enough so that you avoid the turbulence of the sea. You notice the distance between successive waves (wave length) is 20 meters. How far down do you need to dive down to not feel the effect of the waves?

Answers

One of the maritime principles that relate the turbulence and wavelength of the waves is called the "depth of 1/2 wavelength" which is also usually referred to as the floor of the wave: A point of depth in which There is no movement. There if a submarine is found, it can be unbalanced and steadily navigate.

If the wavelength is 20 meters, then it must be submerged 10 meters (20/2) to avoid turbulence.

When radio waves try to pass through a city, they encounter thin vertical slits: the separations between the buildings. This causes the radio waves to diffract. In this problem, you will see how different wavelengths diffract as they pass through a city and relate this to reception for radios and cell phones. You will use the angle from the center of the central intensity maximum to the first intensity minimum as a measure of the width of the central maximum (where nearly all of the diffracted energy is found).a. Find the angle θ to the first minimum from thecenter of the central maximum (Express your answer in terms λ and a.):b. What is the angle θFM to the first minimum foran FM radio station with a frequency of 101mMHz? (Express your answer numerically indegrees to three significant figures. Note: Do not write youranswer in terms of trignometric functions. Evaluate any suchfunctions in your working.)c. What is the angle θcell for a cellular phonethat uses radiowaves with a frequency of 900MHz? (Express your answer indegrees to three significant figures.)d. What problem do you encounter in tryingto find the angle θAM for an AM radio stationwith frequency 1000kHz?i. The angle becomes zero.ii. The angle can be given only in radians.iii. To find the angle it would be necessary to takethe arcsine of a negative number.iv. To find the angle it would be necessary totake the arcsine of a number greater than one.

Answers

Final answer:

The diffraction of radio waves when passing through city buildings can be represented by single-slit diffraction. The angle to the first minimum can be calculated using the equation θ = sin-1(λ/a), but for AM radio with very large wavelengths, this calculation may not be valid as it could require taking the arcsine of a number greater than one.

Explanation:

When radio waves encounter thin vertical slits such as the spaces between buildings, they diffraction occurs. The property of diffraction can be analyzed using the concept of single-slit diffraction from wave optics. For a single-slit diffraction, the angle θ to the first minimum can be found using the equation θ = sin-1(λ/a), where λ is the wavelength of the wave and a is the width of the slit.

For an FM radio station with a frequency of 101 MHz, we would use the relationship between frequency (f), wavelength (λ), and the speed of light (c) to find the wavelength (λ = c/f) before calculating the angle using the aforementioned equation.

Similarly, for a cellular phone using radio waves with a frequency of 900 MHz, we again find the wavelength using the same relation and then calculate the angle θ to the first minimum.

However, for AM radio, the complication arises because the wavelengths for AM radio are considerably larger. This can lead to a scenario where the slit width is not narrow enough compared to the wavelength, and as a result, the angle θAM calculated using sin-1(λ/a) may result in taking the arcsine of a number greater than one, which is not possible and indicates that the first minimum may not occur.

In lab, your instructor generates a standing wave using a thin string of length L = 1.65 m fixed at both ends. You are told that the standing wave is produced by the superposition of traveling and reflected waves, where the incident traveling waves propagate in the +x direction with an amplitude A = 2.45 mm and a speed vx = 10.5 m/s . The first antinode of the standing wave is a distance of x = 27.5 cm from the left end of the string, while a light bead is placed a distance of 13.8 cm to the right of the first antinode. What is the maximum transverse speed vy of the bead? Make sure to use consistent distance units in your calculations.


Given that the distance from the left end of the string to the first antinode is 27.5 cm , calculate the wavelength of the standing wave on the string. Remember to convert all measurements into units of meters before performing this calculation.

Answers

Answer:

On the standing waves on a string, the first antinode is one-fourth of a wavelength away from the end. This means

[tex]\frac{\lambda}{4} = 0.275~m\\\lambda = 1.1~m[/tex]

This means that the relation between the wavelength and the length of the string is

[tex]3\lambda/2 = L[/tex]

By definition, this standing wave is at the third harmonic, n = 3.

Furthermore, the standing wave equation is as follows:

[tex]y(x,t) = (A\sin(kx))\sin(\omega t) = A\sin(\frac{\omega}{v}x)\sin(\omega t) = A\sin(\frac{2\pi f}{v}x)\sin(2\pi ft) = A\sin(\frac{2\pi}{\lambda}x)\sin(\frac{2\pi v}{\lambda}t) = (2.45\times 10^{-3})\sin(5.7x)\sin(59.94t)[/tex]

The bead is placed on x = 0.138 m. The maximum velocity is where the derivative of the velocity function equals to zero.

[tex]v_y(x,t) = \frac{dy(x,t)}{dt} = \omega A\sin(kx)\cos(\omega t)\\a_y(x,t) = \frac{dv(x,t)}{dt} = -\omega^2A\sin(kx)\sin(\omega t)[/tex]

[tex]a_y(x,t) = -(59.94)^2(2.45\times 10^{-3})\sin((5.7)(0.138))\sin(59.94t) = 0[/tex]

For this equation to be equal to zero, sin(59.94t) = 0. So,

[tex]59.94t = \pi\\t = \pi/59.94 = 0.0524~s[/tex]

This is the time when the velocity is maximum. So, the maximum velocity can be found by plugging this time into the velocity function:

[tex]v_y(x=0.138,t=0.0524) = (59.94)(2.45\times 10^{-3})\sin((5.7)(0.138))\cos((59.94)(0.0524)) = 0.002~m/s[/tex]

In this exercise we have to use the knowledge of mechanics to be able to calculate the wavelength, so we can say that it will correspond to:

[tex]v_y=0.002m/s[/tex]

On the standing waves well-behaved, the first antinode happen one of four equal parts of a intuitiveness out completely. This means:

[tex]\lambda=1.1 m[/tex]

This way that the connection middle from two points the wavelength and the extent of object of the strand happen:

[tex]L=3\lambda /2[/tex]

By definition, this standing wave exist at the after second harmonious, n = 3.

Furthermore, the standing wave equating happen in this manner:

[tex]y(x,t)=(Asin(kx))sin(wt)=Asin(w/vx)sin(wt)=((2.45*10^{-3})sin(5.7X)sin(59.94t)[/tex]

The droplet exist established on x = 0.138 m. The maximum speed exist place the derivative of the speed function equals to nothing:

[tex]v_y=wAsin(kx)cos(wt)\\a_y=-w^2Asin(kx)sin(wt)\\a_y=0[/tex]

Find the time, we have:

[tex]59.94t=\pi\\t=0.0524s[/tex]

This exist moment of truth when the speed is maximum. So, the maximum speed maybe raise by stop up existing time into the velocity function:

[tex]v_y(x=0.138,t=0.0524)=(59.94)(2.45*10^{-3})sin((5.7)(0.138))cos((59.94)(0.0524))\\=0.002 m/s[/tex]

See more about wavelength at brainly.com/question/7143261

A 92kg astronaut and a 1200kg satellite are at rest relative to the space shuttle. The astronaut pushes on the satellite, giving it a speed of 0.14m/s directly away from the shuttle. Seven and a half seconds later the astronaut comes into contact with the shuttle. What was the initial distance from the shuttle to the astronaut?

Answers

Answer:

13.7m

Explanation:

Since there's no external force acting on the astronaut or the satellite, the momentum must be conserved before and after the push. Since both are at rest before, momentum is 0.

After the push

[tex]m_av_a + m_sv_s = 0[/tex]

Where [tex]m_a = 92kg[/tex] is the mass of the astronaut, [tex]m_s = 1200kg[/tex] is the mass of the satellite, [tex]v_s = 0.14 m/s[/tex] is the speed of the satellite. We can calculate the speed [tex]v_a[/tex] of the astronaut:

[tex]v_a = \frac{-m_sv_s}{m_a} = \frac{-1200*0.14}{92} = -1.83 m/s[/tex]

So the astronaut has a opposite direction with the satellite motion, which is further away from the shuttle. Since it takes 7.5 s for the astronaut to make contact with the shuttle, the distance would be

d = vt = 1.83 * 7.5 = 13.7 m

Final answer:

This is a conservation of momentum problem where the astronaut moves opposite to the direction of the satellite's movement due to Newton's third law. The astronaut's velocity is calculated using the conservation of momentum principle, and the distance between him and the shuttle is then determined via the formula for distance.

Explanation:

This problem involves understanding the conservation of momentum in a system with no external forces acting on it. When an astronaut pushes a satellite in space, there's a reaction force acting back on the astronaut due to Newton's third law. So, the astronaut will also move in the opposite direction. Keep in mind that the net momentum before and after this action remains zero as there are no external forces.

We're given that the astronaut comes into contact with the shuttle seven and half seconds after pushing on the satellite. He must have been moving at a certain speed to cover the distance in this time. Due to conservation of momentum, we can set up an equation as follows: Momentum of Astronaut + Momentum of Satellite = 0 (Because initially they were at rest). We can then calculate this to find the velocity of the astronaut.

After getting the velocity of the astronaut, we use the formula for distance: Distance = Speed * Time to get the initial distance between astronaut and Shuttle.

Learn more about Conservation of Momentum here:

https://brainly.com/question/33316833

#SPJ3

An ideal heat engine operates of fixed difference of temperatures between hot and cold reservoirs, say 100K. What will provide greater efficiency: operation with the hot reservoir as hot as possible, or operation with a cold reservoir as cold as possible?

Answers

To solve this problem we will apply the concepts given for the efficiency of an engine which is given as

[tex]\eta = 1-\frac{T_C}{T_H}[/tex]

[tex]\eta = \frac{T_H-T_C}{T_H}[/tex]

Where

[tex]T_C[/tex] = Temperature of the cold reservoir

[tex]T_H[/tex] = Temperature of the hot reservoir

The efficiency maximum would be given only if [tex]T_C = 0[/tex]

Replacing this value we have

[tex]\eta = \frac{T_H-0}{T_H}[/tex]

[tex]\eta = 1[/tex]

Therefore: Cold reservoir as cold as possible provide the greater efficiency.

Final answer:

The greater efficiency in an ideal heat engine is obtained when the hot reservoir is as hot as possible and the cold reservoir is as cold as possible.

Explanation:

The greater efficiency in an ideal heat engine operating with a fixed temperature difference between hot and cold reservoirs is obtained when the hot reservoir is as hot as possible and the cold reservoir is as cold as possible.

Efficiency is determined by the ratio of the temperature of the cold reservoir (Tc) to the temperature of the hot reservoir (Th). The greater the temperature difference, the easier it is to convert heat transfer to work.

Therefore, maximizing the temperature difference by making the hot reservoir as hot as possible and the cold reservoir as cold as possible will result in greater efficiency.

A particle moves according to the law of motion s(t) = t^{3}-8t^{2}+2t, t\ge 0, where t is measured in seconds and s in feet. a.) Find the velocity at time t. Answer: b.) What is the velocity after 3 seconds? Answer: c.) When is the particle at rest? Enter your answer as a comma separated list. Enter None if the particle is never at rest. At t_1= and t_2= with t_1

Answers

Answer:

Explanation:

Given

displacement is given by

[tex]s(t)=t^3-8t^2+2t[/tex]

so velocity is given by

[tex]v(t)=\frac{\mathrm{d} s(t)}{\mathrm{d} t}[/tex]

[tex]v(t)=3t^2-16t+2[/tex]

(b)velocity after [tex]t=3 s[/tex]

[tex]v(3)=3(3)^2-8\cdot 3+2[/tex]

[tex]v(3)=19 m/s[/tex]

(c)Particle is at rest

when its velocity will become zero

[tex]v(t)=0[/tex]

i.e.  [tex]3t^2-16t+2=0[/tex]

[tex]t=\frac{16\pm \sqrt{16^2-4\cdot 3\cdot 2}}{2\cdot 3}[/tex]

[tex]t=\frac{16\pm 15.23}{6}[/tex]

[tex]t=5.20 s[/tex]    

A cylinder, which is in a horizontal position, contains an unknown noble gas at 4.00 × 10 4 Pa 4.00×104 Pa and is sealed with a massless piston. The piston is slowly, isobarically moved inward 16.3 cm, 16.3 cm, which removes 1.50 × 10 4 J 1.50×104 J of heat from the gas. If the piston has a radius of 30.5 cm, 30.5 cm, calculate the change in the internal energy of the system Δ U ΔU .

Answers

Answer:

-13094.55179 J

Explanation:

Q = Heat = [tex]-1.5\times 10^{4}\ J[/tex]

P = Pressure = [tex]4\times 10^4\ Pa[/tex]

[tex]\Delta V[/tex] = Change in volume = [tex]\pi r^2\times -h[/tex](negative because it is decreasing)

h = Height = 16.3 cm

r = Radius = 30.5 cm

Entropy is given by

[tex]\Delta U=Q-W[/tex]

Work done is given by

[tex]W=P\Delta V\\\Rightarrow W=4\times 10^4\times (\pi 0.305^2\times -0.163)[/tex]

[tex]\Delta U=-1.5\times 10^{4}-(4\times 10^4\times (\pi 0.305^2\times -0.163))\\\Rightarrow \Delta U=-13094.55179\ J[/tex]

The change in the internal energy of the system is -13094.55179 J

The SI unit of power is the watt. Which of the following units are equivalent to the watt?
A) V∙AB) J/CC) C/sD) V/sE) A/s

Answers

Answer:

The right option is (A) V.A

Explanation:

Power: This is the rate at which work is done. Or it is the produce of force and velocity. The S.I unit of power is Watt (W). Other units include Horse power(hp), foot-pound per minutes, etc.

Generally, power can be represented as,

Power = Energy/time

P = W/t......................... Equation 1

Where p = power, w = Work or energy, t = time in seconds.

Electrical energy: This is the product of potential difference and the quantity of charge.

∴ W = VQ............................... Equation 2

Where V = potential difference, Q = quantity of charge and W = Energy or Work done.

Also Q = It........................ Equation 3.

where I = current in ampere, t = time in seconds

Substituting equation 3 into equation 3

W = VIt............................ Equation 4.

Also substituting Equation 4 into Equation 1

P = VIt/t = VI = voltage(V)×Current(A)

Therefore the equivalent unit of power is

P = V.A.

The right option is (A) V.A

Final answer:

The SI unit of power is the watt. The options A) V∙A, B) J/C, and C) C/s are equivalent to a watt.

Explanation:

The SI unit of power is indeed the watt, represented by the symbol 'W'. The watt is a derived unit of power in the International System of Units (SI) and is defined as one joule per second. Hence, three of the given options, A) V∙A, B) J/C, and C) C/s are equivalent to a watt.

A) A Volt (V) times an Ampere (A) also equals a watt (V∙A=W). This is derived from the formula P=V∙I where P is power, V is voltage, and I is current. B) A Joule (J) per Coulomb (C) is also a watt (J/C = W). This comes from the relationship P=W/t = J/s = V∙A. C) A Coulomb (C) per second is also a watt (C/s = W), because one ampere equals to 1 C/s. The unit Coulomb per second refers to the electrical current where 1 A is equivalent to 1 C/s.

Learn more about Watt here:

https://brainly.com/question/27355276

#SPJ6

Snorkeling by humans and elephants. When a person snorkels, the lungs are connected directly to the atmosphere through the snorkel tube and thus are at atmospheric pressure. In atmospheres, what is the difference Δp between this internal air pressure and the water pressure against the body if the length of the snorkel tube is



(a)24 cm (standard situation) and



(b)4.1 m (probably lethal situation)?

Answers

Answer:

2354.4 Pa

40221 Pa

Explanation:

[tex]\rho[/tex] = Density = 1000 kg/m³

g = Acceleration due to gravity = 9.81 m/s²

h = Depth

The pressure difference would be

[tex]\Delta P=\rho gh\\\Rightarrow \Delta P=1000\times 0.24\times 9.81\\\Rightarrow \Delta P=2354.4\ Pa[/tex]

The pressure difference in the first case is 2354.4 Pa

[tex]\Delta P=\rho gh\\\Rightarrow \Delta P=1000\times 4.1\times 9.81\\\Rightarrow \Delta P=40221\ Pa[/tex]

The pressure difference in the second case is 40221 Pa

Say that you are in a large room at temperature TC = 300 K. Someone gives you a pot of hot soup at a temperature of TH = 340 K. You set the bowl up so that as it cools to room temperature the heat first flows through a Carnot Engine. The soup has Cv= (33 J/K). Assume that the volume of the soup does not change.
1. What fraction of the total heat QH that is lost by the soup can be turned into useable work by the engine?

Answers

Answer:

Explanation:

Heat energy given out by the soup

= C_v  x ( t₂ - t₁ )

= 33 x ( 340 - 300)

= 1320 J

This heat is given to Carnot engine . Efficiency of engine

= (340 - 300 ) / 340

= 40 / 340

2 / 17

This fraction of total heat given is converted into useable work by the engine.

A grinding wheel is a uniform cylinder with a radius of 7.80 cm and a mass of 0.550 kg.

Part A
Calculate its moment of inertia about its center. Express your answer to three significant figures and include the appropriate units.
Part B
Calculate the applied torque needed to accelerate it from rest to 1750 rpm in 7.40 s .

Take into account a frictional torque that has been measured to slow down the wheel from 1500 rpm to rest in 58.0 s .

Answers

Answer:

a. I = 167.31 x 10 ⁻³ kg*m²

b. T = 4.59 kg * m² / s²

Explanation:

The moment of inertia of a uniform cylinder:

a.

r = 7.8 cm * 1 m / 100 cm = 0.078 m

I = ½ * m * r²  

I = ½ * 0.55 kg * (0.078²m)

I = 167.31 x 10 ⁻³ kg*m²

b.

T = Iα’ + Iα,    

α’ = ω’/t = 1750 rpm * (2π/60) / 7.40s  =  24.76 rad/s²

α = ω/t = 1500 rpm * (2π/60) / 58  = 2.71 rad/s²

T = (167.31 x 10⁻³ kg*m²)* (24.76 + 2.71 ) rad / s²  

T = 4.59 kg * m² / s²

Final answer:

The moment of inertia of the wheel is calculated as 0.00133 kg*m^2. The second part of the question involves determining the net and frictional torques to find the total applied torque.

Explanation:

To solve this problem, we need to apply the formulas of moment of inertia and the angular acceleration along with the concept of frictional torque. The moment of inertia for a cylinder rotating about its axis is given by the formula I = 0.5*m*r^2. In this case, where mass (m) is 0.550 kg and radius (r) is 7.80 cm or 0.078 m (since 1cm = 0.01m).

Part A: I = 0.5 * 0.550 kg * (0.078 m)^2 = 0.00133 kg*m^2.

For Part B, we first need to convert the rotational speed from revolutions per minute (rpm) to rad/s. Then we use these values to determine the angular acceleration and calculate the net torque. The frictional torque is then added to this net torque to find the total applied torque.

Learn more about Rotational Mechanics here:

https://brainly.com/question/33791333

#SPJ11

Giraffe bending to drink. In a giraffe with its head 1.83 m above its heart, and its heart 2.04 m above its feet, the(hydrostatic) gauge pressure in the blood at its heart is 246 torr. Assume that the giraffe stands upright and the blood density is 1.06 × 103 kg/m3. In torr (or mm Hg), find the (gauge) blood pressure.
(a) at the brain (the pressure is enough to perfuse the brain with blood, to keep the giraffe from fainting)
(b) at the feet (the pressure must be countered by tight-fitting skin acting like a pressure stocking).
(c) If the giraffe were to lower its head to drink from a pond without splaying its legs and moving slowly, what would be the increase in the blood pressure in the brain? (Such action would probably be lethal.)

Answers

Answer:

1)     Pm₂ = 1.9 10⁴ Pa , b)  P_feet = 5.4 10⁴ Pa , c)  Pm₄ = 4.4 10⁴ Pa

Explanation:

a) Pressure can be found using Bernoulli's equation

         P₁ + ½ rho v₁² + rho g y₁ = P₂ + ½ rho v₂² + rgo g y₂

The amount of blood that runs through the constant system, all the blood that reaches the brain leaves it, so we can assume that the speed of entry and exit of the total blood is the same. In this case the equation is

       P₁-P₂ = rgo h (y₂-y₁)

The gauge pressure is

      Pm = P₁ -P₂

      Pm₂ = 1.06 10³ 9.8 1.83

      Pm₂ = 19 10³ Pa

      Pm₂ = 1.9 10⁴ Pa

The pressure in the heart is

      Pm₁ = 246 torr (1,013 10⁵ Pa / 760 torr) = 3,279 10⁴ Pa

Therefore the gauge pressure is an order of magnitude less

Total or absolute pressure is

      Pm₂ = P_heart - P_brain

      P_brain = P_heart - Pm₂

      P brain = 3,279 10⁴ - 1.9 10⁴

      P brain = 1.4 104 Pa

b) on the feet

    Pm₃ = rho g y₃

    y = 2.04 m

    Pm₃ = 1.06 10³ 9.8 2.04

    Pm₃ = 21 10³ Pa

   Pm₃ = 2.1 10⁴ Pa

Total pressure

    Pm₃ = P_feet + P_heart

   P_feet = Pm₃ + P_heart

  P_feet = 3,279 10⁴ + 2.1 10⁴

 P_feet = 5.4 10⁴ Pa

c) If you lower your head the height change is

    h = 1.83 +2.04

    h = 4.23 m

    Pm₄ = 1.06 10³ 9.8 4.23

    Pm₄ = 4.4 10⁴ Pa

Cold water (cp = 4180 J/kg·K) leading to a shower enters a thinwalled double-pipe counterflow heat exchanger at 15°C at a rate of 1.25 kg/s and is heated to 60°C by hot water (cp = 4190 J/kg·K) that enters at 100°C at a rate of 4 kg/s. If the overall heat transfer coefficient is 880 W/m2 ·K, determine the rate of heat transfer and the heat transfer surface area of the heat exchanger.

Answers

Answer:

the rate of heat transfer Q is Q =235.125 kJ/s

the heat transfer surface area A of the heat exchanger is A= 15.30 m²

Explanation:

Assuming negligible loss  to the environment, then the heat flow of the hot water goes entirely to the cold water

Denoting a as cold water and b as hot water , then

Q= Fᵃ* cpᵃ * ( T₂ᵃ - T₁ᵃ)

where

F= mass flow

cp = specific heat capacity at constant pressure

T₂= final temperature

T₁ = initial temperature

replacing values

Q = Fᵃ* cᵃ * ( T₂ᵃ - T₁ᵃ) =  1.25 kg/s* 4180 J/kg·K* ( 60°C-15°C) * 1 kJ/1000J= 235.125 kJ/s

if all there is no loss to the surroundings

Qᵃ + Qᵇ = Q surroundings = 0

Fᵃ* cpᵃ * ( T₂ᵃ - T₁ᵃ) +  Fᵇ* cpᵇ * ( T₂ᵇ - T₁ᵇ) = 0

T₂ᵇ = T₁ᵇ - [Fᵃ* cpᵃ /  (Fᵇ* cpᵇ)  ]* ( T₂ᵃ - T₁ᵃ)

replacing values

T₂ᵇ =100°C - [1.25 kg/s* 4180 J/kg·K/  (4 kg/s* 4190 J/kg·K)]* ( 60°C-15°C)

T₂ᵇ = 85.97 °C

the heat transfer surface of the heat exchanger is calculated through

Q = U*A* ΔTlm

where

U= overall heat transfer coefficient

A = heat transfer area of the heat exchanger

ΔTlm = (ΔTend - ΔTbeg)/ ln ( ΔTend - ΔTbeg)

ΔTbeg = temperature difference between the 2 streams at the inlet of the heat exchanger (  hot out - cold in) = 85.97 °C - 15°C = 70.97 °C

ΔTbeg = temperature difference between the 2 streams at the end of the heat exchanger ( hot in - cold out ) = 100°C - 60 °C = 40°C

then

ΔTlm = (ΔTend - ΔTbeg)/ ln ( ΔTend - ΔTbeg) =( 70.97 °C-  40°C)/ ln( 70.97°C/40°C) = 17.455 °C

ΔTlm = 17.455 °C

then

Q = U*A* ΔTlm

A = Q/(U*ΔTlm) = 235.125 kJ/s/(17.455 °C *880 W/m²*K) *1000 J/kJ = 15.30 m²

A= 15.30 m²

Final answer:

Calculate the heat transfer rate and heat transfer surface area in a double-pipe counterflow heat exchanger using given water properties and overall heat transfer coefficient.

Explanation:

Cold Water: mw = 1.25 kg/s, cp = 4180 J/kg·K, Tin = 15°C, Tout = 60°C

Hot Water: mh = 4 kg/s, cp = 4190 J/kg·K, Tin = 100°C, Tout = ?

Overall Heat Transfer: U = 880 W/m²·K

Calculate Heat Transfer Rate:

Calculate Q using Q = mcΔT for each water type.Calculate ∆T using Tin and Tout values.Use the overall heat transfer coefficient equation: Q = U × A × ∆Tlm.Solve for A, the heat transfer surface area.

A ≈ 1m²

So, the rate of heat transfer is approximately 55341.28 W and the heat transfer surface area of the heat exchanger is approximately 1 m².

Which of the following statements are true? A. Earth's gravity has no effect on astronauts inside the International Space Station. B. An astronaut's mass is greater on Earth than on the Moon. C. An astronaut's weight is the same on the Moon as on Earth. D. An astronaut's mass is the same on the International Space Station as it is on Earth. E. None of these statements are true.

Answers

The given statement "An astronaut's mass is the same on the International Space Station as it is on Earth" is true.

Answer: Option D

Explanation:

There is usually a slight difference between mass and the weight of an object. The difference is that the mass of any object is independent of its acceleration due to gravity or gravitational influence of the planet where it is present.

Similarly, the weight of any object will be influenced by the gravitational force of that planet as the weight is directly proportional to the acceleration due to gravity of that planet.

So, the other three options are false and those three options states that weight of an object on Earth is equal to the weight of that object on any other planet. This is not true. So, the fourth option related to the mass of an astronaut in and outside Earth is true as it is equal theoretically.

An astronaut's mass being the same on the International Space Station as it is on Earth is a true statement.

What is Mass?

Thus is defined as the resistance a matter offers to a change in its speed or position when force is applied.

Gravitational force doesn't determine the mass of objects which is why an astronaut's mass on International Space Station will be the same as on Earth. This therefore makes option D the most appropriate choice.

Read more about Mass here https://brainly.com/question/25121535

The period of a sinusoidal source is the time required for the sinusoid to pass through all of its possible values. We use the symbol T to represent the period of a sinusoid. The period and the frequency are inversely related. A sinusoidal source described by the function cos(ωt) has a frequency of ω radians/second, or a frequency f=ω/2π Hz. The units hertz represents the number of cycles per second. Since the period is the number of seconds per cycle, the period is the inverse of the frequency in hertz: T=1f Substituting the frequency in radians/second, ω, for the frequency in Hz gives us another way to calculate the period: T=2πω What is the period of the voltage source described as v(t)=50cos(2000t−45∘) mV? Express your answer to two digits after the decimal point and include the appropriate units.

Answers

Answer:

T=0.0031secs

Explanation:

The voltage expression [tex]v(t)=50cos(2000t-45^{0})[/tex] can be represented as

[tex]v(t)=v_{m}cos(wt-\alpha ) \\[/tex]

comparing the two equations we can conclude that the angular frequency  

[tex]w=2000[/tex]

from the question, since the frequency,f which is express as

[tex]f=\frac{w}{2\pi }\\[/tex],

Hence  [tex]f=\frac{2000}{2\pi } \\f=\frac{2000}{2*3.14 } \\f=318.471Hz\\[/tex].

The period which is the inverse of the frequency can be express as

[tex]T=\frac{1}{f} \\T=\frac{1}{314.471}\\ T=0.00314\\T=0.0031secs[/tex]

A wooden artifact is found in an ancient tomb. Its 14C activity is measured to be 66.3% of that in a fresh sample of wood from the same region. Assuming the same amount of 14C was initially presented in the wood from which the artifact was made, determine the age of the artifact. The half-life of 14C is 5730 y. Answer in units of y.

Answers

Answer:

3396.53 years

Explanation:

Using decay formula

In([tex]\frac{N}{No}[/tex]) = -Kt where t is the age of the artifact in years and k is the decay constant

T1/2 = [tex]\frac{In2}{K}[/tex]

5730 = [tex]\frac{In2}{K}[/tex]

K =  In 2 / 5730=  0.000121yr^-1

N / No = 0.663

In (0.663) / -0.000121 = t

t = 3396.53 years

The capacity of a storage battery, such as those used in automobile electrical systems, is rated in ampere-hours (A?h). A 50 A?h battery can supply a current of 50 Afor 1.0 h, or 25 A for 2.0 h, and so on.A) What total energy can be supplied by a 13V , 60A?h battery if its internal resistance is negligible?Answer= ...... JB) What volume (in liters) of gasoline has a total heat of combustion equal to the energy obtained in part (a)? (See Section 17.6; the density of gasoline is 90 kg/m 3.)Answer= ........ LC) If a generator with an average electrical power output of 0.45 kW is connected to the battery, how much time will be required for it to charge the battery fully?Answer= ........ h

Answers

Answer: (A) 780J

(B) 1.89×10^-11L

(C)1.67×10^-4 h

Explanation:

Energy of the battery = IVt

=13×60 = 780J

Heat combustion of

1g of gasoline relax 46000J

Therefore 780J will release 780/46000

= 0.017g

Density = mass/volume

Volume = mass/density

Volume =0.017× 10^-3 / 900

= 1.89× 10^-8 m3

= 1.89×10^-11 litres

P=IVt

t=P/IV

= 450/60×13

1.67×10^-4 hours

The energy of a battery, volume of gasoline and time required to charge the battery is required.

The energy is 2808000 J

The volume is 0.683 L.

The time required is 1.733 h

It = Current-time = 60 Ah = [tex]60\times 3600\ \text{As}[/tex]

t = Time

V = Voltage = 13 V

Energy is given by

[tex]E=IVt=ItV\\\Rightarrow E=60\times 3600\times 13\\\Rightarrow E=2808000\ \text{J}[/tex]

[tex]\rho[/tex] = Density = [tex]90\ \text{kg/m}^3=\dfrac{90}{1000}=0.09\ \text{kg/L}[/tex]

C = Thermal heat capacity = [tex]4.57\times 10^7\ \text{J/kg}[/tex]

m = Mass

Power is given by

[tex]P=mC\\\Rightarrow m=\dfrac{P}{C}\\\Rightarrow m=\dfrac{2808000}{4.57\times 10^7}=\dfrac{702}{11425}\ \text{kg}[/tex]

Volume is given by

[tex]V=\dfrac{m}{\rho}\\\Rightarrow V=\dfrac{\dfrac{702}{11425}}{0.09}\\\Rightarrow V=0.683\ \text{L}[/tex]

P = Power = 0.45 kW

Time is given by

[tex]t=\dfrac{E}{P}\\\Rightarrow t=\dfrac{2808000}{450}=6240\ \text{s}\\\Rightarrow t=\dfrac{6240}{3600}=1.733\ \text{h}[/tex]

Learn more:

https://brainly.com/question/2254571?referrer=searchResults

In a lab experiment, a student is trying to apply the conservation of momentum. Two identical balls, each with a mass of 1.0 kg, roll toward each other and collide. The velocity is measured before and after each collision. The collected data is shown below. A 5 column table with 3 rows. The first column is unlabeled with entries Trial 1, Trial 2, Trial 3, Trial 4. The second column is labeled Initial Velocity Ball A (meters per second) with entries positive 1, positive 0.5, positive 2, positive 0.5. The third column is labeled Initial Velocity Ball B (meters per second) with entries negative 2, negative 1.5, positive 1, negative 1. The third column is labeled Final Velocity Ball A (meters per second) with entries negative 2, negative 0.5, positive 1, positive 1.5. The fourth column is labeled Final Velocity Ball B (meters per second) with entries negative 1, negative 0.5, negative 2, negative 1.5. Which trial shows the conservation of momentum in a closed system? Trial 1 Trial 2 Trial 3 Trial 4

Answers

Answer:

Second Trial satisfy principle of conservation of momentum

Explanation:

Given mass of ball A and ball B [tex]=\ 1.0\ Kg.[/tex]

Let mass of ball [tex]A[/tex] and [tex]B\ is\ m[/tex]  

Final velocity of ball [tex]A\ is\ v_1[/tex]

Final velocity of ball [tex]B\ is\ v_2[/tex]

initial velocity of ball [tex]A\ is\ u_1[/tex]

Initial velocity of ball [tex]B\ is\ u_2[/tex]

Momentum after collision [tex]=mv_1+mv_2[/tex]

Momentum before collision [tex]= mu_1+mu_2[/tex]

Conservation of momentum in a closed system states that, moment before collision should be equal to moment after collision.

Now, [tex]mu_1+mu_2=mv_1+mv_2[/tex]

Plugging each trial in this equation we get,

First Trial

[tex]mu_1+mu_2=mv_1+mv_2\\1(1)+1(-2)=1(-2)+1(-1)\\1-2=-2-1\\-1=-3[/tex]

momentum before collision [tex]\neq[/tex] moment after collision

Second Trial

[tex]mu_1+mu_2=mv_1+mv_2\\1(.5)+1(-1.5)=1(-.5)+1(-.5)\\.5-1.5=-.5-.5\\-1=-1[/tex]

moment before collision [tex]=[/tex] moment after collision

Third Trial

[tex]mu_1+mu_2=mv_1+mv_2\\1(2)+1(1)=1(1)+1(-2)\\2+1=1-2\\3=-1[/tex]

momentum before collision [tex]\neq[/tex] moment after collision

Fourth Trial

[tex]mu_1+mu_2=mv_1+mv_2\\1(.5)+1(-1)=1(1.5)+1(-1.5)\\.5-1=1.5-1.5\\-.5=0[/tex]

momentum before collision [tex]\neq[/tex] moment after collision

We can see only Trial- 2 shows the conservation of momentum in a closed system.

Answer: Trial 2

Explanation:

A 44.5 mA current is carried by a uniformly wound air-core solenoid with 500 turns, a 18.5 mm diameter, and 14.0 cm length. (a) Compute the magnetic field inside the solenoid. µT (b) Compute the magnetic flux through each turn. T·m2 (c) Compute the inductance of the solenoid. mH (d) Which of these quantities depends on the current? (Select all that apply.)

Answers

Answer:

a. Magnetic Field =1.997×[tex]10^{-4}[/tex] T

b. Area= 2.68×[tex]10^{-4}[/tex][tex]m^{2}[/tex]

   Magnetic Flux= 5.367×[tex]10^{-8}[/tex]T[tex]m^{2}[/tex]

c. Inductance= 6.013×[tex]10^{-4}[/tex]H

Explanation:

Parameters from the question

I= 44.5×[tex]10^{-3}[/tex]A

N=500 turns

Diameter=18.5mm

Radius = (diameter/2) = 9.25mm =9.25×[tex]10^{-3}[/tex]m

L= 14cm = 0.14m

Permitivity [tex]U_{o}[/tex]=4π×[tex]10^{-7}[/tex]H/m

The Formulars Used are

B(Magnetic Field) =[tex]\frac{U_{o}. N. I }{l}[/tex]

Mag Flux= B.A

Inductance= [tex]\frac{U_{o}.N^{2} .A }{l}[/tex]

Answer:

a) 199.716 μT

b) [tex]5.368 * 10^{-8}[/tex] T·m^2

c) 0.603 mH

d) B and Ф

Explanation:

I am giving the explanation with my handwritten solution in the paper.

Check the attachment please.

A 90.0-kg fullback running east with a speed of 5.00 m/s is tackled by a 95.0-kg opponent running north with a speed of 3.00 m/s. (a) Why does the tackle constitute a perfectly inelastic collision? (b) Calculate the velocity of the players immediately after the tackle and (c) determine the mechanical energy that is lost as a result of the collision. (d) Where did the lost energy go?

Answers

Answer:

a) Please see below as the answer is self-explanatory.

b) 2.88 m/s

c) 785. 8 J

d) It is expended like thermal energy, due to internal friction.

Explanation:

a) In a tackle, both players keep emmeshed each other, so it is a perfectly inelastic collision; Immediately after the tackle, both masses behave like they were only one.

b) Assuming no external forces act during the collision, total momentum must be conserved.

As momentum is a vector, the conservation principle must be met by all vector components at the same time.

In our case, as the players move in directions mutually perpendicular, we can decompose the momentum vector along both directions, taking into account that after the collision, the momentum vector will have components along both directions.

So, if we call the W-E axis our X-axis (being the direction towards east as the positive one) , and to the S-N axis our Y -axis (being the northward direction the positive one), we can write the following equations:

pₓ₀ = pₓf ⇒ m₁*v₁ = (m₁+m₂)*vf*cosθ

py₀ = pyf ⇒ m₂*v₂ = (m₁+m₂)*vf*sin θ

where θ, is the angle that both players take regarding the x-axis after the collision (north of east).

Replacing by the values, we have the following equations:

vf*cosθ = (90.0 kg*5.00 m/s) / (90.0 kg + 95.0 kg) = 2.43 m/s (1)

vf*sin θ = (95.0 kg* 3.00 m/s) / (90.0 kg + 95.0 kg) = 1.54 m/s (2)

Dividing both sides:

sin θ / cos θ = tan θ = 1.54 / 2.43 = 0.634

⇒ arc tan (0.634) = 32.3º

Replacing in (1) we have:

vf = 2.43 m/s / cos 32.3º = 2.43 m/s / 0.845 = 2.88 m/s

c) As the collision happens in one dimension, all mechanical energy, before and after the collision, is just the kinetic energy of the players.

Before the collision:

K₀ = 1/2*m₁*v₁₀² + 1/2 m₂*v₂₀²

= 1/2*( ( 90.0) kg*(5.0)²(m/s)² + (95.0)kg*(3.0)(m/s)²) = 1,553 J

After the collision:

Kf = 1/2 *(m₁+ 767.2 Jm₂)*vf² = 1/2*185 kg*(2.88)²(m/s)²= 767.2 J

The mechanical energy lost during the collision is just the difference between the final and initial kinetic energy:

ΔK = Kf - K₀ = 767.2 - 1,553 J = -785.8 J

So, the magnitude of the energy lost during the collision is 785.8 J.

d) This energy is lost during the collision as thermal energy, due to the internal friction between both players.

Final answer:

The tackle constitutes a perfectly inelastic collision where the players stick together after the collision, resulting in a loss of kinetic energy. The velocity of the players immediately after the tackle is 2.70 m/s to the east. The mechanical energy lost as a result of the collision is 562.5 J.

Explanation:

(a) The tackle constitutes a perfectly inelastic collision because the two players stick together after the collision, resulting in a loss of kinetic energy. In a perfectly inelastic collision, the objects involved stick together and move as a single unit.

(b) To calculate the velocity of the players immediately after the tackle, we can use the principle of conservation of momentum. The total momentum before the collision is equal to the total momentum after the collision. Since the fullback is running east, we can consider the positive direction as east and the negative direction as north. Applying the principle of conservation of momentum in the x-direction, we have:

Total momentum before the collision in the x-direction: (90.0 kg)(5.00 m/s) = 450 kg·m/sTotal momentum after the collision in the x-direction: (90.0 kg + 95.0 kg) * Vx = (185.0 kg) * Vx

Setting the two equations equal to each other and solving for Vx, we get:

(90.0 kg)(5.00 m/s) = (185.0 kg) * VxVx = 2.70 m/s

So the velocity of the players immediately after the tackle is 2.70 m/s to the east.

(c) The mechanical energy that is lost as a result of the collision can be calculated by subtracting the final kinetic energy from the initial kinetic energy. The initial kinetic energy is given by:

Initial kinetic energy = 0.5 * (90.0 kg) * (5.00 m/s)^2 = 562.5 J

Since the players come to rest after the collision, the final kinetic energy is zero. Therefore, the mechanical energy lost is equal to the initial kinetic energy:

Mechanical energy lost = Initial kinetic energy = 562.5 J

(d) The lost energy is converted into other forms of energy, such as sound, heat, and deformation of the players and their surroundings.

Learn more about Perfectly inelastic collision here:

https://brainly.com/question/24616147

#SPJ12

While at the county fair, you decide to ride the Ferris wheel. Having eaten too many candy apples and elephant ears, you find the motion somewhat unpleasant. To take your mind off your stomach, you wonder about the motion of the ride. You estimate the radius of the big wheel to be 17m , and you use your watch to find that each loop around takes 26sWhat is your speed?Express your answer to two significant figures and include the appropriate units.What is the magnitude of your acceleration?Express your answer to two significant figures and include the appropriate units.What is the ratio of your weight at the top of the ride to your weight while standing on the ground?Express your answer using two significant figures.

Answers

Answer:

Case Study: General Andrew Jackson: Andrew Jackson's military career spanned several wars including the American Revolution, the Creek War, the War of 1812, and the Case Study: General Andrew Jackson: Andrew Jackson's military career spanned several wars including the American Revolution, the Creek War, the War of 1812, and the First Seminole War. After the Creek War, Jackson and the Creek Indians signed the

Explanation:

Case Study: General Andrew Jackson: Andrew Jackson's military career spanned several wars including the American Revolution, the Creek War, the War of 1812, and the First Seminole War. After the Creek War, Jackson and the Creek Indians signed the

Case Study: General Andrew Jackson: Andrew Jackson's military career spanned several wars including the American Revolution, the Creek War, the War of 1812, and the First Seminole War. After the Creek War, Jackson and the Creek Indians signed theCase Study: General Andrew Jackson: Andrew Jackson's military career spanned several wars including the American Revolution, the Creek War, the War of 1812, and the First Seminole War. After the Creek War, Jackson and the Creek Indians signed the

Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheels energy can be released quickly to accomplish a task that demands high power. An industrial flywheel has a 1.5 m diameter and a mass of 250 kg.
1. A motor spins up the flywheel with a constant torque of 50 N*m. How long does it take the flywheel to reach top angular speed of 1200 rpm
2. How much energy is stored in the flywheel?

Answers

Final answer:

To find the time it takes for the flywheel to reach its top angular speed, we can use the formula: ω = Δθ / Δt. In this case, the flywheel has a diameter of 1.5 m and spins up to an angular speed of 1200 rpm. It takes approximately 0.0375 seconds for the flywheel to reach its top angular speed. The energy stored in the flywheel is approximately 554,414.06 joules.

Explanation:

To find the time it takes for the flywheel to reach its top angular speed, we can use the formula:

ω = Δθ / Δt

Where ω is the angular velocity, Δθ is the change in angle, and Δt is the change in time.

In this case, the flywheel has a diameter of 1.5 m, so the radius is 0.75 m. The flywheel spins up from rest to an angular speed of 1200 rpm, which is equivalent to 125.66 rad/s. 

Using the formula, we can rearrange to solve for Δt:

Δt = Δθ / ω

Δθ is equal to the circumference of the flywheel, which is 2π times the radius:

Δθ = 2π × 0.75 m = 4.7124 rad

Plugging in the values:

Δt = 4.7124 rad / 125.66 rad/s = 0.0375 s

So it takes approximately 0.0375 seconds for the flywheel to reach its top angular speed.

Now, to calculate the energy stored in the flywheel, we can use the formula:

KE = 0.5 × I × ω^2

Where KE is the kinetic energy, I is the moment of inertia, and ω is the angular velocity.

The moment of inertia for a solid disk is given by:

I = 0.5 × m × r^2

Where m is the mass of the flywheel and r is the radius.

Plugging in the values:

I = 0.5 × 250 kg × (0.75 m)^2 = 70.3125 kg×m^2

Now we can calculate the energy:

KE = 0.5 × 70.3125 kg×m^2 × (125.66 rad/s)^2 = 554,414.06 J

So, the flywheel stores approximately 554,414.06 joules of energy.

If the coefficient of static friction between tires and pavement is 0.60, calculate the minimum torque that must be applied to the 69-cm-diameter tire of a 920-kg automobile in order to "lay rubber" (make the wheels spin, slipping as the car accelerates). Assume each wheel supports an equal share of the weight.

Answers

To solve this problem, it is necessary to apply the definitions and concepts related to Newton's second law, which relate the variables of the Normal Force, Weight, friction force and finally the Torque.

We start under the definition that the Normal Force of one of the 4 tires of the car would be subject to

[tex]N = \frac{mg}{4}[/tex]

Where,

m = mass

g = Gravitational Acceleration

Therefore the Normal Force of each wheel would be

[tex]N = \frac{920*9.8}{4}[/tex]

[tex]N =  2254N[/tex]

Now the friction force can be determined as

[tex]f_s = \mu_s N[/tex]

[tex]f_s = 0.60 * 2254[/tex]

[tex]f_s = 1352.4N[/tex]

The radius of each of the tires is given as

[tex]r = \frac{69}{2}[/tex]

[tex]r = 34.5cm = 0.345m[/tex]

Finally, the torque is made between the friction force (which is to be overcome) and the radius of each of the wheels, therefore:

[tex]\tau = r*f_s[/tex]

[tex]\tau = (0.345)(1352.4)[/tex]

[tex]\tau = 466.578N\cdot m[/tex]

Therefore the engine of the car must apply a torque of about [tex]466.578N\cdot m[/tex] to lay rubber

To calculate the minimum torque needed to make the wheels spin on a car, we must first understand the concept of static friction. The force of static friction (Fs) that must be overcome to cause slipping is given by

Fs = μsN
where μs is the coefficient of static friction and N is the normal force. In this case, the weight of the car (W) is evenly distributed on all four tires, so each tire supports a quarter of the weight, W/4. The normal force N for one tire would then be W/4.

Since the weight W of the car is the mass (m) times the acceleration due to gravity (g), we have:
N = W/4 = mg/4.
Substituting the given values, we find
N = (920 kg * 9.81 m/s2)/4.

Using the coefficient of static friction (μs = 0.60), the static frictional force Fs for one tire is
Fs = 0.60 * N.

To find the torque (τ), we use the relation
τ = Fsr
where r is the radius of the tire.

The radius is half the diameter, so r = 69 cm / 2 or 0.345 m. Thus, the minimum torque is
τ = Fs * 0.345 m.

Calculating N, we get
N = (920 kg * 9.81 m/s2)/4
N = 2251.05 N

so Fs = 0.60 * 2251.05 N
Fs = 1350.63 N.

Therefore, the minimum torque τ is 1350.63 N * 0.345 m = 465.97 Nm.

A heat engine takes thermal energy QH from a hot reservoir and uses part of this energy to perform work W. Assuming that QH cannot be changed, how can the efficiency of the engine be improved?
a) Increase the work W, the thermal energy QC rejected to the cold reservoir increasing as a result.
b) Decrease the work W, the rejected QC decreasing as a result.
c) Increase the work W, the rejected QC remaining unchanged.
d) Increase the work W, the rejected QC decreasing as a result.
e) Decrease the work W, the rejected QC remaining unchanged

Answers

Answer:

d) Increase the work W, the rejected QC decreasing as a result.

Explanation:

By the second law of thermodynamics the efficiency of a heat engine working between two reservoirs is:

[tex]\eta=\frac{W}{Q_{H}} [/tex] (1)

With W the work and [tex] Q_{H} [/tex] the heat of the hot reservoir, note in (1) that efficiency is directly proportional to the work and inversely proportional to the heat of the hot reservoir, so if we remain [tex]Q_{H} [/tex] constant we should increase the work to increase the efficiency.

Also, efficiency is:

[tex] \eta=1-\frac{Q_{C}}{Q_{H}}[/tex]  (2)

With [tex]Q_{C} [/tex] the heat released to the cold reservoir, it is important to note that because second law of thermodynamics the efficiency of a heat engine should be between 0 and 1 ([tex]0\leq\eta\leq1 [/tex]), so the ratio [tex]\frac{Q_{C}}{Q_{H}} [/tex] always is positive and its maximum value is 1, that implies if [tex]Q_{H} [/tex] remains constant and efficiency increases, [tex]Q_{C} [/tex] will decrease and the ratio [tex]\frac{Q_{C}}{Q_{H}} [/tex] too.

So, the correct answer is d)

Final answer:

The efficiency of a heat engine is increased by increasing the work output while decreasing the rejected heat to the cold reservoir, in accordance with the first and second laws of thermodynamics.

Explanation:

To improve the efficiency of a heat engine, one must increase the work output, W, while simultaneously decreasing the heat rejected to the cold reservoir, Qc. The correct choice is:

d) Increase the work W, the rejected Qc decreasing as a result.

The efficiency, η, of a heat engine is defined as the ratio of the work done, W, to the heat absorbed from the hot reservoir, QH. By the first law of thermodynamics, QH = W + Qc, meaning that the efficiency can be increased either by increasing W or decreasing Qc. According to the second law of thermodynamics, there is a minimum amount of QH that cannot be used for work and must be rejected as Qc. Therefore, the aim is to minimize this rejected heat without altering QH, which cannot be changed in this scenario. The ideal is to approach the efficiency of a Carnot engine, which has the maximum possible efficiency between two given temperatures by operating in a reversible manner and reducing entropy generation.

Other Questions
An industrial expert claims that the average useful lifetime of a typical car transimssion which comes with ten years warranty is significantly more than 10 years. In order to test this claim, 9 car transmissions are randomly selected and their useful lifetimes are recorded. The sample mean lifetime is 13.5 years and the sample standard deviation is 3.2 years. Assuming that the useful lifetime of a typical car transmission has a normal distribution, based on these sample result, the correct conclusion at 1% significance level for this testing hypotheses problem is:a. none of these answers.b. Data provides sufficient evidence, at 1% significance level, to reject the expert's claim. In addition the p-value (or the observed significance level) is equal to P( T < -3.281).c. Data provides insufficient evidence, at 1% significance level, to support the expert's claim. In addition the p-value (or the observed significance level) is equal to P( Z > 2.896).d. Data provides sufficient evidence, at 1% significance level, to support the expert's claim. In addition the p-value (or the observed significance level) is equal to P( T >3.355).e. Data provides insufficient evidence, at 1% significance level, to support the researcher's claim. In addition the p-value (or the observed significance level) is equal to P(Z > 2.896). A person rolls a standard six-sided die 9 times. In how many ways can he get 3 fours, 5 sixes, and 1 two? Starting from rest, your friend dives from a high cliff into a deep lake below, yelling in excitement at the thrill of free-fall on her way down. You watch her, as you stand on the lake shore, and at a certain instant your keen hearing recognizes that the usual frequency of her yell, which is 919 Hz, is shifted by 55.9 Hz. How long has your friend been in the air when she emits the yell whose frequency shift you hear? Take 342 m/s for the speed of sound in air and 9.80 m/s2 for the acceleration due to gravity. Which ordered pair is a solution of system 2x-y 2A) (1,-1)B) (4,1)C) (2,0)D) (3,2) What is the solution to 2x2+x+2 = 0? An experienced tinter can tint a car in 3 hours. A beginning tinter needs 6 hours to complete the same job. Find how long it takes for the two to do the job together. large numbers of immigrants who had been displaced from their homes by war with the united states settled in the South west In the late 1800s . which country did the leave? The target diol is synthesized in one step from 1-methylcyclopentene, but your lab partner exhausted the supply of that alkene. Fortunately, you have plenty of isomers (C6H10) on hand from which to synthesize 1-methylcyclopentene and, ultimately, the diol. Provide the missing reagents and organic structures needed to most efficiently produce the target product. The editor's job is made more difficult when the best shots in terms of lighting and composition may be the weakest in terms of acting and dramatic impact.1. True2. False Which of the following statements is incorrect? Group of answer choices a. In aggressive cultures, supportive, cooperative behaviors are not rewarded. b. In people-oriented cultures, supportive, cooperative behaviors are rewarded. c. In team-oriented cultures, supportive, cooperative behaviors are rewarded. d. In aggressive cultures, supportive, cooperative behaviors are rewarded. How can too much sodium affect people with high blood pressure? A. It can cause the body to absorb iron. B. It can cause the body to retain water. C. It can cause the body to dissolve acids. D. It can cause the body to reduce energy. Natalie is thinking of repaying all amounts outstanding to her grandmother. Recall that Cookie Creations borrowed $2,000 on November 16, 2017, from Natalie's grandmother. Interest on the note is 9% per year, and the note plus interest was to be repaid in 24 months. Recall that a monthly adjusting journal entry was prepared for the months of November 2017 (1/2 month), December 2017, and January 2018. (a) Calculate the interest payable that was accrued and recorded to January 31, 2018. Round to nearest dollar. (b) Calculate the total interest expense and interest payable from February 1 to August 31, 2018. Prepare the journal entry at August 31, 2018, to bring the accounting records up to date. Round to nearest dollar. (c) Natalie repays her grandmother on September 15, 2018-10 months after her grandmother extended the loan to Cookie Creations. Prepare the journal entry for the loan repayment. Adriana wants to keep her eyes healthy. What vitamin should she add to her diet? On January 1, GHI Corporation issued four-year bonds with a face value of $100,000. The bonds have a stated interest rate of 4 percent. When the bonds were issued, the market interest rate was 5 percent. The bonds pay interest once per year on December 31. Determine the amount that GHI received at issuance. Your answer should be rounded to the nearest full dollar (i.e., no cent At high noon, the sun delivers 1 000 W to each square meter of a blacktop road. What is the equilibrium temperature of the hot asphalt, assuming its emissivity e = 1? ( = 5.67 108W/m2K4) .a. 75Cb. 84Cc. 91Cd. 99C Natalie is thinking of buying a van that will be used only for business. The cost of the van is estimated at $36,500. Natalie would spend an additional $2,500 to have the van painted. In addition, she wants the back seat of the van removed so that she will have lots of room to transport her mixer inventory as well as her baking supplies. The cost of taking out the back seat and installing shelving units is estimated at $1,500. She expects the van to last about 5 years, and she expects to drive it for 200,000 miles. The annual cost of vehicle insurance will be $2,400. Natalie estimates that at the end of the 5-year useful life the van will sell for $7,500. Assume that she will buy the van on August 15, 2017, and it will be ready for use on September 1, 2017. Natalie is concerned about the impact of the vans cost on her income statement and balance sheet. She has come to you for advice on calculating the vans depreciation. Prepare three depreciation tables for 2017, 2018 and 2019: one for straight-line depreciation , one for double-declining balance depreciation, and one for units-of-activity depreciation. For units-of-activity, Natalie estimates she will drive the van as follows: 15,000 miles in 2017; 45,000 miles in 2018; 50,000 miles in 2019; 50,000 miles in 2020; and 40,000 miles in 2021. Recall that Cookie Creations has a December 31 year-end.Double-declining-balance depreciation: What is just the NBV (Beg. of Year) for 2017, 2018, and 2019? What is the x-intercept of the line described by the equation?12x - 10y = 60Write your answer as an ordered pair.What is the y-intercept of the line described by the equation?12x - 10y = 60Write your answer as an ordered pair Please help!(will mark brainliest)What is the solution to the system of linear equations graphed below? Read the excerpt from Julius Caesar, act 1, scene 1. [FLAVIUS.] See whether their basest metal be not moved.60 They vanish tongue-tied in their guiltiness. Go you down that way towards the Capitol; This way will I. Disrobe the images, If you do find them decked with ceremonies. MARULLUS. May we do so?65 You know it is the feast of Lupercal. FLAVIUS. It is no matter; let no images Be hung with Caesars trophies. Ill about, And drive away the vulgar from the streets: So do you too, where you perceive them thick. Which paraphrase of the passage is the most accurate? Flavius says, See whether their basest metal be not moved. They vanish tongue-tied in their guiltiness. Then he tells Marullus where to go to disrobe the images. Marullus protests because it is the feast of Lupercal, but Flavius tells him that it does not matter. Flavius says, Let no images be hung with Caesars trophies, and tells Marullus to clean up the streets. Flavius and Marullus decide to wipe the streets clean of homage to Caesar and to chase away those who want to celebrate him. Flavius and Marullus talk about who should complete what task to clear the streets. Flavius hopes that he has changed the high spirits of the people in the streets and sends them away before Caesar sees them. He instructs Marullus to go toward the capitol, while he himself goes the other way to take down any images of Caesar or decorations on his statues. Marullus wants to know if that is OK, because everyone is celebrating the feast of Lupercal. Flavius does not care, and he tells Marullus to do as he says and send the crowds home. what does Alfreds voice represent to the speaker?