Answer:
tan 75/350
Explanation:
the cliff is the height 75 and the length is 350 the other side is added to form a triangle . the tan rule is then used.
What is the smallest radius of an unbanked (flat) track around which a bicyclist can travel if her speed is 32 km/h and the coefficient of static friction between tires and track is 0.27?
Answer: 29.83m
Explanation: coefficient of friction= v^2/rg
Coefficient of friction=0.27
V=32km/h
Convert km/h to m/s
32*1000/3600
32000/3600=8.89m/s
0.27=8.89^2/r*9.81
0.27*9.81*r=79.0321
R= 79.0321/2.6487
R=29.83m
Explanation:
Below is an attachment containing the solution.
When an ultraviolet photon is absorbed by a molecule of DNA, the photon's energy can be converted into vibrational energy of the molecular bonds. Excessive vibration damages the molecule by causing the bonds to break. Ultraviolet light of wavelength less than 290 nmnm causes significant damage to DNA; ultraviolet light of longer wavelength causes minimal damage.What is the threshold photon energy, in eV, for DNA damage?
Answer:
4.28405172412 eV
Explanation:
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
h = Planck's constant = [tex]6.626\times 10^{-34}\ m^2kg/s[/tex]
[tex]\lambda[/tex] = Wavelength = 290 nm
Energy is given by
[tex]E=h\dfrac{c}{\lambda}\\\Rightarrow E=6.626\times 10^{-34}\times \dfrac{3\times 10^{8}}{290\times 10^{-9}}\\\Rightarrow E=6.8544827586\times 10^{-19}\ J[/tex]
Converting to eV
[tex]\dfrac{6.8544827586\times 10^{-19}}{1.6\times 10^{-19}}=4.28405172412\ eV[/tex]
The threshold energy is 4.28405172412 eV
Final answer:
The threshold photon energy for DNA damage is approximately 4.29 eV, calculated using the relationship E = h * c /
, where h is Planck's constant, c is the speed of light, and
is the given threshold wavelength for UV damage to DNA (290 nm).
Explanation:
To calculate the threshold photon energy in electron volts (eV) necessary to cause damage to DNA, we can use the relationship between a photon's energy (E), its wavelength (
), and Planck's constant (h). The equation is E = h * c /
, where c is the speed of light. Using the given wavelength of 290 nm (which is the threshold for significant DNA damage), we can convert this value into meters (290 nm = 290 x 10-9 m). Planck's constant (h) is approximately 6.626 x 10-34 J*s, and the speed of light (c) is about 3.00 x 108 m/s.
First, we find the energy in joules:
E = (6.626 x 10-34 J*s) * (3.00 x 108 m/s) / (290 x 10-9 m) = 6.863 x 10-19 J
Next, we convert joules to electron volts using the conversion factor 1 eV = 1.602 x 10-19 J:
E = (6.863 x 10-19 J) / (1.602 x 10-19 J/eV)
4.29 eV
Therefore, the threshold photon energy for DNA damage is approximately 4.29 eV.
A hiker walks 2.00 km north and then 3.00 km east, all in 2.50 hours. Calculate the magnitude and direction of the hiker’s (a) displacement (in km) and (b) average velocity (in km/h) during those 2.50 hours. (c) What was her average
Answer:
Incomplete third question
I think it should be
C. What was her average speed
Explanation:
Check attachment for solution
(a). The displacement is 3.6km.
(b). Average velocity is 2 km/hour
(a). A diagram is attached below which describe situation of question.
In diagram OB represent the displacement.
In right triangle OAB,
[tex](OB)^{2}=(OA)^{2}+(AB)^{2}\\ \\ OB^{2}=2^{2}+3^{2}=4+9=13\\ \\ OB=\sqrt{13}=3.6Km[/tex]
(b). Average velocity is given as,
[tex]v=\frac{Distance}{time}=\frac{2+3}{2.5} =5/2.5=2km/h[/tex]
Learn more about Displacement and Average velocity here:
https://brainly.com/question/862972
Wire A carries 4 A into a junction, wire B carries 5 A into the same junction, and another wire is connected to the junction. What is the current in this last wire?
Final answer:
According to Kirchhoff's Current Law, the total incoming current to a junction must equal the total outgoing current. Since Wire A and Wire B carry a combined total of 9 A into the junction, the current in the last wire must be 9 A leaving the junction in order to balance the current flow.
Explanation:
The subject of this question is Physics, and it relates to the basic principle of electric current conservation at a junction, also known as Kirchhoff's Current Law. This law states that the total current entering a junction must equal the total current leaving the junction.
Given that Wire A carries 4 A and Wire B carries 5 A into the junction, this means that the total incoming current is 9 A. Therefore, if no other wires are supplying current to the junction, the current in the last wire connected to the junction must be 9 A leaving the junction to satisfy Kirchhoff's Current Law.
very long straight wire carries current 15 A. In the middle of the wire a right-angle bend is made. The bend forms an arc of a circle of radius 27 cm, as show. Determine the magnetic field at the center of the arc.
The magnetic field at the center of the circular arc formed by the right-angle bent wire carrying a 15 A current is calculated based on Ampere's law. Since the right-angle bend forms a quarter of a circular loop, the magnetic field strength is a quarter of a whole circular loop. Thus, the magnetic field strength at the center of the turn is approximately 2.21 x 10⁻⁵ Tesla.
Explanation:The magnetic field of a very long straight wire carrying current can be calculated using Ampere's law. The magnetic field strength of a straight wire carrying current is given by B = μI / 2πR, where B is the magnetic field strength, I is the current, R is the distance from the wire, and μ is the permeability of free space, a constant equal to 4π x 10⁻⁷ T.m/A (Tesla square meters per Ampere).
However, in your question, the wire turns and forms an arc, which is part of a circle. The situation is different from a straight wire but similar to a circular loop. For a complete circular loop carrying current, the magnetic field at the center is given by B = μI / 2R. Since we only have a right-angle bend - a quarter of a circular loop, the magnetic field at the center would be a quarter of the magnetic field of a whole circular loop. So, B = μI / 8R = (4π x 10⁻⁷ T.m/A * 15 A) / (8 * 0.27 m) = 2.21 x 10⁻⁵ T.
Learn more about Magnetic Field Strength here:https://brainly.com/question/33726930
#SPJ12
The magnetic field at the center of the arc can be determined using Ampere's Law. The formula to calculate the magnetic field created by current in a long straight wire is B = μoI / (2πr), where μo is the permeability of free space, I is the current, and r is the shortest distance to the wire. In this case, the radius of the arc is given as 27 cm, which is equal to 0.27 m. Plugging in the values, we find that the magnetic field at the center of the arc is 0.035 Tesla.
Explanation:The magnetic field at the center of the arc can be determined using Ampere's Law. The formula to calculate the magnetic field created by current in a long straight wire is B = μoI / (2πr), where μo is the permeability of free space, I is the current, and r is the shortest distance to the wire. In this case, the radius of the arc is given as 27 cm, which is equal to 0.27 m.
Plugging in the values, we get:
B = (4π×10-7 T.m/A) × 15 A / (2π×0.27 m) = 0.035 T
Therefore, the magnetic field at the center of the arc is 0.035 Tesla.
Learn more about Magnetic field at the center of an arc here:https://brainly.com/question/34143525
#SPJ2
The conductors that carry the current to electrical devices and ? equipment are the heart of all electrical systems. There are associated ? whenever current flows through a conductor.
Answer:
Utilization, effects
Explanation:
The conductors that carry the current to electrical devices and utilization equipment are the heart of all electrical systems. There are associated effects whenever current flows through a conductor.
The central atom in a lewis structure tends to be the ____________ atom.
Answer:
The central atom in a lewis structure tends to be the least electronegative atom.
Explanation:
Lewis structures show each atom and its position in the structure of the molecule using its chemical symbol.
In Lewis structure, the central atom tends to be the least electronegative atom. Usually the central atom will be the one that has the most unpaired valence electrons or least electronegative.
Therefore, the best phrase that completes the sentence is "least electronegative".
Answer:
The central atom is also usually the least electronegative.
Explanation:
The central atom is usually the least electronegative element in the molecule or ion; hydrogen and the halogens are usually terminal.
The least electronegative elements in the center of lewis structures because an atom in the central position shares more of its electrons than does a terminal atom. Atoms with higher electronegative are generally more reluctant to share its electrons.
What are the steps that produce electricity from this fuel
The process of generating electricity from fuel involves combustion of the fuel to produce heat, using the heat to boil water and produce steam, spinning a turbine with the steam, triggering a generator that produces electricity, and the distribution of that electricity.
Explanation:The process of converting fuel into electricity typically involves several steps. These steps may vary depending on the type of fuel, but let's take coal as an example, a common type of fuel used in power plants.
Combustion: The coal is burned to produce heat. Boiling water: This heat is used to boil water, creating steam. Turbine: The high-pressure steam then spins a turbine. Generator: The spinning turbine triggers a generator which then produces electricity by spinning a coil of wire in a magnetic field. Distribution: The generated electricity is then distributed via power lines to homes and businesses.Learn more about Generating electricity from fuel here:
https://brainly.com/question/33904019
#SPJ2
Two different wave groups with the same height travel together in the same direction. The wavelength of one group is twice as long as the wavelength of the other group. A combined wave of extra height will be produced _______.
Answer:
A combined wave of extra height will produce every other wave.
Explanation:
One wave Crest can catch up to another wave Crest if the group of waves are from different places.
Here the two group of waves have different wavelength but travelling together in the same direction so when they combine,they will produce every other wave.
A truck driving on a level highway is acted upon by the following forces: a downward gravitational force of 52 kN (kilonewtons); an upward contact force due to the road of 52 kN; another contact force due to the road of 8.5 kN, directed east; and a drag force due to air resistance of 2.7 kN, directed west. What is the net force acting on the truck
Explanation:
Below is an attachment containing the solution.
The net force acting on the truck can be determined by considering the various forces acting on it and calculating the resultant force.
The net force acting on the truck can be found by adding all the forces together. The gravitational force is balanced by the upward contact force, leaving the forces due to the road and air resistance. When considering the horizontal forces, the net force on the truck is determined by subtracting the force due to air resistance from the force due to the road.
A positively charged body exerts an electric field that causes a positively charged particle to move away from it. If work is done to push this particle towards the body, what form of energy will the particle have?
a. mechanical energy
b. electric potential energy
c. heat energy
d. kinetic energy
Answer:
b. electric potential energy.
Explanation:
The energy required to move a charge against the electric field is known as the electric potential energy. As in above case positively charged body is exerting an electric field on the positive charge. As the same charges repel so the charge tend to move away. In order to push it towards the body we need a work done. As it is hard to push the positive charged particle towards the positive electric field. So in the cases like these particle occupies the electric potential energy.
Monochromatic light of wavelength 580 nm passes through a single slit and the diffraction pattern is observed on a screen. Both the source and screen are far enough from the slit for Fraunhofer diffraction to apply.
a) If the first diffraction minima are at ±90.0∘, so the central maximum completely fills the screen, what is the width of the slit?
b) For the width of the slit as calculated in part (a), what is the ratio of the intensity at θ=45.0∘ to the intensity at θ=0?
The width of the slit can be found using the formula θ = λ / a and the ratio of the intensity at θ=45.0∘ to θ=0 can be calculated using the formula I(θ) = (I0) (sinc² (πa sin(θ) / λ)).
Explanation:The width of the slit can be calculated using the formula for the angular position of the first minima in single-slit diffraction:
θ = λ / a
where θ is the angular position of the minima, λ is the wavelength of the light, and a is the width of the slit. Rearranging the formula, we can solve for a:
a = λ / θ
Substituting the given values, the width of the slit is:
a = (580 nm) / (90.0∘)
In part (b), the ratio of the intensity at θ=45.0∘ to the intensity at θ=0 can be calculated using the formula for intensity in single-slit diffraction:
I(θ) = (I0) (sinc² (πa sin(θ) / λ))
where I(θ) am the intensity at a certain angle, I0 is the intensity at θ=0, a is the width of the slit, λ is the wavelength, and sinc is the sin function. By substituting the values and calculating the ratio, you can find the answer.
Learn more about Single-Slit Diffraction here:https://brainly.com/question/34067294
#SPJ3
The width of the slit through which monochromatic light of wavelength 580 nm causes the first diffraction minima at extpm90.0 extdegree is 580 nm. The intensity ratio at heta=45.0 extdegree to heta=0 can be determined by using the formula I(heta) = I_0 * [sinc(eta)]^2.
The question pertains to Fraunhofer diffraction through a single slit and involves finding the width of the slit and the ratio of light intensities at different angles.
Part (a): Width of the slit
According to the single slit diffraction formula, the first minima occur at angles heta where d sin(heta) = ext{m} extlambda, where d is the width of the slit, heta is the angle of the diffraction minima, m is the order of the minima, and extlambda is the wavelength of the light.
Given the first minima at heta = ext{extpm}90.0 ext{extdegree}, we have:
sin(90ext{extdegree}) = ext{1}
ext{m} = ext{1} (since it's the first minima)
d imes 1 = ext{1} imes ext{580 nm}
d = ext{580 nm}
Therefore, the width of the slit, d, is 580 nm.
Part (b): Intensity ratio
The intensity at angle heta in a single-slit diffraction pattern is given by:
I(heta) = I_0 imes ext{[sinc(heta)]}^2
where
heta = rac{ext{extpi} d sin(heta)}{extlambda}
and
ext{sinc}(heta) = rac{ext{sin}(heta)}{heta}
For heta = 45ext extdegree},
ext{beta} can be calculated and the resulting intensity ratio I(45ext{extdegree})/I(0) can be found accordingly.
A 10-kg bowling ball moving at 4 m/s bounces off a spring at about the same speed that it had before bouncing. What is the change in momentum of the bowling ball
Answer: change in momentum is approximately 0 kgm/s
Explanation: The change in momentum is difference between the momentum before collision and momentum after collision. So since the Velocity after collision is almost the same as that before collision then there will be no change in the momentum since the mass is constant.
Note that momentum is just the product of mass M and Velocity v.
Technician A states that accidents avoidance is an additional feature on some electronic stability control systems. Technician B states that trailer sway control is an additional feature on some electronic control systems. Who is Correct?
Answer:
Both A and B are right.
Explanation:
-Electronic Stability Control (ESC) helps drivers to avoid crashes by reducing the danger of skidding, or losing control as a result of over-steering. The ESC activates in the instant that a driver loses control.
-The Sway Control is an added feature that helps eliminate trailer sway and takes action when necessary via the electric brake system, to maintain road position.
How much work is required to turn an electric dipole 180° in a uniform electric field of magnitude E = 46.0 N/C if the dipole moment has a magnitude of p = 3.02 × 10−25 C·m and the initial angle is 64°?
Answer:
[tex]W=1.22*10^{-23}J[/tex]
Explanation:
Torque and energy of an electric dipole in an electric field we find:
[tex]W=U(\alpha_{o}+\pi )-U(\alpha_{o} )=-pE(cos(\alpha_{o}+\pi )-cos(\alpha_{o} ))\\W=2pECos\alpha_{o}\\ W=2(3.02*10^{-25}C.m )(46.oN/C)Cos64\\W=1.22*10^{-23}J[/tex]
The work required to turn an electric dipole 180° in a uniform electric field is -4.89 × 10^-24 J.
Explanation:To calculate the work required to turn an electric dipole 180° in a uniform electric field, we can use the formula:
W = -pE(1 - cosθ)
where W is the work done, p is the dipole moment, E is the electric field strength, and θ is the angle between the dipole moment and the electric field.
Plugging in the given values:
W = - (3.02 × 10-25 C·m)(46.0 N/C)(1 - cos(180° - 64°))
Simplifying the equation gives the work done to be -4.89 × 10-24 J.
Learn more about Work done on an electric dipole here:https://brainly.com/question/32478301
#SPJ3
How does this experiment illustrate the principle of conservation of matter
Explanation:
The amount of matter is conserved before and after the completion of the reaction.When matter changes from one form to another it is not destroyed that is the amount remains the same.We can check this by going through a reaction and measuring their masses before and after the completion of the reaction.If the weight is equal, it proves the conservation of mass.A rock is dropped in a pond, causing circular ripples. The radius increased with a rate 1 foot per second. When the radius is 4 feet, the area is increasing by 8π square feet per second.1. True2. False
Answer:
true
Explanation:
Area = πr²
Differentiating in respect to r
we get,
dA/dr = 2πr
using chain rule,
[tex]\frac{dA}{dt} = \frac{dA}{dr} .\frac{dr}{dt} = 2\pi \frac{dr}{dt}[/tex]
since r = 4feet
so ,
2π(4) = 8π
Answer:
pi/2
Explanation:
on ed
A rock is dropped in a pond, causing circular ripples. The radius increased with a rate 1 foot per second. When the radius is 4 feet, the area is increasing by 8π square feet per second.1. True2. False
Answer:
true
Explanation:
A = πr²
Differentiating in respect to r
we get
dA/dr = 2πr
since r = 4feet
so ,
2π(4) = 8π
For an object to be classified as a ____, it must meet certain definite criteria: It must be massive enough to pull itself into a spherical shape, it must be able to clear its orbit of most debris, and it must orbit a star.
Answer:
a planet
Explanation:
a planet is one which exerts these properties and therefore is the answer
What happens to the bond angle when you add or remove an electron domain
Answer:
when you add the bond angle decreases and when you remove an electron domain the angle increases
Explanation:
Generally, character increase in the hybrid bond, the bond angle increases. Bond angle is affected by the presence or addition of lone pair of electrons at the central atom. Due to this, the bonds are displaced slightly inside resulting in a decrease of bond angle,and when you remove an electron domain the bond angle increases.
After addition of electron, the bond angle decreases and when you remove an electron domain then bond angle increases.
The bond angle decreases due to addition of electron lone pairs, which cause more repulsion on the bond pairs and as a result the bond pairs tend to come closer. However the bond angle decreases when the electro-negativities of ligand atoms are more than that of central atom.The bond angle increases due to remove of electron lone pairs, which decreases repulsion between bond pair and electron lone pair and as a result the bond pairs tend to go slightly away.Learn more:
https://brainly.com/question/18734884
An archer puts a 0.285 kg arrow in a bow and uses an average force of 182 N to draw the string back 1.32 m. Assume the energy stored in the bow is transferred to the arrow when it is shot. (a) What is the speed of the arrow as it leaves the bow
Answer:
speed of the arrow as it leaves is 41.05 m/sec
Explanation:
We have given mass m = 0.285 kg
Average force F = 182 N
Distance traveled d = 1.32 m
We know that work done = force [tex]\times[/tex]distance
Sp work done = [tex]182\times 1.32=240.24J[/tex]
Now according to work energy theorem work done will be equal to kinetic energy
So [tex]\frac{1}{2}mv^2=240.24[/tex]
[tex]\frac{1}{2}\times 0.285\times v^2=240.24[/tex]
[tex]v^2=1685.89[/tex]
v = 41.05 m/sec
So speed of the arrow as it leaves is 41.05 m/sec
Sam-I-Am travels 100 miles in three hours to deliver green eggs and ham. What is his average speed. SHOW WORK
The average speed taken by Sam to travel 100 miles in 3 hours is 33.33 miles per hour.
Explanation:
Step 1 :
Distance traveled by Sam = 100 miles
Time taken by Sam to travel the distance = 3 hours
We need to calculate the Sam's average speed in traveling 100 miles for three hours.
Step 2 :
Total distance traveled = speed × total time taken
Hence we have speed = total distance divided by total time taken
Speed = 100/3 = 33.33 miles per hour
Step 3 :
Answer :
The average speed taken by Sam to travel 100 miles in 3 hours is 33.33 miles per hour.
A child's train whistle replicates a classic conductor's whistle from the early 1900s. This whistle has two open-open tubes that produce two different frequencies. When you hear these two different frequencies simultaneously, you may have the perception of also hearing a lower note, called a difference tone, that is at the same frequency as the beat frequency between the two notes. The two tubes of the whistle are 14 cm and 12 cm in length.Assuming a sound speed of 350 m/s, what is the frequency of this difference tone?
Answer:
f_beat = 210 Hz
Explanation:
Solution:
- The frequency of the difference tone - beat frequency is given by:
f_beat = |f_1 - f_2|
Where,
f_1 = Frequency of first component
f_2 = Frequency of second component
- The whistle is a tube with openings at both ends. The wavelength (λ) of the fundamental tone in a pipe of length L which is open at both ends is:
λ = 2*L
- For all waves, the relationship between frequency (f) , wavelength (λ), and propagation speed (v) is:
λ*v = c
- So the fundamental frequency of a pipe of length L, open at both ends is:
f = v/(2*L)
- In this case, we are told that v = 350 m/s and the pipes have lengths 12 cm and 14 cm, so the beat (difference) frequency is:
f_beat = | (350 m/s)/(2*0.12 m) - (350 m/s)/(2*0.14 m)|
= 208.33 Hz
- All the input data for this problem were only given to 2 significant digits, so your result should only be reported to 2 significant digits, which in this case would be 210 Hz.
What is a risk of using chemical pesticides on crops?
A
chemical contamination of streams and rivers
B
rotating crop production
C
genetic mutation of existing crops
D
attracting more insects to the harvest-able product
Which of the following is used to describe an animal's characteristics that increase the animal's chances of survival and reproductive success in a specified environment?
A
inheritance of acquired characteristics
B
convergent evolution
C
phyletic gradualism
D
adaptation
Answer:
a. chemical contamination of streams ans rivers
d. adaptation
Final answer:
Chemical pesticides risk contaminating streams and rivers, affecting aquatic ecosystems and human health, and can lead to pesticide resistance among pests. Adaptation is the evolutionary process enhancing an animal's survival and reproductive success in its environment.
Explanation:
The risk of using chemical pesticides on crops includes chemical contamination of streams and rivers, which poses a significant threat to aquatic ecosystems and human health. Chemical pesticides can leach into groundwater or be carried into water bodies by runoff, leading to pollution that affects wildlife and can contaminate drinking water sources. Furthermore, the use of synthetic chemical pesticides can contribute to the development of pesticide resistance among pests, requiring higher doses or more frequent applications over time, thereby exacerbating the problem of chemical contamination.
Adaptation describes an animal's characteristics that enhance its chances of survival and reproductive success in a given environment. These traits are a result of evolutionary processes that enable organisms to better fit their environment, thus having a higher likelihood of surviving, reproducing, and passing on their genes to the next generation.
Which circle passes through more continents antarctic or arctic
Answer:Arctic circle
Explanation:
Arctic circle is one of the circles of latitude. It is located at the northern region if the equator and passes through more than one continent. These continent includes: North Asia,
Northern America, and
Europe.
In these continent, it passes through eight known counties. These countries includes: Canada, Russia, Norway, Sweden, Finland, Denmark, Alaska and Iceland. It covers 4% of the Earth surface and it's climatic conditions are extreme.
In outer space, a rod is pushed to the right by a constant force F. Describe the pattern of interatomic distances along the rod. Include a specific comparison of the situations on the left end of the rod, the middle, and the right end. (Hint: Consider how an individual atom in the rod moves.)
Answer:
According to Newtonian Mechanics, when you push the rod with a force F, a work is generated that pushes the individual atoms forward. But all atoms connected to that individual atoms will move along because of the bonding present in solids. At near absolute zero temperatures in space, the molecules of solids gets more confined to their atomic position and the work-done generated by the force F will be enough to push the rod with the initial v forever.
The multipoint grounded neutral is intended to reduce the _____ neutral voltage drop, assist in clearing _____ line-to-neutral faults, and reduce elevated voltage caused by line-to-ground faults.
A. primary / primary
B. secondary / secondary
C. primary / secondary
D. secondary / primary
Answer:
The answer is A, primary/primary.
Refer below for the explanation.
Explanation:
The multipoint grounded neutral is intended to reduce the primary neutral voltage drop, assist in clearing utility line-to-neutral faults, and reduce elevated voltage caused by line-to-ground faults.
To change the shadow size, the _____ parameter must be added to the box-shadow property, specifying the size of the shadow relative to the size of the object.
Answer:
The answer to the question is spread
To change the shadow size, the spread parameter must be added to the box-shadow property, specifying the size of the shadow relative to the size of the object.
Explanation:
The spread parameter is used to contract or expand a shadow to change the shadow size. To increase the shadow size the radius is set to a positive value while to decrease the size of the shadow, the spread radius is set to a negative value and a zero value will leave the shadow size unchanged
Example
text-shadow: 3px 3px 20x 5px lightblue; color: blue.
The 'spread radius' parameter in the 'box-shadow' property in CSS is used to adjust the shadow size. It specifies how much the shadow expands or contracts.
Explanation:To change the shadow size in CSS, the spread radius parameter must be added to the box-shadow property, specifying the size of the shadow relative to the size of the object. The box-shadow property in CSS is used to apply shadows to an element. It takes values for x-offset, y-offset, blur radius, spread radius (which you are asking about), and color. The spread radius specifies how much the shadow expands. Negative values can also be used to make the shadow smaller. Here's an example:
box-shadow: 10px 5px 5px 2px grey;
In this example, '2px' is the spread radius, and 'grey' is the color of the shadow.
Learn more about CSS Box Shadow here:https://brainly.com/question/28068495
#SPJ12
You are participating in the Iditarod, and your sled dogs are pulling you across a frozen lake with a force of 1550 N while a 200 N wind is blowing at you at 150 degrees from your direction of travel. What is the net force (magnitude in newtons and direction in degrees from your direction of travel)? (Give the smallest angle between the direction of travel and the direction of the net force. Assume that you are traveling in the +x-direction and that the wind is blowing from the second quadrant of the xy-plane.)
Answer:
The answer to the question is
The net force (magnitude in newtons and direction in degrees from your direction of travel) is 1726.104 N ∡ 3.315 ° clockwise or 356.685° counterclockwise from the direction of travel.
Explanation:
The net force is given by
The force of pull by the dogs = 1550 N
Direction of force of pull by the dogs = 0° from the x axis
The force of the wind = 200 N
Direction of wind force = 150 ° from the x axis
Therefore x component of the wind force = 200 cos 30 =173.205 N
y component of the wind force = 200 sin 30 = 100 N
Summing the forces in the x and y direction gives
∑Fx = 1550 +173.205 = 1723.205 N
∑Fy = 100 N
Therefore the resultnt force on the Iditarod competitor is given by
√((∑Fx)²+(∑Fy)²) = √((1723.205)²+(100)²) = 1726.104 N and the direction is
[tex]Tan^{-1}\frac{SF_y}{SF_x}[/tex] = [tex]Tan^{-1}\frac{100}{1726.104}[/tex] =3.315 ° in the x, -y plane
The student's question involves calculating the net force acting on a sled during the Iditarod by using vector addition of the force from the sled dogs and the force from the wind, with attention to the angle of the wind force relative to the direction of travel.
Explanation:The student's question involves the combination of forces at different angles and determining the resultant net force and its direction. Using vector addition, the dogs' pulling force (1550 N) is in the +x-direction (the direction of travel), and the wind applies a force of 200 N at an angle of 150 degrees from the direction of travel, implicating that it's blowing from the second quadrant.
To find the net force, we break the 200 N wind force into components along the x (horizontal) and y (vertical) axes. The x-component of the wind force is 200*cos(150°) and the y-component is 200*sin(150°). We then sum the x-components of both forces for the total force in the x-direction, and sum the y-components for the total force in the y-direction.
Next, we calculate the magnitude of the net force by using the Pythagorean theorem on the x and y components, and the direction using the inverse tangent function (arctan) for the angle relative to the positive x-axis, which will give us the smallest angle between the direction of travel and the net force.
A 60.0 kg student runs up a flight of stairs in Rockefeller Hall a height of 4.0 m in a time of 6.0 s. What average mechanical power (in W) is required to do this?
Answer:
400watts
Explanation:
Power is defined as the amount of energy expended in a specific time. It is also defined as the change in work done with respect to time.
Mathematically,
Power = Workdone/time
Work done = Force×distance
Power = Force × Distance/Time
Given force = mass× acceleration due to gravity
Force = 60×10 = 600N
Distance covered = 4.0m
Time taken = 6.0seconds
Power expended = 600×4/6
Power expended = 400Watts
The average mechanical power (in W) required to do this is 400Watts
Answer:
392 W.
Explanation:
Given:
Mass, m = 60 kg
Height, h = 4 m
Time, t = 6 s
Power = energy/time
Energy = mass × acceleration × distance
Power = (60 × 9.8 × 4)/6
= 392 W.