An egg farm packages 264 total cartons of eggs each month.The farm has three different sizes of cartons.The small carton holds 8 eggs,and 1/6 of the total cartons are small.TThe medium carton holds 12 eggs and 2/3 of the total Cardinals are medium to large carton holds 18 eggs and the rest of the total clients are large determine how many of each size of the curtain is needed each month then determine how many eggs are needed to fill the 264 cartons show your work or explain your answers

Answers

Answer 1

I don't know.. can you please explain it?


Related Questions

Tim Has 480 Pokemon cards in his collection, which he arranges in his album. Each page of his album holds 12 cards. The album has 35 pages. Write an expression that shows how many Pokemon cards Tim Has left after he has filled his album completely?

Answers

480/12=40 then 40-35=5 5x12=60 60 cards left

Answer:

Step-by-step explanation:

Total number of Pokemon cards that Tim has in his collection is 480

He arranges the cards in his album and each page of his album holds 12 cards.

The total number of pages in the album is 35. After he has filled his album completely, the total number of cards that the album would contain would be 35 × 12 = 420

Let x represent the number of Pokemon cards he has left. Therefore, the expression becomes

x + 420 = 480

x = 480 - 420 = 60

Seattle star blends whole bean coffee worth $3.00 per pound to get 25 pounds of a coffee blend worth $3.50 per pound. How many pounds of both blends does she use?

Answers

Answer:

Blend of Whole bean coffee used = 22.5 Ib

Blend of Half bean Coffee used = 2.5 lb

Correction in statement:

The problem statement is missing information. The proper statement is as follows:

Seattle Star blends whole bean coffee worth $3 per pound with half bean coffee worth $3.5 per pound to get 25 pounds of a coffee blend worth $3.05 per pound. How many pounds of each type of coffee does she use?

Step-by-step explanation:

Whole Bean Coffee = $3

Half Bean Coffee = $ 3.5

Amount of whole bean coffee in Pounds (lbs) = Y

Mixture amount of whole bean and half bean blend = 25 lbs

Amount of half bean coffee = 25-Y (lbs)

Total blended mixture = $3.05

Cost of mixture = Cost of whole bean coffee used + Cost of half bean coffee used

3.05 (25) = 3Y + 3.5 (25-Y)

76.25 = 3Y + 87.5 - 3.5 Y

76.25 - 87.5 = 3Y - 3.5Y

- 11.25 = - 0.5 Y

or

0.5 Y = 11.25

Y=[tex]\frac{11.25}{0.5}[/tex]

Y= 22.5 lb

Which is the amount of whole bean coffee.

Amount of half bean coffee = 25-Y = 25- 22.5 = 2.5 lb

So,

Blend of Whole bean coffee used = 22.5 lb

Blend of Half bean Coffee used = 2.5 lb

PLEASE HELP

which graph represents the given inequality y < 3x-4

Answers

Answer: Here is the answer.

Step-by-step explanation:

A garden hose emits 9 quarts of water in 6 seconds at this rate How long will it take the hose to emit 12 quarts how much water does the hose emit in 10 second

Answers

Answer:

8 seconds

15 quarts

Step-by-step explanation:

Givens

6 seconds emits 9 quarts of water.

x seconds emits 12 quarts of water.

Formula

6/x = 9/12

Solution

Cross multiply

9x = 12*6         Simplify the right

9x = 72            Divide by 9

9x/9 = 72/9

x = 8 seconds  Answer.

In 8 seconds, the hose will emit 12 quarts

=========================

Givens

9 quarts of water are emitted in 6 second

x quarts of water are emitted in 10 seconds

Formula

9/x = 6/10            Cross multiply

Solution    

9*10 = 6x              Combine the left

90 = 6x                 Divide by 6

90/6=6x/6            

15 = x

In 10 seconds the hose emits 15 quarts.

Answer:

Step-by-step explanation:

The garden hose emits 9 quarts of water in 6 seconds. It means that the number of seconds that it takes the garden hose to emit 1 quart of water would be 6/9 = 2/3 seconds

Therefore, the number of seconds that it will take the garden hose to emit 12 quarts of water would be

12 × 2/3 = 8 seconds.

Again, the number of quarts that the garden hose will emit in one second is 9/6 = 3/2 quarts.

Therefore, the number of quarts of water that the hose emits in 10 seconds would be

10 × 3/2 = 15 quarts.

Alexander and Jo live 5 miles apart. They decide to leave their homes at 3 p.M. And travel toward each other. If Alexander bikes 14 miles per hour and Jo jogs 6 miles per hour, when will they meet?

Answers

Answer:

Step-by-step explanation:

Here is an illustration of the problem:

             ----------------------------->|<------------------

            A                                  t                     J

Alex and Jo start from their separate homes and drive towards one another.  The t indicates the time at which they meet, which is the same time for both.  Filling in a d = rt table:

              d           =        r        x        t

Alex                              14                t

Jo                                   6                t

The formula for motion is d = rt, so that means that Alex's distance is 14t and Jo's distance is 6t.

             

                      14t                               6t

   ---------------------------------->|<------------------

   A                                       t                      J

The distance between them is 5 miles, so that means that Alex's distance plus Jo's distance equals 5 miles.  In equation form:

14t + 6t = 5 and

20t = 5 so

t = .25 hours or 15 minutes.

If they leave their homes at 3 and they meet 15 minutes later, then they meet at 3:15.

Cousin Edie drank all of Clark's egg nog.Edie finds a coupon for 50 cents off that can only be use at a local grocery store.Clark normally buys his egg nog at the supermarket. The tax rate at both stores is 2.25% .Which deal is better? Clark:$5:95 plus tax Eddie:6.35+coupon tax

Answers

Answer:

Edie has a better deal since his final price is lower

Step-by-step explanation:

Cousin Edie drank all of Clark's egg nog . Edie finds a coupon for 50 cents off that can only be use at a local grocery store.Clark normally buys his egg nog at the supermarket.

The tax rate at both stores is 2.25%.

Clark buys the egg nog at $5.95 plus tax .

Edie buys the egg nog at $6.35 plus coupon plus tax.

After Edie applies the coupon , the final price is $( 6.35 - 0.50 ) = $5.85

Since the percentage of tax applied is the same, the deal with lower final price is better.

Hence, Edie has a better deal.

A test car went 64 miles on 2 gallons in the morning, 16 miles on 1/2 gallon at noon, and 32 miles on 1 gallon at 5 PM.Is the relationship a proportional relationship? Explain.

Answers

It is proportional because the relationship between gallons of gas and distance is constant and linear. The rate is 32 miles per gallon. You can also call 32 the slope of this linear relationship.

A section of a hiking trail begins at the coordinates (-7, 5) and follows a straight path that ends at the coordinates (3, 9). What is the rate of change of the hiking trail?

Answers

Answer:

The rate of change of the hiking trail is [tex]m=\frac{2}{5}[/tex].

Step-by-step explanation:

A section of a hiking trail begins at the coordinates (-7, 5). It does mean (x₁, y₁) ⇒ (-7, 5)And follows a straight path that ends at the coordinates (3, 9). It does mean (x₂, y₂) ⇒ (3, 9)

In mathematical language, the slope m of the line is

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Plugging (x₁, y₁) ⇒ (-7, 5) and  (x₂, y₂) ⇒ (3, 9) into the slope equation

[tex]m=\frac{9-5}{3-(-7)}[/tex]

[tex]m=\frac{4}{10}[/tex]

[tex]m=\frac{2}{5}[/tex]

So, the rate of change of the hiking trail is [tex]m=\frac{2}{5}[/tex].

Keywords: rate of change, slope, coordinates

Learn more rate of change from brainly.com/question/11884403

#learnwithBrainly

When Justin goes to work, he drives at an average speed of 65 miles per hour. It takes about 1 hour and 30 minutes for Justin to arrive at work. His car travels about 25 miles per gallon of gas. If gas costs $3.65 per gallon, how much money does Justin spend on gas to travel to work?

Answers

Answer:

Justin spends $14.24 on gas to travel to work.

Step-by-step explanation:

Given:

Average speed at which Justin goes to work = 65 miles/hour

Time taken by Justin to arrive at work = 1 hour and 30 minutes = 1.5 hours [As 30 minutes =0.5 hours]

Distance he can travel per gallon of gas = 25 miles.

Cost of per gallon of gas = $3.65

Solution:

We first determine the distance Justin travels to work.

Distance = [tex]Speed\times time[/tex]

Distance = [tex]65\times 1.5 = 97.5\ miles[/tex]

Using unitary method to find the amount of gas required to cover the distance.

If 25 miles is covered in 1 gallon of gas

Then 1 mile will be covered in = [tex]\frac{1}{25}[/tex] gallons of gas

So, to cover 97.5 miles gas required = [tex]\frac{1}{25}\times 97.5=3.9[/tex] gallons of gas.

Using unitary method to find the cost of 3.9 gallons of gas.

Cost of 1 gallon of gas = $3.65

So, cost of 3.9 gallons of gas will be = [tex]\$3.65\times 3.9=\$14.235\approx\$14.24[/tex] (Answer)

Simplify the cubed root of six over the fourth root of six

six raised to the one twelfth power
six raised to the one fourth power
six raised to the four thirds power
six raised to the seven twelfths power

Answers

Answer:

six raised to the one twelfth power

Step-by-step explanation:

The cubed root of 6/the fourth root of 6 equals (6^1/3)/(6^1/4)

6^((1/3)-(1/4))

6^((4-3)/12)

6^1/12

The simplified form of the expression is six raised to the one twelfth power

Given the expression

[tex]\dfrac{\sqrt[3]{6} }{\sqrt[4]{6} }[/tex]

According to indices, this expression can also be written as:

[tex]\dfrac{(6)^{1/3}}{6^{1/4}}[/tex]

Using the law of indices;

[tex]\dfrac{a^m}{a^n} = a^{m-n}[/tex]

Applying this expression will give:

[tex]=\dfrac{6^{1/3}}{6^{1/4}} \\= 6^{1/3-1/4}\\=6^{4-3/12}\\=6^{1/12}[/tex]

Hence the simplified form of the expression is six raised to the one twelfth power

Learn more on indices here: https://brainly.com/question/8952483

Suppose that $p$ and $q$ are positive numbers for which \[\log_9 p = \log_{12} q = \log_{16} (p + q).\] Then $q/p$ can be expressed in the form $(x + \sqrt{y})/z$, where $x$, $y$, and $z$ are positive integers, and $y$ is not divisible by the square of a prime. Find $x + y + z$.

Answers

Value of (x + y + z) = 8

Suppose p and q are the positive numbers for which

[tex]log_(9)p=log_(12)q=log_(16)(p+q)[/tex] from the given expression,

[tex]log_(9)p=log_(12)q[/tex]

[tex](logp)/(log9)=(log(q))/(log12)[/tex]

log(p).log(12) = log(q).log(9)

log(q).2log(3) = log(p).log(12) ------(1)

[tex]Now log_(12)q=log_(16)(p+q)[/tex]

[tex](logq)/(log12)=(log(p+q))/(log(16))[/tex]

log(q).log(16) = log(p + q).log(12)

2log(4).log(q) = log(p + q).log12 -------(2)

By adding both the equations (1) and (2),

2log(3).log(q) + 2log(4).log(q) = log(12).log(p) + log(12).log(p + q)

log(q)[2log(3) + 2log(4)] = log(12)[logp + log(p + q)]

2log(q).log(12) = log(12).log[p.(p + q)]

2log(q) = log[p.(p+q)]

q² = p(p + q)

(q)/(p)=(p+q)/(q)

(q)/(p)=(p)/(q)+1

Let (q)/(p)=a

a = (1)/(a)+1

a² - a - 1 = 0 from quadratic formula,

a = [tex]\frac{1\pm \sqrt{(-1)^(2)-4 \times 1 \times (-1)}}{2}[/tex]

a = [tex](1\pm √((1+4)))/(2)[/tex]

a = [tex](1\pm √((5)))/(2)[/tex]

If the solution is represented by (x+√(y))/(z) then  it will be equal to

(1+√((5)))/(2) then x = 1, y = 5 and z = 2.

Now we have to find the value of (x + y + z).

By placing the values of x, y and z,

(x + y + z) = (1 + 5 + 2) = 8

Therefore, value of (x + y + z) = 8

(3 points)
11. A farmer buys 20 sheep, half male and half female. She was told that the annual rate of
increase for the sheep population is 60%. Assuming that none of the sheep die, when will the
farmer have 200 sheep? Write and solve an exponential equation, showing your work.
Use
to indicate an exponent. Use /to indicate a fraction.

Answers

Answer:

The exponential Function is [tex]20+12h=200[/tex].

Farmer will have 200 sheep after 15 years.

Step-by-step explanation:

Given:

Number of sheep bought = 20

Annual Rate of increase in sheep = 60%

We need to find that after how many years the farmer will have 200 sheep.

Let the number of years be 'h'

First we will find the Number of sheep increase in 1 year.

Number of sheep increase in 1 year is equal to Annual Rate of increase in sheep multiplied by Number of sheep bought and then divide by 100.

framing in equation form we get;

Number of sheep increase in 1 year = [tex]\frac{60}{100}\times20 = 12[/tex]

Now we know that the number of years farmer will have 200 sheep can be calculated by Number of sheep bought plus Number of sheep increase in 1 year multiplied by number of years  is equal to 200.

Framing in equation form we get;

[tex]20+12h=200[/tex]

The exponential Function is [tex]20+12h=200[/tex].

Subtracting both side by 20 using subtraction property we get;

[tex]20+12h-20=200-20\\\\12h=180[/tex]

Now Dividing both side by 12 using Division property we get;

[tex]\frac{12h}{12} = \frac{180}{12}\\\\h =15[/tex]

Hence Farmer will have 200 sheep after 15 years.

Mario's Pizza just recieved two big orders from customers throwing parties. The first customer, Hugo, bought 7 regular pizzas and 1 deluxe pizza and paid $74. The second customer, Vincent, ordered 5 regular pizzas and 1 deluxe pizza, paying a totsl of $58. What is the price of each pizza?

Answers

Final answer:

The price of each regular pizza is $8 and the price of each deluxe pizza is $10.

Explanation:

To find the price of each pizza, we need to set up a system of equations using the given information. Let's denote the price of a regular pizza as 'r' and the price of a deluxe pizza as 'd'. Using the first customer's order, we can write the equation: 7r + d = 74. Using the second customer's order, we can write the equation: 5r + d = 58. To solve this system of equations, we can subtract the second equation from the first equation to eliminate the 'd' variable: (7r + d) - (5r + d) = 74 - 58. Simplifying, we get 2r = 16, which gives us r = 8. Plugging this value back into the first equation, we find d = 10. Therefore, the price of each regular pizza is $8 and the price of each deluxe pizza is $10.

Last year, sales at a book store increased from $5,000 to $10,000. This year, sales decreased to $5,000 from $10,000. What percentage did sales increase last year? What percentage did sales decrease this year? Sales increased last year, from $5,000 to $10,000. When sales dropped from $10,000 to $5,000 this year, sales decreased .

Answers

Answer:

Step-by-step explanation:

Last year, sales at a book store increased from $5,000 to $10,000. The amount by which it increased would be 10000 - 5000 = $5000

The percentage by which the sales increased would be

5000/5000 × 100 = 100%

This year, sales decreased to $5,000 from $10,000.The amount by which it decreased would be 5000 - 10000 = - $5000

The percentage by which the sales increased would be

5000/10000 × 100 = 50%

PLEASE HELP
CD¯ has endpoints C and D, with C at coordinates (5,8). CD¯- has midpoint M at (3,9).
What are the coordinates of point D?

Answers

Answer:

(1, 10)

Step-by-step explanation:

Use midpoint formula.

Mₓ = (x₁ + x₂) / 2

3 = (5 + x) / 2

6 = 5 + x

x = 1

Mᵧ = (y₁ + y₂) / 2

9 = (8 + y) / 2

18 = 8 + y

y = 10

The coordinates of point D are (1, 10).

The coordinates of point D are (1, 10).

What does a midpoint mean?

Midpoint, as the word suggests, means the point which lies in the middle of something.

Midpoint of a line segment means a point which lies in the mid of the given line segment.

Given; CD has endpoints C and D, with C at coordinates (5,8). CD has midpoint M at (3,9).

Using midpoint formula;

Mₓ = (x₁ + x₂) / 2

3 = (5 + x) / 2

6 = 5 + x

x = 1

Now, Mᵧ = (y₁ + y₂) / 2

9 = (8 + y) / 2

18 = 8 + y

y = 10

Hence, The coordinates of point D are (1, 10).

Learn more about midpoint here;

https://brainly.com/question/5127660

#SPJ2

Simon has 20 quarters and 12 dimes.He wants to purchase ice cream for his friends.An ice cream cone cost $1.00.How many cones can Simon buy for his friends?

Answers

Answer:

  6

Step-by-step explanation:

Each ice cream cone costs 4 quarters or 10 dimes, so Simon has ...

  20/4 + 12/10 = 5 + 1.2 = 6.2

times the price of an ice cream cone. He can buy 6 cones for his friends.

A quilt is made of 8 rows of squares, and there are 6 squares in each row. Each square measures 1 foot on a side. Explain how to find the area of the quilt in a square feet. Then write the area.

Answers

Answer:

48

Step-by-step explanation:

Answer:

Step-by-step explanation:

The total number of rows of squares in the quilt is 8. Each row contains 6 squares.

Since each square measures 1 foot on a side, the area of each square would be 1^2 = 1 foot^2

This means that each row contains six 1 foot^2. Since there are 8 rows, a triangle would be formed such that one of its sides is

6 × 1 foot == 6 feets and the other side would be

8 × 1 foot = 8 feets.

The area of the quilt in a square feet would be the area of the rectangle. It becomes

6 × 8 = 48 feets

A rectangular poster is 3 times as long as it is wide. A rectangular banner is 5 times as long as it is wide. Both the banner and the poster have perimeters of 24 inches. What are the lengths and wides of the poster and the poster?

Answers

Answer:

Length of poster is 9 inches and width of the poster is 3 inches.

Length of banner is 10 inches and width of the banner is 2 inches.

Step-by-step explanation:

Given:

Perimeter of Banner =24 in.

Perimeter of poster = 24 in.

we need to find the dimensions of poster and banner.

First we will find the dimension of poster.

Now Given:

A rectangular poster is 3 times as long as it is wide.

Let the Width of poster be [tex]'p'[/tex].

Length of the poster = [tex]3p[/tex]

Perimeter of poster = 24 in.

But perimeter of poster is equal to twice the sum of length and width.

framing in equation form we get;

[tex]2(p+3p)=24\\\\2(4p)=24\\\\8p=24\\\\p=\frac{24}{8} = 3\ in.[/tex]

Now width of poster = 3 inches

Length of the poster = [tex]3p = 3\times3 =9\ inches[/tex]

Hence Length of poster is 9 inches and width of the poster is 3 inches.

Now we will find the dimension of Banner.

Now Given:

A rectangular banner is 5 times as long as it is wide.

Let the Width of Banner be [tex]'b'[/tex].

Length of the banner = [tex]5b[/tex]

Perimeter of banner = 24 in.

But perimeter of banner is equal to twice the sum of length and width.

framing in equation form we get;

[tex]2(b+5b)=24\\\\2(6b)=24\\\\12b=24\\\\b=\frac{24}{12} = 2\ in.[/tex]

Now width of banner = 2 inches

Length of the banner = [tex]5b = 5\times2 = 10\ inches[/tex]

Hence Length of banner is 10 inches and width of the banner is 2 inches.

Final answer:

The width and length of the rectangular poster are 3 inches and 9 inches, respectively. The width and length of the rectangular banner are 2 inches and 10 inches, respectively. Both were calculated by setting up equations using the perimeter formula for rectangles.

Explanation:

The problem is to determine the lengths and widths of a rectangular poster and a rectangular banner, both having the same perimeter of 24 inches. The poster's length is 3 times its width, while the banner's length is 5 times its width. We'll set up two separate equations for their perimeters and solve for the width and length of each.

Poster:

Let w be the width of the poster. Then the length is 3w. The perimeter is given by P = 2l + 2w, where P is the perimeter and l is the length. This gives us:

24 = 2(3w) + 2w -> 24 = 6w + 2w -> 24 = 8w -> w = 3 inches

Therefore, the length of the poster is 3w = 9 inches.

Banner:

Let x be the width of the banner. Then the length is 5x. Again using the perimeter formula, we get:

24 = 2(5x) + 2x -> 24 = 10x + 2x -> 24 = 12x -> x = 2 inches

Therefore, the length of the banner is 5x = 10 inches.

If a and b are positive integers such that gcd(a,b)=210, lcm[a,b]=210^3, and a

Answers

Final answer:

The problem can be solved by using a theorem from number theory stating that gcd(a, b) * lcm[a, b] = a * b. Applying this theorem with the given values leads us to solution where a = 210^2 and b = 210^2.

Explanation:

In this mathematics problem, we're given two positive integers, a and b, whose greatest common divisor (gcd) equals to 210, and the least common multiple (lcm) equals to 210^3.

It is a well-known theorem in number theory that for any two positive integers a and b, gcd(a, b) * lcm[a, b] = a * b. We can apply this theorem to our problem. Since we know the values for greatest common divisor and least common multiple, namely gcd = 210 and lcm = 210^3 = 210 * 210 * 210, we have:

210 * 210^3 = a * b

This can be simplified to a * b = 210^4. Since we're told that a < b, and both a and b must divide 210^4, the only possible values for a and b are a = 210^2 and b = 210^2, which respects the condition a < b.

Learn more about Number Theory here:

https://brainly.com/question/34444516

#SPJ3

A differential equation that is a function of y only

a.will produce a slope field with parallel tangents along the diagonal
b.will produce a slope field that does not have rows or columns of parallel tangents
c.will produce a slope field with rows of parallel tangents
d.will produce a slope field with columns of parallel tangents

Answers

Answer:

c. Will produce a slope field with rows of parallel tangents

Step-by-step explanation:

We can write a differential equation that is a function of y only as:

[tex]y'=f(y)[/tex]

So the derivative, in this particular case, of any function will be a function of the dependent variable y only, it means that the curves you will get should all be pointing in the same direction for each value of x. Therefore the sketch of the slopes field would have parallel curves for each value of x, in other words, it will produce a slope field with rows of parallel tangents.

I hope it helps you!

Prove that it is impossible to dissect a cube into finitely many cubes, no two of which are the same size.

Answers

explanation:

The sides of a cube are squares, and they are covered by the respective sides of the cubes covering that side of the big cube. If we can show that a sqaure cannot be descomposed in squares of different sides, then we are done.

We cover the bottom side of that square with the bottom side of smaller squares. Above each square there is at least one square. Those squares have different heights, and they can have more or less (but not equal) height than the square they have below.

There is one square, lets call it A, that has minimum height among the squares that cover the bottom line, a bigger sqaure cannot fit above A because it would overlap with A's neighbours, so the selected square, lets call it B, should have less height than A itself.

There should be a 'hole' between B and at least one of A's neighbours, this hole is a rectangle with height equal to B's height. Since we cant use squares of similar sizes, we need at least 2 squares covering the 'hole', or a big sqaure that will form another hole above B, making this problem inifnite. If we use 2 or more squares, those sqaures height's combined should be at least equal than the height of B. Lets call C the small square that is next to B and above A in the 'hole'. C has even less height than B (otherwise, C would form the 'hole' above B as we described before). There are 2 possibilities:

C has similar size than the difference between A and BC has smaller size than the difference between A and B

If the second case would be true, next to C and above A there should be another 'hole', making this problem infinite. Assuming the first case is true, then C would fit perfectly above A and between B and A's neighborhood.  Leaving a small rectangle above it that was part of the original hole.

That small rectangle has base length similar than the sides of C, so it cant be covered by a single square. The small sqaure you would use to cover that rectangle that is above to C and next to B, lets call it D, would leave another 'hole' above C and between D and A's neighborhood.

As you can see, this problem recursively forces you to use smaller and smaller squares, to a never end. You cant cover a sqaure with a finite number of squares and, as a result, you cant cover a cube with finite cubes.

A drug is eliminated from the body through urine. Suppose that for a dose of 10 milligrams, the amount A(t) remaining in the body t hours later is given by A(t) = 10(0.7)t and that in order for the drug to be effective, at least 4 milligrams must be in the body.
a. Determine when 2 milligrams is left in the body.
b. What is the half-life of the drug?

Answers

Answer: a - 4.512 hours

b - 1.94 hours

Step-by-step explanation:

Given,

a) A(t) = 10 (0.7)^t

To determine when 2mg is left in the body

We would have,

A(t) = 2, therefore

2 = 10(0.7)^t

0.7^t =2÷10

0.7^t = 0.2

Take the log of both sides,

Log (0.7)^t = log 0.2

t log 0.7 = log 0.2

t = log 0.2/ 0.7

t = 4.512 hours

Thus it will take 4.512 hours for 2mg to be left in the body.

b) Half life

Let A(t) = 1/2 A(0)

Thus,

1/2 A(0) = A(0)0.7^t

Divide both sides by A(0)

1/2 = 0.7^t

0.7^t = 0.5

Take log of both sides

Log 0.7^t = log 0.5

t log 0.7 = log 0.5

t = log 0.5/log 0.7

t = 1.94 hours

Therefore, the half life of the drug is 1.94 hours

If (x # y) represents the remainder that results when the positive integer x is divided by the positive integer y, what is the sum of all the possible values of y such that (16 # y) = 1?

Answers

Answer:

23

Step-by-step explanation:

We can check all the possibilities.

It is not necessary to consider y>16, because in this case, 16#y=16 as 16 is too small to be split in  y  parts.

Now, 1,2,4, 8 and 16 are factors of 16. When you divide 16 by any of the previous integers, the remainder is zero so we discard these.

When y=3, 16=5(3)+1, 16#3=1 so we add y=3. From this, 16=3(5)+1 thus 16#5=1 and we add y=5.

We discard y=6 as 16#6=4 (using that 16=6(2)+4). We also discard y=7 because 16=2(7)+2 then 16#7=2.

For y=9,10,11,12,13,14, when dividing the quotient is one so 16#y=16-y>1 and these values are discarded. However, we add y=15 because 16=15(1)+1 and  16#15=1.

Adding the y values, the sum is 3+5+15=23.

Vector u has its initial point at (21, 12) and its terminal point at (19, -8). Vector v has a direction opposite that of u, whose magnitude is five times the magnitude of v. Which is the correct form of vector v expressed as a linear combination of the unit vectors i and j?

Answers

[tex]\boxed{\vec{v}=\frac{2}{5}i+4j}[/tex]

Explanation:

In this exercise, we have the following facts for the vector [tex]\vec{u}[/tex]:

It has its initial point at [tex](21,12)[/tex], let's call it [tex]P_{1}[/tex] It has its terminal point at [tex](19,-8)[/tex], let's call it [tex]P_{2}[/tex]

Since the vector [tex]\vec{u}[/tex] goes from point [tex]P_{1}[/tex] to [tex]P_{2}[/tex], then:

[tex]\vec{u}=(19,-8)-(21,12) \\ \\ \vec{u}=(19-21,-8-12) \\ \\ \vec{u}=(-2,-20)[/tex]

On the other hand, we have the following facts for the vector [tex]\vec{v}[/tex]:

Vector [tex]\vec{v}[/tex] has a direction opposite that of [tex]\vec{u}[/tex], The magnitude of [tex]\vec{u}[/tex] is five times the magnitude of [tex]v[/tex].

So we can write this relationship as follows:

[tex]5\vec{v}=-\vec{u} \\ \\ \vec{v}=-\frac{1}{5}\vec{u} \\ \\ \vec{v}=-\frac{1}{5}(-2,-20) \\ \\ \vec{v}=(\frac{2}{5},4) \\ \\ \\ Finally: \\ \\ \boxed{\vec{v}=\frac{2}{5}i+4j}[/tex]

Learn more:

Length of vectors: https://brainly.com/question/12264340

#LearnWithBrainly

Find angle A in the following triangle.

A. 35.54
B. 35.67
C. 36.24
D. 36.77

Answers

Tan(Angle) = Opposite leg / Adjacent leg

Tan(A) = 5/7

A = Arctan(5/7)

A = 35.54 degrees.

Answer:

A.  35.54

Step-by-step explanation:

To find the angle A in the diagram above, we will simply use angle formula, we will check and see which angle formula will be best fit to use.

The formulas are;

SOH CAH TOA

sin Ф  =  opposite /   hypotenuse

cos Ф  =  adjacent / hypotenuse

tan Ф   =  opposite / adjacent

Looking at the figure given, since we are to find angle A, then our adjacent is 7 and the opposite is 5.

since we are given both opposite and adjacent, then the best formula to use for this is  tan Ф

tan Ф  =  opposite / adjacent

opposite =  5  and adjacent =7

we will go ahead and insert our values

tan A   =   5/7

tan A    = 0.71429

To get the value of tan A, we will simply take the [tex]tan^{-1}[/tex]  of both-side

[tex]tan^{-1}[/tex]   tan A  =   [tex]tan^{-1}[/tex]  0.71429

                A    =  35.54

Therefore angle A is 35.54

A residual plot has data points that are all very close to the x-axis. What does this say about the data?

A) The line of best fit will be a horizontal line.

B) A linear model is appropriate.

C) There is not enough information to determine this.

D) A non-linear model is appropriate.

Answers

Answer:

B

Step-by-step explanation:

because, the closer the data points are to the x axis on a residual plot with no definite shape means that a linear model is appropriate for this data set

A linear model is appropriate because, the closer the data points are to the x axis on a residual plot with no definite shape. So, option B is correct.

What is residual plot?

A residual is a measure of how far away a point is vertically from the regression line.

It is the error between a predicted value and the observed actual value.

A residual plot is a graph that has data points that are all very close to the x-axis. It shows the residuals on the y axis and the independent variable on the x axis.

The goodness of fit of a linear model is depicted by the pattern of the graph of a residual plot. If each individual residual is independent of each other, they create a random pattern together.

When graphing the residual values you know if a linear model is an appropriate model for your data if the points in the residual plot are scattered.

A linear model is appropriate because, the closer the data points are to the x axis on a residual plot with no definite shape.

So, option B is correct.

Learn more about residual plot here;

brainly.com/question/2876516

#SPJ5

Consider a roulette wheel consisting of 38 numbers 1 through 36, 0, and double 0. If Smith always bets that the outcome will be one of the numbers 1 through 12,
what is the probability that
a. Smith will lose his first 5 bets;
b. his first win will occur on his fourth bet?

Answers

Answer:

The probability that  Smith will lose his first 5 bets is 0.15

The probability that  his first win will occur on his fourth bet is 0.1012

Step-by-step explanation:

Consider the provided information.

A roulette wheel consisting of 38 numbers 1 through 36, 0, and double 0. Smith always bets that the outcome will be one of the numbers 1 through 12,

It is given that Smith always bets on the numbers 1 through 12.

There are 12 numbers from 1 to 12.

Thus, the probability of success (winning) is=  [tex]\frac{12}{38}[/tex]

The probability of not success (loses) is=  [tex]1-\frac{12}{38}=\frac{26}{38}[/tex]

Part (A) Smith will lose his first 5 bets.

The probability  that Smith loses his first 5 bets is,

[tex]\frac{26}{38}\times\frac{26}{38}\times\frac{26}{38}\times\frac{26}{38}\times\frac{26}{38}=(\frac{26}{38})^5\approx0.15[/tex]

Hence, the probability that  Smith will lose his first 5 bets is 0.15

Part (B)  His first win will occur on his fourth bet?

Smith’s first win occurring on the fourth bet means that he loses the first 3 bets and wins on the fourth bet. That is,

[tex]\frac{26}{38}\times\frac{26}{38}\times\frac{26}{38}\times\frac{12}{38}=(\frac{26}{38})^3\times\frac{12}{38}\approx0.1012[/tex]

Hence, the probability that  his first win will occur on his fourth bet is 0.1012

A woman standing on a cliff is watching a motor boat though a telescope as the boat approaches the shoreline directly below her. If the telescope is 250 feet above the water and if the boat is approaching at 20 feet per second, at what rate is the angle of the telescope changing when the boat is 250 feet from shore

Answers

Answer:

Dα/dt   = 0.079 degree/sec

Step-by-step explanation:

From problem statement, is easy to see, that if point A is ubicated at the top of the telescope,  the shoreline is directly below the woman ( point B), and the point where the boat is, which is at distance x from shoreline  is point C. These three point  shape a right triangle with angle α (the angle of the telescope).

So we have

tan α  =  x/250    

Differentiating both sides of the equation we get

D (tan α)/dt    =  ( 1/250)* Dx/dt

sec² α Dα/dt  =  ( 1/250)* Dx/dt  

we already know that    Dx/dt   = 20 feet/sec

sec² α Dα/dt  =  20/250   ⇒     sec² α Dα/dt  = 0.08  

Dα/dt   =  0.08 / sec² α

Then

tan α  =  20/250  = 0,08        α   = arctan 0.08      α  ≈ 5⁰

Dα/dt   =  0.08/ sec² α  

From tables we get    cos  5⁰  =  0.9961  then

1/ 0.9961  = 1.003

sec α  = 1.003      and     sec²  α   =   1.0078

Dα/dt   =  0.08/ sec² α    ⇒   Dα/dt   =  0.08/1.0078

Dα/dt   = 0.079 degree/sec

Final answer:

The change of position of the boat results in a change of the angle of the telescope, which can be calculated using related rates. With known factors such as the speed of the boat and its distance from shore, the rate of change of the telescope's angle can be found using the principles of trigonometry and calculus.

Explanation:

This question is about related rates in calculus.  Related rates describe the relationship between different rates of change that are connected to each other. In this case, the changing position of the boat creates a change in the angle of the telescope.

We know the woman is watching a boat that is approaching a shoreline directly below her at 20 feet per second, and we are asked to find the rate that the angle of the telescope is changing when the boat is 250 feet from shore. Here is a way of visualizing it:

Let D be the distance of the boat from the base of the cliff and θ the angle that the telescope makes with the horizontal. We are given that D(t) decreases at 20 feet per second and that when D(t) = 250, we want to know what is dθ/dt.

By using trigonometry, we can find a relationship between D and θ. Specifically, tan(θ) = 250/D, so by implicit differentiation, (sec^2(θ)) * dθ/dt = -250/D^2 * dD/dt. From the given data, dD/dt = -20 and D = 250, so substitute them into the equation and evaluate θ using the tan–1(1) to obtain dθ/dt.

Learn more about rate of change here:

https://brainly.com/question/29181502

#SPJ6

If natalie and her friends decide to rent 4 lanes at reguler cost for a party ten people need to rent shoes and 4 people are members what is the total cost for the party

Answers

The question is missing a tabular data. So, it is attached below.

Answer:

The total cost for the party is $74.50.

Step-by-step explanation:

Given:

Lanes rented at regular cost = 4

Cost of 1 lane rented  at regular cost = $9.75

Cost of 1 lane rented for members = $7.50

Cost of 1 shoe rental at regular cost(non members) = $3.95

Cost of 1 shoe rental for members = $2.95

Since, lanes are rented at regular cost, we use unit rate at regular cost

So, cost of 4 lanes rented = [tex]4\times 9.75= \$ 39[/tex]

Now, out of 10 people who rented shoes, 4 are members. So, the number of non-members is given as:

Non members who rented shoes = 10 - 4 = 6

So, 4 members and 6 nonmembers rented shoes.

So, cost of 6 non members renting shoes = [tex]6\times 3.95=\$ 23.70[/tex]

Cost of 4 members renting shoes = [tex]4\times 2.95=\$ 11.80[/tex]

Total cost for the party is the sum of all the costs. This gives,

= 39 + 11.80 + 23.70

= 50.80 + 23.70

= $74.50

Therefore, the total cost for the party is $74.50.

The envelop weighs 1/2 of the whole balloon The weight of the basket is 3/5 of the envelope if the weight of the balloon will be 210 kg what is the weight of the basket

Answers

Given the total weight of the hot air balloon as 210 kg, the envelope weighting half of this, the weight of the basket, which is 3/5 of the envelope, is calculated to be 63 kg.

To determine the weight of the basket attached to a hot air balloon, we can use the information that the envelope weighs  [tex]\frac{1}{2}[/tex]  of the total weight of the balloon and that the basket weighs [tex]\frac{3}{5}[/tex] of the envelope's weight. If the total weight of the hot air balloon will be 210 kg, then the envelope weighs 105 kg (which is [tex]\frac{1}{2}[/tex] of 210 kg). The weight of the basket can then be calculated as:

Weight of the balloon = 210 kg

Weight of the envelope = 210 * (1/2) = 105 kg

Weight of the basket = 105 * (3/5) = 63 kg

Therefore, the weight of the basket is 63 kg.

Other Questions
On the Loan worksheet, in cell C9, enter a PMT function to calculate the monthly payment for the Altamonte Springs 2022 facilities loan. Ensure that the function returns a positive value and set the references to cells B5 and B6 as absolute references. Which accessory eye structures function to produce the tears that cleanse and protect the eye?a. lacrimal glandsb. conjunctivac. Meibomian glandsd. medial canthi how to predict sponteneity of reactions based on change in enthalpy entroy temperature The nth harmonic number is defined non-recursively as: 1 +1/2 + 1/3 + 1/4 + ... + 1/n. Come up with a recursive definition and use it to guide you to write a function definition for a double -valued function named harmonic that accepts an int parameters n and recursively calculates and returns the nth harmonic number. this is for myprogramminglab.com this is what i have double harmonic(int n) { int sum =0; if (n>0) { sum=sum+(1/(harmonic( n-1))); } return sum; } A company has a retention rate of 50%, sales of $25,000, beginning equity of $50,000 and profit margins of 10%, an asset turnover ratio of .75 and debt of $10,000. What is its sustainable growth rate? Which of the following uses the reciprocal property to rewrite x/5=72/4 Which of the following is not an a major issue that the Antifederalists disliked aboutthe Constitution?They felt that the convention in Philadelphia had overstepped their authority.There was a concern that the government would not be able to maintain control of the statesMany people that felt that the Constitution did nothing to protect people's liberties/ rightsThere was a concern in giving the national government so much more power A phone survey has a margin error of +/ 4%. What is the range of number of people who will vote for the other candidate if 87 of 114 people said they would vote for the other person and there are 9918 people in the district?A.7266 to 7872B.7266 to 7827C.7222 to 7872D.7296 to 7872 What is the result when 8x^3+6x^2+15x+7 divides by 2x + 1 Starting from rest, Christina experiences 24.5 m/s2 of acceleration to take off from an aircraft carrier for 5 seconds. How long does the runway need to be? Round to the nearest meter. Dear Ms. Meyer:Laura Yin suggested I contact you concerning the Marketing position available at Eastern Arbor. I am inspired topursue my marketing interests at Eastern Arbor due to its reputation as a prestigious, innovative and growingcompany in liability policies.Which type of cover letter would the above excerpt come from?a. Prospecting cover letterb. Networking cover letterc. Application cover letterd. Follow up cover letterPlease select the best answer from the choices provided Do exponents need to be the same when multiplying in scientific notation? The weak mayor's formal powers most resemble those of which other government official in Texas?a. the mayor in the council-manager form of city governmentb. the governorc. the speaker of the Texas Housed. the lieutenant governor If another driver does not follow the right-of-way rules at a YIELD sign, what should you do? A child pulls a 15 kg sled containing a 5.0 kg dog along a straight path on a horizontal surface. He exerts a force of 55 N on the sled at an angle of 20 degrees above the horizontal. The coefficient of friction between the sled and the surface is 0.22.Calculate the word done by the child's pulling force as the system moves a distance of 7.0 m. Which of the equations below represents a line parallel to the y-axis? A. x = 4 B. x = -y C. x = y D. x = 4y Which of the following correctly describe events of the conspiracy of April 1865? John weighs three times as much as Karen. Two times Johns weight plus Karens weight is 875 pounds. How much does John weigh? How much does Karen weigh? No free man shall be seized or imprisoned, or stripped of his rights or possessions, or outlawed or exiled, or deprived of his standing in any way, nor will we proceed with force against him, or send others to do so, except by the lawful judgment of his equals or by law of the law.Which influential idea resulted from this clause?A. Protection against martial lawB. Consent of the governedC. Freedom of speechD. Justice for all Which of the following statements is NOT true regarding the requirements and objectives associated with an Integrated Baseline Review (IBR)? A. The IBR identifies the risks associated with executing to the current Performance Measurement Baseline and integrated master schedule. B. Subsequent IBRs may be required whenever an established Performance Measurement Baseline (PMB) is unachievable and a new PMB is required. C. The IBR is conducted exclusively by the Government and contractor business management staff and technical staff are rarely included. D. The IBR assesses the validity of the Performance Measurement Baseline (PMB) and the Integrated Master Schedule (IMS). E. Participants in an IBR typically include the Government PM and technical staff, along with the related contractor's staff.