A child pulls a 15 kg sled containing a 5.0 kg dog along a straight path on a horizontal surface. He exerts a force of 55 N on the sled at an angle of 20 degrees above the horizontal. The coefficient of friction between the sled and the surface is 0.22.Calculate the word done by the child's pulling force as the system moves a distance of 7.0 m.

Answers

Answer 1
Final answer:

The work done by the child pulling the sled and dog, with a pulling force of 55 N, over a distance of 7.0 m, considering both pulling work and the work done against friction, is 59.42 J.

Explanation:

The question concerns the work done by a child pulling a sled with a dog. 'Work done' in physics is calculated using the equation, work done = force x distance x cosine of the angle. The force exerted is 55 N, the distance is 7.0 m, and the angle is 20 degrees. Thus, the work done by the child's pulling force as the system moves a distance of 7.0 m, ignoring friction and because cos(20) is approximately 0.94, is calculated as: Work done = 55 N x 7.0 m x cos(20) = 55 N x 7.0 m x 0.94 = 361.3 J.

However, the total work done is reduced due to friction between the sled and the ground. The sled's total weight (15 kg sled + 5.0 kg dog = 20 kg) multiplied by gravity (9.8 m/s²) gives  the normal force (20 kg * 9.8 m/s² = 196 N). Multiplying the normal force by the friction coefficient (0.22), gives the frictional force (196 N * 0.22 = 43.12 N). Hence, the work done against friction is: Work done against friction = frictional force x distance = 43.12 N x 7.0 m = 301.88 J. Therefore, the actual work done by the child equals the pull work minus the work against friction, which is 361.3 J - 301.88 J = 59.42 J.

Learn more about Work Done here:

https://brainly.com/question/35917320

#SPJ11


Related Questions

Arrange the listed objects according to their angular speeds, from largest to smallest.

a tire of radius 0.381 m rotating at 12.2 rpm
a bowling ball of radius 12.4 cm rotating at 0.456 rad/s
a top with a diameter of 5.09 cm spinning at 18.7∘ per second
a rock on a string being swung in a circle of radius 0.587 m with
a centripetal acceleration of 4.53 m/s2 a square, with sides 0.123 m long, rotating about its center with corners moving at a tangential speed of 0.287 m / s

Answers

Answer:

Explanation:

1 )  tire of radius 0.381 m rotating at 12.2 rpm

12.2 rpm = 12.2 /60 rps

n = .20333 rps

angular speed

= 2πn

= 2 x 3.14 x .20333

= 1.277 rad / s

2 ) a bowling ball of radius 12.4 cm rotating at 0.456 rad/s

angular speed = .456 rad/s

3 ) a top with a diameter of 5.09 cm spinning at 18.7∘ per second

18.7° per second = (18.7 / 180) x 3.14 rad/s

= .326  rad/s

4 )

a rock on a string being swung in a circle of radius 0.587 m with

a centripetal acceleration of 4.53 m/s2

centripetal acceleration = ω²R

ω is angular velocity and R is radius

4.53 = ω² x .587

ω  = 2.78 rad / s

5 )a square, with sides 0.123 m long, rotating about its center with corners moving at a tangential speed of 0.287 m / s

The radius of the circle in which corner is moving

= .123 x √2

=.174 m

angular velocity = linear velocity / radius

.287 / .174

1.649 rad / s

The perfect order is

4 ) > 5> 1 >2>3.

Explanation:

To arrange the listed objects according to their angular speeds from largest to smallest, we must first calculate the angular speed ω (in radians per second) for each object, as this unit provides a common ground for comparison. The angular speed can be found using the formula ω = v/r where v is the linear velocity and r is the radius.

A tire rotating at 12.2 rpm: To convert this to radians per second, we use the conversion factor 1 rpm = 2π/60 rad/s. ω = 12.2 * (2π/60) = 1.279 rad/s.A bowling ball rotating at 0.456 rad/s: This is already in the correct unit, so ω = 0.456 rad/s.A top spinning at 18.7° per second: Converting degrees to radians (ω = 18.7 * (π/180)) gives ω = 0.326 rad/s.A rock with a centripetal acceleration of 4.53 m/s²: Using the formula a = ω² * r, we can rearrange to find ω (angular speed) = √(a/r) = √(4.53/0.587) = 2.780 rad/s.A square with corners moving at a tangential speed of 0.287 m/s: The radius for a square rotating about its center is half the diagonal length. For a square of 0.123 m side, the diagonal (d) = √(2) * side = √(2) * 0.123 m, and the radius (r) = d/2. So, ω = v/r = 0.287/(√(2)*0.123/2) = 4.205 rad/s.

Arranging these angular speeds from largest to smallest:

Angular speed of square: 4.205 rad/sAngular speed of rock: 2.780 rad/sAngular speed of tire: 1.279 rad/sAngular speed of bowling ball: 0.456 rad/sAngular speed of top: 0.326 rad/s

A metal bar is used to conduct heat. When the temperature at one end is 100°C and at the other is 20°C, heat is transferred at a rate of 16 J/s.

If the temperature of the hotter end is reduced to 80°C, what will be the rate of heat transfer?
a. 4 J/sb. 8 J/sc. 9 J/sd. 12 J/s

Answers

Answer:

a. 4 J/s

Explanation:

Fourier's law states for the case in which there is stationary heat flow in only one direction, that is, linearly, the heat transmitted per unit of time is proportional to the temperature difference:

[tex]\frac{Q}{t}\propto \Delta T[/tex]

When the temperature at one end is 100°C and at the other is 20°C, we have:

[tex]\Delta T_1=100^\circ C-20^\circ C\\\Delta T_1=80^\circ C[/tex]

If the temperature of the hotter end is [tex]80^\circ C[/tex], we have:

[tex]\Delta T_2=100^\circ C-80^\circ C\\\Delta T_2=20^\circ C[/tex]

So:

[tex]\Delta T_1=4\Delta T_2\\\Delta T_2=\frac{\Delta T_1}{4}[/tex]

Finally, we calculate the rate of heat transfer:

[tex]\frac{Q_2}{t_2}=\frac{\frac{Q_1}{t_1}}{4}\\\\\frac{Q_2}{t_2}=\frac{16\frac{J}{s}}{4}\\\frac{Q_2}{t_2}=4\frac{J}{s}[/tex]

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part. The acceleration function (in m/s2) and the initial velocity v(0) are given for a particle moving along a line. a(t) = 2t + 4, v(0) = −32, 0 ≤ t ≤ 6

a) Find the velocity at time t.
b) Find the distance traveled during the given time interval

Answers

Answer:

(a) Velocity at time t will be  [tex]v(t)=t^2+4t-32[/tex]

(B) Distance will be -48 m

Explanation:

We have given [tex]a(t)=2t+4[/tex]

And [tex]v(0)=-32[/tex]

(a) We know that [tex]v(t)=\int a(t)dt[/tex]

So [tex]v(t)=\int (2t+4)dt[/tex]

[tex]v(t)=t^2+4t+c[/tex]

As [tex]v(0)=-32[/tex]

So [tex]-32=0^2+4\times 0+c[/tex]

c = -32

So [tex]v(t)=t^2+4t-32[/tex]

(b) We have to find the distance traveled

So [tex]s(t)=\int_{0}^{6}v(t)dt[/tex]

[tex]s(t)=\int_{0}^{6}(t^2+4t-32)dt[/tex]

[tex]s(t)=\int_{0}^{6}(\frac{t^3}{3}+2t^2-32t)[/tex]

[tex]s=(\frac{6^3}{3}+2\times 6^2-32\times 6)-0=72+72-192=-48m[/tex]

Final answer:

To find the velocity at time t, integrate the acceleration function and add the initial velocity. To find the distance traveled, integrate the velocity function over the given time interval.

Explanation:

To find the velocity at time t, we can integrate the acceleration function over the given time interval and add the initial velocity. The integral of 2t + 4 is t^2 + 4t, so the velocity function is v(t) = t^2 + 4t - 32.

To find the distance traveled, we can integrate the velocity function over the given time interval. The integral of t^2 + 4t - 32 is (1/3)t^3 + 2t^2 - 32t. Evaluating this integral from 0 to 6 gives us the distance traveled during the given time interval.

The 94-lb force P is applied to the 220-lb crate, which is stationary before the force is applied. Determine the magnitude and direction of the friction force F exerted by the horizontal surface on the crate. The friction force is positive if to the right, negative if to the left.

Answers

Answer

given,

force = 94 lb

weight of crate = 220 lb

Assuming the static friction be equal = 0.47

                       kinetic friction = 0.36

Maximum force applied to move the object is when object is just start to move.

F = μ N

F = 0.47 x 220

F = 103.4 lb

As the frictional force is more than applied then the object will not move.

so, the friction force will be equal to the force applied on the object that is equal to 94 lb.

hence, the direction of force will left.

In Bob Shaw's short story, "The Light of Other Days," he describes something called slow glass. In the story, a married couple buys a 4-foot-wide window of slow glass that has been out on a beautiful hillside in Ireland, collecting light for 10 years. The idea is that the light takes 10 years to pass through the glass, so if you mount the window in your house it will give a view of the Irish landscape for the next 10 years, slowly unveiling everything that happened there. You can read the full short story via the link below, if you are interested.

Link to Bob Shaw's short story: The Light of Other Days.

(a) In the short story, the couple buys a window that is one-quarter-inch thick, and takes light 10 years to pass through. Let's say that you were able to locate a supplier of slow glass, and you bought some glass that was 5.00 mm thick, with the light taking 7.00 years to pass through. Taking one year to be 365.24 days, calculate the index of refraction of your piece of slow glass.

In 1999, Lene Hau, a physicist at Harvard University, received quite a bit of attention for getting light to travel at bicycle speed (later, she was able to temporarily stop light completely). The speed of a bicycle is a lot faster than light travels through the slow glass from the story, but it is still orders of magnitude less than the speed at which light travels through vacuum. If you're interested, you can follow this link to learn more about Lene Hau.

(b) Lene Hau used something called a Bose-Einstein condensate to slow down light. If the light is traveling at a speed of 40.0 km/hr through the Bose-Einstein condensate, what is the effective index of refraction of the condensate?

Answers

Answer:

Consider the following calculations

Explanation:

a )  velocity of the glass is v = distance / time

= 5 X 10-3 / 7 X 365.24 X 24 X 60 X 60

v = 2.263 X 10-11 m/sec

the speed of the light in vaccum is C

C = 3 X 108 m/sec

n = C / v

n = 3 X 108 / 2.263 X 10-11

n = 1.32567 X 1019

b )  given is 40 km/hr

= 40 X 103 / 60 X 60

= 11.11 m/sec

n = C / v

n = 3 X 108 / 11.11

n = 27002700.27

The index of refraction for the 5.00 mm thick slow glass taking light 7.00 years to pass through is approximately 1.33 x 10^19. For a Bose-Einstein condensate where light travels at 40.0 km/hr, the effective index of refraction is about 2.70 x 10^7.

In Bob Shaw's short story 'The Light of Other Days', a fictional material called slow glass is described, which delays the passage of light. To calculate the index of refraction of a 5.00 mm thick piece of slow glass where light takes 7.00 years to pass through, we can use the formula n = c/v, where c is the speed of light in a vacuum (3.00 x 108 m/s), and v is the speed of light through the material.

To find v, we can calculate the total distance light travels in 7.00 years and divide it by the time it takes to travel through the slow glass. Since the slow glass is 5.00 mm thick, which is equivalent to 5.00 x 10-3 m, and one year is 365.24 days, we calculate the speed as follows:

v = distance/time = 5.00 x 10-3 m / (7.00 years x 365.24 days/year x 24 hours/day x 3600 seconds/hour) = 5.00 x 10-3 m / 220,937,280 seconds ≈ 2.263 x 10-11 m/s.

Then, the index of refraction, n, can be calculated as n = c/v ≈ 3.00 x 108 m/s / 2.263 x 10-11 m/s ≈ 1.33 x 1019.

For Lene Hau's experiment using a Bose-Einstein condensate with a light speed of 40.0 km/hr, the index of refraction can also be calculated using n = c/v. Converting 40.0 km/hr to m/s:

v = 40.0 km/hr x (1000 m/km) / (3600 s/hr) = 11.1 m/s.

Using this value for v, we calculate n as n = c/v ≈ 3.00 x 108 m/s / 11.1 m/s ≈ 2.70 x 107.

PART 1/2
A neutron in a reactor makes an elastic headon collision with the nucleus of an atom initially at rest.
Assume: The mass of the atomic nucleus is
about 14.1 the mass of the neutron.
What fraction of the neutron’s kinetic energy is transferred to the atomic nucleus?

PART 2/2
If the initial kinetic energy of the neutron is
6.98 × 10−13 J, find its final kinetic energy.
Answer in units of J.

Answers

Answer:

0.247

5.25×10⁻¹³ J

Explanation:

Part 1/2

Elastic collision means both momentum and energy are conserved.

Momentum before = momentum after

m v = m v₁ + 14.1m v₂

v = v₁ + 14.1 v₂

Energy before = energy after

½ m v² = ½ m v₁² + ½ (14.1m) v₂²

v² = v₁² + 14.1 v₂²

We want to find the fraction of the neutron's kinetic energy is transferred to the atomic nucleus.

KE/KE = (½ (14.1m) v₂²) / (½ m v²)

KE/KE = 14.1 v₂² / v²

KE/KE = 14.1 (v₂ / v)²

We need to find the ratio v₂ / v.  Solve for v₁ in the momentum equation and substitute into the energy equation.

v₁ = v − 14.1 v₂

v² = (v − 14.1 v₂)² + 14.1 v₂²

v² = v² − 28.2 v v₂ + 198.81 v₂² + 14.1 v₂²

0 = -28.2 v v₂ + 212.91 v₂²

0 = -28.2 v + 212.91 v₂

28.2 v = 212.91 v₂

v₂ / v = 28.2 / 212.91

v₂ / v = 0.132

Therefore, the fraction of the kinetic energy transferred is:

KE/KE = 14.1 (0.132)²

KE/KE = 0.247

Part 2/2

If a fraction of 0.247 of the initial kinetic energy is transferred to the atomic nucleus, the remaining 0.753 fraction must be in the neutron.

Therefore, the final kinetic energy is:

KE = 0.753 (6.98×10⁻¹³ J)

KE = 5.25×10⁻¹³ J

Final answer:

When a neutron collides elastically with the nucleus of an atom, a fraction of its kinetic energy is transferred to the nucleus. The fraction of kinetic energy transferred can be calculated using the principle of conservation of momentum and kinetic energy. For the given scenario, the fraction is 0.8636. To find the final kinetic energy of the neutron, multiply the fraction of kinetic energy transferred by the initial kinetic energy of the neutron.

Explanation:

When a neutron in a reactor undergoes an elastic head-on collision with the nucleus of an atom initially at rest, kinetic energy is transferred from the neutron to the atomic nucleus. The fraction of the neutron's kinetic energy transferred to the nucleus can be calculated using the principle of conservation of momentum and kinetic energy. Since the mass of the atomic nucleus is about 14.1 times the mass of the neutron, the fraction of kinetic energy transferred can be calculated as:

Fraction of kinetic energy transferred = (14.1 - 1) / (14.1 + 1) = 0.8636

For PART 2/2, to find the final kinetic energy of the neutron, we can multiply the fraction of kinetic energy transferred to the nucleus by the initial kinetic energy of the neutron:

Final kinetic energy = Fraction of kinetic energy transferred x Initial kinetic energy = 0.8636 x 6.98 × 10-13 J

Learn more about Elastic collisions here:

https://brainly.com/question/33268757

#SPJ3

There are usually _________ collisions in a motor vehicle crash.

Answers

Answer:

3

Explanation:

During a crash 3 types of collisions can occur.

There are usually three types of collisions involved in a motor vehicle crash.

The first type of collision is the vehicle collision, which involves the physical impact between two or more vehicles. When vehicles collide, their structures deform, and the forces involved can cause severe damage to the involved vehicles. The severity of this collision depends on factors like the speed, mass, and angle of impact.

The second type of collision is the human collision, which occurs inside the vehicle. During an accident, passengers inside the vehicle can collide with each other or with interior components, such as the dashboard, steering wheel, or windows. These collisions can result in injuries like whiplash, head injuries, or broken bones.

The third type of collision is the internal collision, which involves the organs and tissues within the human body. When a collision occurs, the human body is subjected to rapid deceleration, causing organs to collide with each other or with the skeletal structure. These internal collisions can lead to internal bleeding, organ damage, and other life-threatening injuries.

To know more about collision here

https://brainly.com/question/30636941

#SPJ6

The girl makes a microscope with a 3.0 cm focal length objective and a 5.0 cm eyepiece. The microscope tube length is 10 cm. Use the simple formula to find the expected magnification of this microscope.

(A) 12
(B) 14
(C) 17
(D) 20
(E) 24

Answers

To solve this problem we will use the concepts related to Magnification. Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification".

The overall magnification of microscope is

[tex]M = \frac{Nl}{f_ef_0}[/tex]

Where

N = Near point

l = distance between the object lens and eye lens

[tex]f_0[/tex]= Focal length

[tex]f_e[/tex]= Focal of eyepiece

Given that the minimum distance at which the eye is able to focus is about 25cm we have that N = 25cm

Replacing,

[tex]M = \frac{25*10}{3*5}[/tex]

[tex]M = 16.67\approx 17\\[/tex]

Therefore the correct answer is C.

If C is the curve given by r(t)=(1+2sint)i+(1+3sin2t)j+(1+1sin3t)k, 0≤t≤π2 and F is the radial vector field F(x,y,z)=xi+yj+zk, compute the work done by F on a particle moving along C.

Answers

Final answer:

The work done by vector field F on a particle moving along curve C can be computed using the line integral ∫F.dr. To compute the line integral, we need to parameterize curve C and evaluate the dot product of the vector field and the parameterized curve.

Explanation:

To compute the work done by a vector field F on a particle moving along a curve C, we can use the line integral. The line integral of a vector field F along a curve C can be computed using the formula: ∫F.dr. In this case, F(x, y, z) = xi + yj + zk and C is given by r(t) = (1 + 2sin(t))i + (1 + 3sin(2t))j + (1 + sin(3t))k. We need to parameterize C to compute the line integral. Let's rewrite r(t) as:



r(t) = i + 2sin(t)i + j + 3sin(2t)j + k + sin(3t)k



We can then calculate the line integral using the given parameterization. Substituting r(t) into F(x, y, z), we get:



F(r(t)) = (1 + 2sin(t))i + (1 + 3sin(2t))j + (1 + sin(3t))k



Now, we can compute the line integral by evaluating ∫F(r(t)).dr over the given interval 0 ≤ t ≤ π/2. This involves evaluating the dot product of F(r(t)) and r'(t). The work done by F on the particle moving along C is the value of the line integral.

Final answer:

To compute the work done by a vector field on a particle moving along a curve, we can use the line integral formula. In this case, the curve C is given by r(t) = (1+2sin(t))i + (1+3sin(2t))j + (1+sin(3t))k, where 0 ≤ t ≤ π/2. The vector field F(x, y, z) = xi + yj + zk. The work done is equal to the line integral of F along C.

Explanation:

To compute the work done by a vector field on a particle moving along a curve, we can use the line integral formula:

Work = ∫C F · dr

In this case, the curve C is given by r(t) = (1+2sin(t))i + (1+3sin(2t))j + (1+sin(3t))k, where 0 ≤ t ≤ π/2. The vector field F(x, y, z) = xi + yj + zk.

The work done is equal to the line integral of F along C, so:

Work = ∫0^π/2 F(r(t)) · r'(t) dt

Now, we can substitute the given expressions for F and r(t) and evaluate the integral to find the work done.

A fillet weld has a cross-sectional area of 25.0 mm2and is 300 mm long. (a) What quantity of heat (in joules) is required to accomplish the weld, if the metal to be welded is low carbon steel? (b) How much heat must be generated at the welding source, if the heat transfer factor is 0.75 and the melting factor=0.63?(Ans: ?, 163,700)

Answers

Answer:

77362.56 J

163730.28571 J

Explanation:

A = Area = 25 mm²

l = Length = 300 mm

K = Constant = [tex]3.33\times 10^{-6}[/tex]

[tex]\eta[/tex] = Heat transfer factor = 0.75

[tex]f_m[/tex] = Melting factor = 0.63

T = Melting point of low carbon steel = 1760 K

Volume of the fillet would be

[tex]V=Al\\\Rightarrow V=25\times 300\\\Rightarrow V=7500\ mm^3=7500\times 10^{-9}\ m^3[/tex]

The unit energy for melting is given by

[tex]U_m=KT^2\\\Rightarrow U_m=3.33\times 10^{-6}\times 1760^2\\\Rightarrow U_m=10.315008\ J/mm^3[/tex]

Heat would be

[tex]Q=U_mV\\\Rightarrow Q=10.315008\times 7500\\\Rightarrow Q=77362.56\ J[/tex]

Heat required to weld is 77362.56 J

Amount of heat generation is given by

[tex]Q_g=\dfrac{Q}{\eta f_m}\\\Rightarrow Q_g=\dfrac{77362.56}{0.75\times 0.63}\\\Rightarrow Q_g=163730.28571\ J[/tex]

The heat generated at the welding source is 163730.28571 J

Without the specific heat capacity and melting point of low carbon steel, the exact heat required for the weld cannot be calculated. However, given the heat transfer factor and melting factor, the heat generated at the welding source is 163,700 Joules according to the student's provided answer.

The quantity of heat required for welding low carbon steel with a fillet weld having a cross-sectional area of 25.0 mm2 and length of 300 mm depends on the specific heat capacity of the steel and the temperature change required to melt it. However, the question does not provide specific values for the specific heat capacity or the melting point of low carbon steel, which are essential to calculate the heat quantity. Normally, such calculations would also require knowledge of the latent heat of fusion for the steel.

Given the lack of necessary details to calculate the quantity of heat, we can address the part (b) of the question which relates to the heat generated at the welding source. The heat generated at the source can be calculated by dividing the actual heat needed to make the weld (which is given by the student as an unknown, hence represented by the question mark '?') by the product of the heat transfer factor and the melting factor, which are 0.75 and 0.63 respectively.

If the heat required to perform the weld ('?') is found, then the heat generated at the source can be calculated as follows: Heat at source = Heat required / (Heat transfer factor × Melting factor). According to the answer provided by the student, the heat at the source is 163,700 Joules.

A continuous and aligned fiber-reinforced composite having a cross-sectional area of 1130 mm2 is subjected to an external tensile load. If the stresses sustained by the fiber and matrix phases are 156 MPa and 2.75 MPa, respectively, the force sustained by the fiber phase is 74,000 N and the total longitudinal strain is 1.25 x 10-3, what is the value of the modulus of elasticity of the composite material in the longitudinal direction?

Answers

Answer:

Ec=53.7×10⁹N/m² =53.7Gpa

Explanation:

To calculate the modulus of elasticity in the longitudinal direction.  This is possible realizing Ec=σ/ε where σ=(Fm+Ff)/Ac

[tex]Ec=Sigma/E\\Ec=\frac{(Fm+Ff)/E}{Ac}\\ Ec=\frac{1802+74,000}{(1.25*10^{-3})(1130)(1/1000)^{2}  }\\ Ec=53.7*10^{9}N/m^{2}\\or\\Ec=53.7GPa[/tex]

Final answer:

The modulus of elasticity of the composite material in the longitudinal direction is 124,800 MPa.

Explanation:

To find the modulus of elasticity of the composite material in the longitudinal direction, we can use the formula:

E = (stress sustained by the fiber phase)/(longitudinal strain)

Given that the stress sustained by the fiber phase is 156 MPa and the total longitudinal strain is 1.25 x 10^-3, we can plug in these values to calculate the modulus of elasticity:

E = 156 MPa / (1.25 x 10^-3) = 124,800 MPa

Therefore, the modulus of elasticity of the composite material in the longitudinal direction is 124,800 MPa.

Arace car accelerates uniformly at 11.3 m/s2. If the race car starts from rest how fast will it
be going after 6.7 seconds.

Answers

Answer:

75.71 m/s

Explanation:

From equation of motion, acceleration is given by

[tex]a=\frac {v-u}{t}[/tex]where v is the final velocity, u is the initial velocity and t is time taken.

Making v the subject of the above formula

v=at+u

Substituting 6.7 s for time, t and 11.3 for a and taking u as zero since it starts from rest

v=11.3*6.7=75.71 m/s

Interference occurs with not only light waves but also all frequencies of electromagnetic waves and all other types of waves, such as sound and water waves. Suppose that your physics professor sets up two sound speakers in the front of your classroom and uses an electronic oscillator to produce sound waves of a single frequency. When she turns the oscillator on (take this to be its original setting), you and many students hear a loud tone while other students hear nothing.

The professor adjusts the oscillator to produce sound waves of twice the original frequency. What happens?

a. Some of the students who originally heard a loud tone again hear a loud tone, but others in that group now hear nothing.
b. The students who originally heard a loud tone again hear a loud tone, and the students who originally heard nothing still hear nothing.
c. Among the students who originally heard nothing, some still hear nothing but others now hear a loud tone.
d. The students who originally heard a loud tone now hear nothing, and the students who originally heard nothing now hear a loud tone.

Answers

Final answer:

This event is a result of interference, a physics phenomenon where waves combine to create a new wave. Changing the frequency altered the phase difference between the waves at various places in the room, leading to some students now hearing a tone because they are at points of constructive interference.

Explanation:

The correct answer is c. Among the students who originally heard nothing, some still hear nothing but others now hear a loud tone. This situation is described by the phenomenon of interference. Interference occurs when two waves combine to form a resultant wave. When two identical sound waves from the speakers meet at a point in space, they can either constructively or destructively interfere depending on the phase difference.

If the phase difference is such that the waves reinforce each other, it results in a loud sound (constructive interference). However, if the phase difference is such that one wave cancels the other, no sound is heard (destructive interference). By doubling the frequency, the professor effectively changes the phase difference between the waves at the various points in the room. Therefore, some students' locations might now be at points of constructive interference, allowing them to hear the sound.

Learn more about Interference here:

https://brainly.com/question/23245030

#SPJ12

The correct answer is option a. When the oscillator's frequency is doubled, the interference pattern shifts, causing some students who originally heard a loud tone to hear nothing, while others still hear a loud tone.

The student asked what happens when the professor adjusts the oscillator to produce sound waves of twice the original frequency. The correct answer is a)  Some of the students who originally heard a loud tone again hear a loud tone, but others in that group now hear nothing.

The phenomenon described in the question is due to the interference of sound waves. Interference occurs when sound waves from the two speakers overlap, creating areas of constructive interference (where waves are in phase and amplify the sound) and destructive interference (where waves are out of phase and cancel each other out).

When the frequency is changed, the interference pattern shifts, causing some students who previously experienced a loud sound to now be in a zone of destructive interference, and vice versa. This adjustment results in a new distribution of loud and quiet spots within the classroom.

Which term below best describes the forces on an object with a a net force of zero?

A. Inertia
B. Balanced Forces
C. Acceleration
D. Unbalanced Forces

Answers

Answer:

B. Balanced Forces

Explanation:

The net force is defined as the sum of all the forces acting on an object. Therefore, if the forces are balanced, they will counteract each other, causing the net force to be zero, then the object will continue at rest or moving with constant velocity.

The term below best describes the forces on an object with a a net force of zero B. Balanced Force

Which term below best describes the forces on an object with a a net force of zero?

Balanced Forces refer to the situation where the forces acting on an object are equal in magnitude and opposite in direction, resulting in a net force of zero. When balanced forces act on an object, they cancel each other out, leading to no change in the object's state of motion.

This concept is tied to Newton's First Law of Motion, which states that an object at rest remains at rest, and an object in motion continues to move with a constant velocity, unless acted upon by an unbalanced force.

Learn more about Balanced Forces at https://brainly.com/question/485828

#SPJ3

A solid cylinder attached to a horizontal spring (???? = 3.00 N/m) rolls without slipping along a horizontal surface. If the system is released from rest when the spring is stretched by 0.250 m, find (a) the translational kinetic energy and (b) the rotational kinetic energy of the cylinder as it passes through the equilibrium position. (c) Show that under these conditions the cylinder’s center of mass executes simple harmonic motion with period

Answers

Answer:

a. Ek = 62.5 x 10⁻³ J

b. Ek = 31.25 x 10 ⁻³ J

Explanation:

E = [ Us + (M * v²) / 2 ] + [ (I * ω² ) / 2 ]

T = 2π * √ 3M / 2 k , K = 3.0 N / m , d = 0.25m

a.

Ek = ¹/₂ * m * v² = ¹/₃ * k * d²

Ek = ¹/₃ * k * d²  = ¹/₃ * 3.0 N / m * 0.25²m

Ek = 62.5 x 10⁻³ J

b.

Ek = ¹/₂ * I * ω² = ¹/₄ * M * v²

Ek = ¹/₆ * k * Xm² = ¹/₆ * 3.0 N / m * 0.25²m

Ek = 31.25 x 10 ⁻³ J

c.

d Emech / dt = d / dt * [ 3 m * v² / 4 + k * x² / 2 ]

acm = - ( 2 k / 3M)

ω = √ 2k / 3m     ⇒  T = 2π * √ K / m

An explosion occurs at the end of a pier. The sound reaches the other end of the pier by traveling through three media: air, fresh water, and a slender metal handrail. The speeds of sound in air, water, and the handrail are 339, 1480, and 5060 m/s, respectively. The sound travels a distance of 141 m in each medium.

(a) After the first sound arrives, how much later does the second sound arrive?
(b) After the first sound arrives, how much later does the third sound arrive?

Answers

Answer:

a) 0.0674s

b) 0.3880s

Explanation:

Based on the speed of sound in each medium ([tex]s_{air}=339m/s, s_{water}=1480m/s, s_{metal}=5060m/s[/tex]) the sound will first arrive via the metal handrail, then the water and lastly the air.

[tex]t=\frac{d}{s}[/tex] , where 't' is time, 'd' is distance and 's' is speed

[tex]t_{metal}=\frac{d}{s_{metal}}[/tex]

[tex]t_{metal}=\frac{141}{5060}[/tex]

[tex]t_{metal}=0.0279s[/tex]

[tex]t_{water}=\frac{d}{s_{water}}[/tex]

[tex]t_{water}=\frac{141}{1480}[/tex]

[tex]t_{water}=0.0953s[/tex]

[tex]t_{air}=\frac{d}{s_{air}}[/tex]

[tex]t_{air}=\frac{141}{339}[/tex]

[tex]t_{air}=0.4159s[/tex]

a) Time difference between the first and second sound

[tex]t_{water}-t_{metal}[/tex]

[tex]0.0953-0.0279[/tex]

[tex]0.0674s[/tex]

b) Time difference between the first and third sound

[tex]t_{air}-t_{metal}[/tex]

[tex]0.4159-0.0279[/tex]

[tex]0.3880s[/tex]

The second sound arrives 0.321 seconds after the first, and the third sound arrives 0.388 seconds after the first sound, demonstrating how sound speed varies in different media.

The question involves calculating the time differences for sound to travel through different media (air, water, and a metal handrail) over the same distance. To find out how much later one sound arrives compared to another, we use the formula time = distance / speed. The distances for all three media are the same, 141 m, but the speeds vary: 339 m/s for air, 1480 m/s for water, and 5060 m/s for the metal handrail.

Air: time = 141 m / 339 m/s = 0.416 s

Water: time = 141 m / 1480 m/s = 0.095 s

Metal handrail: time = 141 m / 5060 m/s = 0.028 s

(a) The second sound (through water) arrives 0.416 s - 0.095 s = 0.321 s after the first sound (through air).

(b) The third sound (through the metal handrail) arrives 0.416 s - 0.028 s = 0.388 s after the first sound (through air).

You drop an egg off a bridge. What forces act on the egg as it falls?


!! Brainliest to correct answer(s) !!

Answers

Answer:

Some of the Forces that are related to to the gg dropping are Grvaity, air resistance/ Air friction! hope this helps . Reley on Newtons third Law!! Also use The words Compresion and Velocity in your report!! :) LMK IF THIS HELPED>

Explanation:  

Final answer:

When an egg is dropped off a bridge, the main forces acting on it are gravity, air resistance, and, if it falls into water, the buoyant force.

Explanation:

When an egg is dropped off a bridge, several forces act on it as it falls. The main force acting on the egg is gravity, which pulls the egg downwards towards the ground. Another force is air resistance, which opposes the motion of the falling egg and slows it down. Additionally, there may be a buoyant force acting on the egg if it falls into water, which pushes the egg upwards. Gravity is the force that gives weight to objects and pulls them towards the center of the Earth. It is responsible for the downward motion of the egg.

Air resistance is the frictional force exerted by the air on the falling egg. It increases with the speed and surface area of the falling object. Buoyant force, on the other hand, is an upward force exerted by a fluid, such as water, on an object partially or fully submerged in it. If the egg falls into water, the buoyant force would act on it, partially counteracting the force of gravity. Overall, the forces acting on the egg as it falls off a bridge are gravity, air resistance, and the buoyant force (if it falls into water).

Learn more about Forces acting on a falling egg here:

https://brainly.com/question/32375720

#SPJ2

(a) A proton is confined to the nucleus of an atom. Assume the nucleus has diameter 5.5 x 10-15 m and that this distance is the uncertainty in the proton's position. What is the minimum uncertainty in the momentum of the proton? Dpmin = kg-m/s
(b) An electron is confined in an atom. Assume the atom has diameter 1 x 10-10 m and that this distance is the uncertainty in the electron's position. What is the minimum uncertainty in the momentum of the electron?

Answers

Answer:

[tex]1.91738\times 10^{-20}\ kgm/s[/tex]

[tex]1.05456\times 10^{-24}\ kgm/s[/tex]

Explanation:

h = Planck's constant = [tex]6.626\times 10^{-34}\ m^2kg/s[/tex]

[tex]\Delta x[/tex] = Uncertainty in the position

[tex]\Delta p[/tex] = Uncertainty in the momentum

From the uncertainty principle

[tex]\Delta x\Delta p=\dfrac{h}{2\pi}\\\Rightarrow \Delta p=\dfrac{h}{2\pi \Delta x}\\\Rightarrow \Delta p=\dfrac{h}{2\pi \Delta x}\\\Rightarrow \Delta p=\dfrac{6.626\times 10^{-34}}{2\pi\times 5.5\times 10^{-15}}\\\Rightarrow \Delta p=1.91738\times 10^{-20}\ kgm/s[/tex]

The minimum uncertainty in the momentum of the proton is [tex]1.91738\times 10^{-20}\ kgm/s[/tex]

[tex]\Delta x\Delta p=\dfrac{h}{2\pi}\\\Rightarrow \Delta p=\dfrac{h}{2\pi \Delta x}\\\Rightarrow \Delta p=\dfrac{h}{2\pi \Delta x}\\\Rightarrow \Delta p=\dfrac{6.626\times 10^{-34}}{2\pi\times 1\times 10^{-10}}\\\Rightarrow \Delta p=1.05456\times 10^{-24}\ kgm/s[/tex]

The minimum uncertainty in the momentum of the electron is [tex]1.05456\times 10^{-24}\ kgm/s[/tex]

Final answer:

The minimum uncertainty in the momentum of a proton confined to the nucleus of an atom is 9.6 × 10^-12 kg m/s. The minimum uncertainty in the momentum of an electron confined in an atom is 5.3 × 10^-24 kg m/s.

Explanation:

The Heisenberg Uncertainty Principle states that there is a limit to the precision with which we can know both the position and momentum of a particle. The minimum uncertainty in the proton's momentum is given by the formula: Dpmin = ħ/2Ax, where Ax is the uncertainty in the position of the proton. In this case, Ax is given as the diameter of the nucleus, so we have:

Dpmin = (1.055 × 10^(-34) kg m^2/s) / (2(5.5 × 10^(-15) m)) = 9.6 × 10^(-12) kg m/s.

Similarly, for the electron:

Dpmin = (1.055 × 10^(-34) kg m^2/s) / (2(1 × 10^(-10) m)) = 5.3 × 10^(-24) kg m/s.

A certain simple pendulum has a period on the earth of 2.00 s .
1. What is its period on the surface of Mars, where the acceleration due to gravity is 3.71 m/s^2?

Answers

The period of the simple pendulum on the surface of Mars is approximately [tex]\( 3.25 \, \text{s} \)[/tex].

Step 1

The period T of a simple pendulum is given by the formula:

[tex]\[ T = 2\pi \sqrt{\frac{L}{g}} \][/tex]

where:

- T is the period of the pendulum,

- L is the length of the pendulum, and

- g is the acceleration due to gravity.

To find the period [tex]\( T_{\text{Mars}} \)[/tex] on the surface of Mars, we can use the formula with the acceleration due to gravity on Mars, [tex]\( g_{\text{Mars}} = 3.71 \, \text{m/s}^2 \)[/tex], and the same length L as on Earth.

We have the period [tex]\( T_{\text{Earth}} = 2.00 \, \text{s} \)[/tex] on Earth, and we need to find [tex]\( T_{\text{Mars}} \).[/tex]

Step 2

Using the formula, we get:

[tex]\[ T_{\text{Earth}} = 2\pi \sqrt{\frac{L}{g_{\text{Earth}}}} \][/tex]

Solving for L, we find:

[tex]\[ L = \left( \frac{T_{\text{Earth}}}{2\pi} \right)^2 g_{\text{Earth}} \][/tex]

Now, using this value of L, we can find [tex]\( T_{\text{Mars}} \)[/tex] using the acceleration due to gravity on Mars:

[tex]\[ T_{\text{Mars}} = 2\pi \sqrt{\frac{L}{g_{\text{Mars}}}} \][/tex]

Substituting the known values, we get:

[tex]\[ T_{\text{Mars}} = 2\pi \sqrt{\frac{\left( \frac{T_{\text{Earth}}}{2\pi} \right)^2 g_{\text{Earth}}}{g_{\text{Mars}}}} \][/tex]

Step 3

Simplifying:

[tex]\[ T_{\text{Mars}} = T_{\text{Earth}} \sqrt{\frac{g_{\text{Earth}}}{g_{\text{Mars}}}} \]Now, let's calculate \( T_{\text{Mars}} \):\[ T_{\text{Mars}} = 2.00 \times \sqrt{\frac{9.81}{3.71}} \]\[ T_{\text{Mars}} = 2.00 \times \sqrt{2.643} \]\[ T_{\text{Mars}} \approx 2.00 \times 1.626 \]\[ T_{\text{Mars}} \approx 3.25 \, \text{s} \][/tex]

So, the period of the simple pendulum on the surface of Mars is approximately [tex]\( 3.25 \, \text{s} \)[/tex].

A block of mass m = 0.775 kg is fastened to an unstrained horizontal spring whose spring constant is k = 83.6 N/m. The block is given a displacement of +0.113 m, where the + sign indicates that the displacement is along the +x axis, and then released from rest. What is the force (magnitude) that the spring exerts on the block just before the block is released?

Answers

Answer:

F= 9.45 N

Explanation:

If the mass is fastened to an unstrained horizontal spring, this means that at this position, the spring doesn't exert any force, because it keeps his equilibrium length.

If then the block is given a displacement of +0.113m, this means that the spring has been stretched in the same length.

According to Hooke's Law, the spring exerts a restoring force (trying to return to his equilibrium state) that opposes to the displacement, and which is proportional (in magnitude) to it, being the proportionality constant, a quantity called spring constant, which depends on the type of spring.

We can write the Hooke's Law as follows:

F = - k * Δx

Just before the block is released, we can get the value of F as follows:

⇒ F = 83.6 N/m* 0.113 m = 9.45 N (in magnitude)

First, design an experiment you could conduct that might measure how thermal equilibrium occurs. What materials would you use? What would you measure? What results would you expect? What if the results were different; what would that indicate?

Answers

Answer:

What material would you use: I would use a beaker, water, heated metal

What would you measure: Measure the changes in temperature before and after pouring the metal.

What results would you expect: Whether Thermal Equilibrium has occurred or not.

What if the results were different; what would that indicate : The Beaker might absorb some of the heat causing an error in the reading.

Explanation:

step 1: Take a well insulated beaker and pour water of known mass in it.

step 2: Record its initial temperature.

step 3:  Place heated metal into the beaker and make sure that the beaker is tightly packed so that no heat escapes from the beaker.

step 4: Record temperature of the beaker at different intervals and after temperature has become constant ( No heat is being gained) , note the final temperature

In end we will check whether thermal equilibrium is established or not.

heat lost by the metal = heat gained by water + heat gained by the beaker    

Possible Error:

There might be disparities in the values acquired as the beaker will absorb some heat.

A singly charged positive ion has a mass of 3.46 × 10−26 kg. After being accelerated through a potential difference of 215 V the ion enters a magnetic field of 0.522 T in a direction perpendicular to the field. The charge on the ion is 1.602 × 10−19 C. Find the radius of the ion’s path in the field. Answer in units of cm.

Answers

Answer:

1.8 cm

Explanation:

[tex]m[/tex] = mass of the singly charged positive ion = 3.46 x 10⁻²⁶ kg

[tex]q[/tex] = charge on the singly charged positive ion = 1.6 x 10⁻¹⁹ C

[tex]\Delta V[/tex] =Potential difference through which the ion is accelerated = 215 V

[tex]v[/tex] = Speed of the ion

Using conservation of energy

Kinetic energy gained by ion = Electric potential energy lost

[tex](0.5) m v^{2} = q \Delta V\\(0.5) (3.46\times10^{-26}) v^{2} = (1.6\times10^{-19}) (215)\\(1.73\times10^{-26}) v^{2} = 344\times10^{-19}\\v = 4.5\times10^{4} ms^{-1}[/tex]

[tex]r[/tex] = Radius of the path followed by ion

[tex]B[/tex] = Magnitude of magnetic field = 0.522 T

the magnetic force on the ion provides the necessary centripetal force, hence

[tex]qvB = \frac{mv^{2} }{r} \\qB = \frac{mv}{r}\\r =\frac{mv}{qB}\\r =\frac{(3.46\times10^{-26})(4.5\times10^{4})}{(1.6\times10^{-19})(0.522)}\\r = 0.018 m \\r = 1.8 cm[/tex]

The Earth’s radius is 6378.1 kilometers. If you were standing at the equator, you are essentially undergoing uniform circular motion with the radius of your circular motion being equal to the radius of the Earth. You are an evil mad scientist and have come up with the simultaneously awesome and terrifying plan to increase the speed of the Earth’s rotation until people at the Earth’s equator experience a centripetal (radial) acceleration with a magnitude equal to g, (9.81 m/s2 ), effectively making them experience weightlessness. If you succeed in your dastardly plan, what would be the new period of the Earth’s rotation?

a. 2.7 minutes b. 84 minutes c. 48 minutes d. 76 minutes

Answers

Answer:

b. 84 minutes

Explanation:

[tex]a_c=g[/tex] = Centripetal acceleration = 9.81 m/s²

r = Radius of Earth = 6378.1 km

v = Velocity

Centripetal acceleration is given by

[tex]a_c=\dfrac{v^2}{r}\\\Rightarrow v=\sqrt{a_cr}\\\Rightarrow v=\sqrt{9.81\times 6378100}\\\Rightarrow v=7910.06706\ m/s[/tex]

Time period is given by

[tex]T=\dfrac{2\pi r}{v60}\\\Rightarrow T=\dfrac{2\pi 6378.1\times 10^3}{7910.06706\times 60}\\\Rightarrow T=84.43835\ minutes[/tex]

The time period of Earth’s rotation would be 84.43835 minutes

The new period of the Earth’s rotation is mathematically given as

T=84.43835 min

What would be the new period of the Earth’s rotation?

Question Parameter(s):

The Earth’s radius is 6378.1 kilometers.

g= (9.81 m/s2 ),

Generally, the equation for the   is mathematically given as
[tex]a_c=\dfrac{v^2}{r}[/tex]

Therefore

[tex]v=\sqrt{a_cr}\\\\v=\sqrt{9.81*6378100}[/tex]

v=7910.06706 m/s

In conclusion

[tex]T=\dfrac{2\pi r}{v60}[/tex]

Hence

[tex]T=\dfrac{2\pi 6378.1*10^3}{7910.06706*60}[/tex]

T=84.43835 min

Read more about Time

https://brainly.com/question/4931057

When you walk at an average speed (constant speed, no acceleration) of 24 m/s in 94.1 sec
you will cover a distance of__?

Answers

Answer:

2258.4 m

Explanation:

Distance covered is a product of speed and time hence

s=vt where s is the displacement/distance covered, v is the speed and t is the time taken

s=24*94.1=2258.4 m

Therefore, the distance covered is 2258.4 m

A box of mass 17.6 kg with an initial velocity of 2.25 m/s slides down a plane, inclined at 19◦ with respect to the horizontal. The coefficient of kinetic friction is 0.48. The box stops after sliding a distance x. 17.6 kg µk = 0.48 2.25 m/s 19◦

How far does the box slide? The acceleration due to gravity is 9.8 m/s 2 . The positive x-direction is down the plane. Answer in units of m.

Answers

Final answer:

The sliding distance of the box can be calculated using the principles of conservation of energy and the work-energy theorem, considering the initial kinetic energy and the work done against the force of kinetic friction.

Explanation:

Calculating the Sliding Distance of a Box on an Inclined Plane

To determine how far the box slides, we can use the principles of conservation of energy and the work-energy theorem. The initial kinetic energy of the box is transformed into work done against friction. The work done by friction is equal to the force of friction times the distance the box slides. We start with calculating the force of kinetic friction, which is μ_k (coefficient of kinetic friction) times the normal force. The normal force is the component of the box's weight perpendicular to the inclined plane, calculated as m*g*cos(θ), where m is the mass of the object, g is the acceleration due to gravity, and θ is the angle of the incline.

With given values: m = 17.6 kg, μ_k = 0.48, θ = 19°, βi = 2.25 m/s, and g = 9.8 m/s², we can calculate the force of kinetic friction (ƒ_k).

The component of gravity along the incline is m*g*sin(θ), and we know that the box stops when its initial kinetic energy is equal to the work done by friction. So, from the equation:

Kinetic Energy_initial = Work_friction,

½*m*βi^2 = ƒ_k * distance,

½*17.6 kg*(2.25 m/s)^2 = (0.48*17.6 kg*9.8 m/s²*cos(19°)) * distance,

We can then solve for the distance the box slides. After calculation, we obtain the sliding distance x.

Which of the following should be measured by vernier calipers?

A. Height of a bed

B. Length of a torch

C. Thickness of a candle

D. Length of a windowpane

E. Width of a bed

Answers

Answer:

option C.

Explanation:

The correct answer is option C.

Vernier Calipers is a precision instrument that is used to measure the internal or outer dimensions or the depth of the material.

Vernier Caliper consists of two jaws, the main scale, and the vernier scale.

Graduation is present on both the main scale and vernier.

To measure the width of any material it should be placed in between the jaws and reading is taken with the help of the main scale and vernier scale.

The thickness of the candle can be measured using vernier calipers precisely.

An automobile (and its occupants) of total mass M = 2000 kg, is moving through a
curved dip in the road of radius R = 20 m at a constant speed v = 20 m/s. For this analysis, you can
neglect air resistance. Consider the automobile (and its occupants) as the system of interest. Use g =
10 m/s2.


Calculate the normal force exerted by the road on the system (car and its occupants).
A) 60,000 N
B) 20,000 N
C) 40,000 N
D) 50,000 N
E) 30,000 N

Answers

Answer:

Normal force, N = 60000 N                      

Explanation:

It is given that,

Mass of the automobile, m = 2000 kg

Radius of the curved road, r = 20 m

Speed of the automobile, v = 20 m/s

Let N is the normal and F is the net force acting on the automobile or the centripetal force. It is given by :

[tex]N-mg=\dfrac{mv^2}{r}[/tex]

[tex]N=\dfrac{mv^2}{r}+mg[/tex]    

[tex]N=m(\dfrac{v^2}{r}+g)[/tex]                

[tex]N=2000\times (\dfrac{(20)^2}{20}+10)[/tex]                            

N = 60000 N  

So, the normal force exerted by the road on the system is 60000 Newton. Hence, this is the required solution.

Final answer:

The normal force exerted by the road on the system (car and its occupants) when moving through a curved dip at a constant speed, calculated considering both gravitational and centripetal forces, is 60,000 N.

Explanation:

To calculate the normal force exerted by the road on the system (car and its occupants), we first note that when an object is in circular motion, the net force acting on the object is directed towards the center of the circle. In this case, the net force is the centripetal force required to keep the automobile in circular motion, which can be calculated using the formula Fc = m*v2/R where m is the mass of the automobile, v is its velocity, and R is the radius of the curve.

For the given values (m = 2000 kg, v = 20 m/s, and R = 20 m), the centripetal force is calculated as Fc = 2000 kg * (20 m/s)2 / 20 m = 2000 kg * 400 m2/s2 / 20 m = 40,000 N. This force is provided by the component of the normal force that acts towards the center of the circular path. Additionally, the normal force must counteract the gravitational force acting on the automobile (Fg = m*g), which is 2000 kg * 10 m/s2 = 20,000 N.

However, in the scenario of a car moving through a curved dip, the normal force also provides the centripetal force. The total normal force exerted by the road must therefore support the weight of the car and provide the centripetal force needed for circular motion. Thus, the total normal force is N = Fg + Fc = 20,000 N + 40,000 N = 60,000 N.

A cruise ship is moving at constant speed through the water. The vacationers on the ship are eager to arrive at their next destination. They decide to try to speed up the cruise ship by gathering at the bow (the front) and running together toward the stern (the back) of the ship.(a) While they are running toward the stern, what is the speed of the ship?1.higher than it was before they started running

2. unchanged from what it was before they started running

3. lower than it was before they started running

4. impossible to determine

Answers

Final answer:

The speed of the ship remains the same when vacationers run from the front to the back. This effect is explained by the conservation of momentum, which states that the total momentum of an isolated system, in this case the ship and the vacationers, remains constant. Thus, the internal movement of the vacationers does not affect the speed of the ship.

Explanation:

This question is related to the principle of conservation of momentum in physics. According to this principle, if a system is isolated (no external forces acting on it), the total momentum remains constant. So, the spectators' running from the bow to the stern won't affect the speed of the ship. Therefore, the answer is 2. The speed of the ship is unchanged from what it was before they started running. It is important to note that the center of mass of the system (ship and vacationers) remains the same before and after the vacationers run from one point to another inside the ship. This is because their movement is internal to the system and has no effect on the system's center of mass or the ship's speed.

Learn more about Conservation of Momentum here:

https://brainly.com/question/33316833

#SPJ12

Final answer:

The speed of the cruise ship remains unchanged even if the vacationers move from the bow to the stern. This is due conservation of linear momentum and Newton's third law. Even though the ship's center of mass is slightly affected, the total speed of the ship remains the same.

Explanation:

Physics principles, particularly those related to Newton's third law and the conservation of linear momentum, apply in this scenario. As the vacationers from the bow run towards the stern, their forward motion will push the ship slightly backward due to Newton's third law, which states that every action has an equal and opposite reaction. However, the overall speed (or velocity) of the cruise ship relative to the water or the Earth remains unchanged, option 2, because the total linear momentum of the cruise ship system (which includes the ship and the passengers) is conserved.

It's important to note that the shift in passengers’ positions does slightly change the center of mass of the entire system, but it does not alter the fact that the total speed of the ship is conserved if no external force is applied.

Learn more about Conservation of Momentum here:

https://brainly.com/question/33316833

#SPJ11

To understand the formula representing a traveling electromagnetic wave.Light, radiant heat (infrared radiation), X rays, and radio waves are all examples of traveling electromagnetic waves. Electromagnetic waves comprise combinations of electric and magnetic fields that are mutually compatible in the sense that the changes in one generate the other.The simplest form of a traveling electromagnetic wave is a plane wave. For a wave traveling in the x direction whose electric field is in the y direction, the electric and magnetic fields are given byE? =E0sin(kx??t)j^,B? =B0sin(kx??t)k^.This wave is linearly polarized in the y direction.1.a. In these formulas, it is useful to understand which variables are parameters that specify the nature of the wave. The variables E0 and B0are the __________ of the electric and magnetic fields.Choose the best answer to fill in the blank.1. maxima2. amplitudes3. wavelengths4. velocitiesb. The variable ? is called the __________ of the wave.Choose the best answer to fill in the blank.1. velocity2. angular frequency3. wavelengthc. The variable k is called the __________ of the wave.1. wavenumber
2. wavelength
3. velocity
4. frequency

Answers

Answer:

1) Eo and Bo. They are maximum amplitudes. Answer 1 and 2

2) .w is angular frequency. Answer 2

3) k  is wave number. Answer 1

Explanation:

The electromagnetic wave is given by

         [tex]E_{y}[/tex] = E₀ sin (kx –wt)

This is the equation of a traveling wave on the x axis with the elective field oscillating on the y axis

The terms represent E₀ the maximum amplitude of the electric field,

The wave vector

        k = 2π /λ

Angular velocity

       w = 2π f

To answer the questions let's use the previous definitions

1) Eo and Bo. They are maximum amplitudes. Answer 1 and 2

2) .w is angular frequency. Answer 2

3) k is wave number. Answer 1

A student solving for the acceleration of an object has applied appropriate physics principles and obtained the expression a=a1 + F/m where a1 = 3.00 meter/ second2 F=12.0 kilogram.meter/second2 and m=7.00 kilogram. First which of the following is the correct step for obtaining a common denominator for the two fractions in the expression in solving for a?a. (m/m times a1/1) + (1/1 times F/m)b. (1/m times a1/1) + (1/m times F/m)c. (m/m times a1/1) + (F/F times F/m)d. (m/m times a1/1) +(m/m times F/m )

Answers

The correct step for obtaining a common denominator in the expression 'a = a1 + F/m' is to multiply each term by m/m, which results in '(m/m * a1/1) + (m/m * F/m)'. This leads to the acceleration, a, equalling 4.71 m/s2 when substituting the given values into the expression.

The student is trying to solve for the acceleration (a) of an object using the equation a = a1 + F/m, where a1 is given as 3.00 meters/second2, F as 12.0 kilogram.meter/second², and m as 7.00 kilograms. To obtain a common denominator for the two terms a1 and F/m, we look for an expression that allows us to combine these two fractions.

The correct step for obtaining a common denominator is option d. This is written as:

(m/m * a1/1) + (m/m * F/m)

This is because multiplying by m/m is equivalent to multiplying by 1, which does not change the value of the expression. For the term a1, since there is no denominator, multiplying by m/m effectively gives it a common denominator with F/m. The calculation becomes:

a = (m * a1 + F) / m

Substituting the given values:

a = (7.00 kg * 3.00 m/s2 + 12.0 kg*m/s2) / 7.00 kg

= (21.00 + 12.00) kg*m/s2 / 7.00 kg

= 33.00 kg*m/s2 / 7.00 kg

= 4.71 m/s2

Thus, the newton's second law, a = F/m, can be used to calculate the acceleration of the object.

Other Questions
Richard's job has a compa-ratio of 0.85. What does this ratio tell about Richard's pay rate? A. It is highly competitive with the market. B. It is not competitive with the market. C. There is no way to judge its competitiveness. D. You need more information to judge it. Dualists sometimes appeal to the indiscernibility of identicals (Leibniz Law) in defense of their claim that mental states are distinct from physical states.a. trueb. false Eugene had 3 pies. He gave 1 4/5 to his friend. And kept the rest for himself. Who had more pie? How much more? Heels, a shoe manufacturer, is evaluating the costs and benefits of new equipment that would custom fit each pair of athletic shoes. The customer would have his or her foot scanned by digital computer equipment; this information would be used to cut the raw materials to provide the customer a perfect fit. The new equipment costs $117,000 and is expected to generate an additional $45,000 in cash flows for five years. A bank will make a $117,000 loan to the company at a 12% interest rate for this equipments purchase. Compute the recovery time for both the payback period and break-even time. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.) What do you think Conrad would recommend to people as a way to deal with past mistakes or regrets? At the beginning of 2019, Robotics Inc. acquired a manufacturing facility for $13.5 million. $10.5 million of the purchase price was allocated to the building. Depreciation for 2019 and 2020 was calculated using the straight-line method, a 25-year useful life, and a $2.5 million residual value. In 2021, the estimates of useful life and residual value were changed to 20 total years and $650,000, respectively. What is depreciation on the building for 2021 Write and simplify the integral that gives the arc length of the following curve on the given interval b. If necessary, use technology to evaluate or approximate the integral. y:31n x, for 2sxs5 a. The integral that gives the arc length of the curve is L dx &The arc length of the curve is approximately (Round to three decimal places as needed.) Which statements describe how the Fed responds to high inflation? Check all that apply:a. It charges banks more interest.b. It pays banks less interest.c. It sells more securities.d. It decreases the money supply.e. In increases the money supply. Which of the following is incorrect? a. The operating cycle always is one year in duration. b. The operating cycle sometimes is longer than one year in duration. c. The operating cycle sometimes is shorter than one year in duration. d. The operating cycle is a concept applicable both to manufacturing and retailing enterprises. Plz plz plz plz plz help Factor the polynomial.x+6x+5 When determining the net force given a force of 12 N and a force of 7 N, what would these forces be called? The conditions that surround someone or something. These conditions and influences affect the growth. What are these conditions? A(n) ________ is an organization of individuals sharing common goals that tries to influence governmental decisions. (Method Overloading) Given the following methods, write down the printed output of the method calls: public static void doSomething(String x) { System.out.println("A"); } public static void doSomething(int x) { System.out.println("B"); } public static void doSomething(double x) { System.out.println("C"); } public static void doSomething(String x, int y) { System.out.println("D"); } public static void doSomething(int x, String y) { System.out.println("E"); } public static void doSomething(double x, int y) { System.out.println("F"); } Method calls 1. doSomething(5); 2. doSomething (5.2, 9); 3. doSomething(3, "Hello"); 4. doSomething("Able", 8); 5. doSomething ("Alfred"); 6. doSomething (3.6); 7. doSomething("World"); question 1. Enter the ratio equivalent to sin(B) question 2. Consider this a right triangle. enter the measure of angle CAB to the nearest hundredth degree.question 3. Suppose angle A is an angle such that angle cosA < sinA. select ALL angle measures that are possible values for angle A. 25, 35, 45, 55, 66, 75. The average person's speed when riding a bike along a street is 18 kilometers per hour. What conversion factor can be used toconvert this speed to meters per hour?A 1 kilometer/1.000 metersB 1 meter/1.000 kilometersC 1,000 meters/1 kilometerD 1.000 kilometers/1 meter When the Roman government began to persecute Christians under Nero, Under normal conditions, you are just barely able to lift a mass of 74 kg. Your friend drops a box of volume 2.4 m3 into a lake. If you are just able to lift it to the surface (so that it is still completely submerged), what is the mass of the box discuss the origin of the line citing the bohr theory of the atom specify any energy transitions that are applicable