Answer:
0.0000000692
Step-by-step explanation:
We are given the following number in scientific notation and we are to express it in standard notation:
[tex] 6 . 9 2 \times 1 0 ^ - 8 [/tex]
We know that:
[tex] 6 . 9 2 \times 1 0 ^ { - 8 } = \frac { 6 . 9 2 } { 1 0 ^ { 8 } } = \frac { 6 . 9 2 } { 1 0 0 , 0 0 0, 0 0 0 } = 0 . 0 0 0 0 0 0 0 6 9 2 [/tex]
Therefore, the answer in standard notation is 0.0000000692.
Answer:
0.0000000692
Step-by-step explanation:
6.92 x [tex]10^{-8}[/tex]
= 6.92 x 0.00000001
= 0.0000000692
The given line passes through the points (-4,-3) and (4,1) what is the equation in point-slop
e form, of the line that is perpendicular to the given line and passes through the point (-4,3)?
let's bear in mind that perpendicular lines have negative reciprocal slopes...... hmmmm what's the slope of the given line anyway?
[tex]\bf (\stackrel{x_1}{-4}~,~\stackrel{y_1}{-3})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{1}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{1-(-3)}{4-(-4)}\implies \cfrac{1+3}{4+4}\implies \cfrac{4}{8}\implies \cfrac{1}{2} \\\\[-0.35em] ~\dotfill[/tex]
[tex]\bf \stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{\cfrac{1}{2}}\qquad \qquad \qquad \stackrel{reciprocal}{\cfrac{2}{1}}\qquad \stackrel{negative~reciprocal}{-\cfrac{2}{1}\implies -2}}[/tex]
so, we're really looking for a line whose slope is -2 and runs through (-4 , 3)
[tex]\bf (\stackrel{x_1}{-4}~,~\stackrel{y_1}{-3})~\hspace{10em} slope = m\implies -2 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-(-3)=-2[x-(-4)] \implies y+3=-2(x+4) \\\\\\ y+3=-2x-8\implies y=-2x-11[/tex]
The mass of a small virus is 10^-20 kg. The mass of an average human cell is 10^-12 kg. Which of the two has lesser mass? how many less is it?
For this case we have:
[tex]10 ^ {- 20}[/tex], we must run the decimal point 20 spaces to the left.
[tex]0.00000000000000000010 \ kg[/tex]
[tex]10 ^ {- 12}[/tex], we must run the decimal point 12 spaces to the left.
[tex]0.000000000010 \ kg[/tex]
Thus, it is observed that the mass of a small virus is smaller!
We subtract and obtain:
[tex]10 ^ {-11}[/tex]
ANswer:
The mass of a small virus is less!
Answer: -10kg
Step-by-step explanation:
10-20 =-10
10-22 =-12
-10 is lesser
Which shows the correct substitution of the values a,b and c from the equation 1=-2x+3x^2+1
Answer:
a = 3 , b = -2 , c = 0
Step-by-step explanation:
The given equation is:
1 = -2x + 3x^2 + 1
To find the correct substitution values of a, b and c. We need to convert t into the standard form first.
Standard form of a Quadratic equation is written as:
ax^2 + bx + c = 0 (where a is not equal to zero)
Converting the given equation into its standard form:
1 = -2x + 3x^2 + 1
-2x + 3x^2 + 1 - 1 = 0
3x^2 - 2x + 0 = 0
OR 3x^2 - 2x = 0
According to the equation
a = 3 , b = -2 , c = 0
what is x and y when the right angle side is 7 and the angles are 90,45 and 45?
Answer:
x=7
Step-by-step explanation:
The other angle is equivalent to 45 degrees. According to the 45-45-90 triangle theorem, the hypotenuse is a times the square root of 2 and the legs are equivalent to a. In this scenario a is equivalent to 7. X is another leg and therefore is also 7.
6a - 5b when a = -3 and b = 4
Given.
6a - 5b
Plug in values.
6(-3) - 5(4) =
-18 - 20 =
-38
For this case we have the following expression:
[tex]6a-5b[/tex]
We must evaluate the expression when:
[tex]a = -3\\b = 4[/tex]
Then, replacing the values we have:[tex]6 (-3) -5 (4)[/tex]
Taking into account that according to the law of the signs of multiplication, it is fulfilled that:
[tex]+ * - = -[/tex]
So:
[tex]-18-20 =[/tex]
Equal signs are added and the same sign is placed:
-38
Answer:
-38
Maria has three red dresses, 2 white dresses, and one blue dress . What is the probability she will wear a blue dress at her party?
Answer:
1/6
Step-by-step explanation:
there are 6 dresses altogether and 1 blue dress.
Answer:
[tex]\frac{1}{6}[/tex]
Step-by-step explanation:
We have been given that Maria has three red dresses, 2 white dresses, and one blue dress. We are asked to find the probability that Maria will wear a blue dress at her party.
[tex]\text{Probability}=\frac{\text{Number of favorable outcomes}}{\text{Total number of possible outcomes}}[/tex]
We know that number of blue dresses is 1, so number of favorable outcomes is 1.
Total dresses = 3 Red dresses + 2 White dresses + 1 Blue dress = 6 dresses.
[tex]\text{Probability that Maria will wear a blue dress at her party}=\frac{1}{6}[/tex]
Therefore, our required probability is [tex]\frac{1}{6}[/tex].
7s+4m+2l=24
5s+3m+6l=30
3s+7m+10l
Answer:
486 - 160l
Step-by-step explanation:
m = 90 - 32l
s = -48 + 18l
l = stationary
Combine like-terms, evaluate, then you will arrive at this crazy answer.
Factor completely. 81x^4 − 1
The expression 81x⁴ - 1 can be factored completely by identifying it as a difference of squares. First, factor it into (9x² + 1)(9x² - 1) and then further factor (9x² - 1) into (3x + 1)(3x - 1). The final factored form is (9x² + 1)(3x + 1)(3x - 1).
We are given the expression 81x⁴ - 1 and need to factor it completely. This is a difference of squares, which can be written as:
81x⁴ - 1 = (9x²)² - 1²The difference of squares formula is a²- b² = (a + b)(a - b). Applying this formula, we get:
(9x²)² - 1² = (9x² + 1)(9x² - 1)Next, notice that 9x²- 1 is also a difference of squares:
9x² - 1 = (3x)²- 12Again using the difference of squares formula, we get:
(3x)² - 1 = (3x + 1)(3x - 1)Putting everything together, the complete factorization of 81x⁴ - 1 is:
81x⁴ - 1 = (9x² + 1)(3x + 1)(3x - 1)Given f(x) = 17-X^2what is the average rate of change in f(x) over the interval [1, 5]?
Answer:
-6
Step-by-step explanation:
The formula for finding the rate of change is:
[tex]Rate\ of\ change=\frac{f(b)-f(a)}{b-a}[/tex]
The interval is [1,5]
So, a = 1 and b=5
[tex]f(1) = 17 - (1)^2\\ =17-1\\=16\\f(5) = 17-(5)^2\\=17-25\\=-8[/tex]
Putting in the values
[tex]Rate\ of\ change = \frac{f(5)-f(1)}{5-1} \\=\frac{-8-16}{5-1}\\= \frac{-24}{4}\\ =-6[/tex]
The average rate of change is -6 ..
Answer:
-6
Step-by-step explanation:
Determine the range of the function graphed above.
A. [4,∞)
B. [-4,0]
C. [0,4]
D. (-∞,4]
Answer:
D. (-∞,4]
Step-by-step explanation:
The range is the y values
The lowest y values is negative infinity
The highest y values is 4
( - inf, 4]
We use the parentheses since we cannot get to negative infinity, the bracket since we reach 4
Which expresión is equivalente to (4g3 h2 k4)3
Answer: [tex]\bold{64g^9h^6k^{12}}[/tex]
Step-by-step explanation:
[tex]\text{Apply the product rule:} (a^b)^c=a^{b*c}\\\\(4g^3h^2k^4)^3\\\\=4^{(1*3)}g^{(3*3)}h^{(2*3)}k^{(4*3)}\\\\=4^3g^9h^6k^{12}\\\\=64g^9h^6k^{12}[/tex]
How do we express one-half of the difference of a number cubed and one?
Answer:
1/2(x^3 - 1) or we could write it as (x^3 - 1) / 2.
Step-by-step explanation:
A number cubed is x^3. Difference of this and 1 is x^3 - 1.
Finall we have 1/2 of this:
= 1/2(x^3 - 1) or we could write it as (x^3 - 1) / 2.
Answer:
[tex]\frac{x^3-1}{2}[/tex]
Step-by-step explanation:
We must follow what the statement asks us, starting from the last thing and going forward from there.
A number cubed: [tex]x^3[/tex]
The difference of a number cubed and one: [tex]x^3-1[/tex]
And finally:
one-half of the difference of a number cubed and one, this would be one half of the expression we already found:
[tex]\frac{x^3-1}{2}[/tex]
Which graph represents a function with direct variation?
Answer:
The graph that represent direct variation in the attached figure
Step-by-step explanation:
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form [tex]y/x=k[/tex] or [tex]y=kx[/tex]
In a proportional relationship the constant of proportionality k is equal to the slope m of the line and the line passes through the origin
The graph that represent direct variation in the attached figure
Answer:
option d
Step-by-step explanation:
2 arcs of a circle are congruent if and only if their Associated chords are perpendicular
This is False
That is because the Arcs can only be congruent if the Chords are also Congruent
Answer:
FALSE
Step-by-step explanation:
A shipping company charges $6 to ship a package that weighs up to 1 pound and $2 for each additional pound or portion of
a pound. Which equation represents this situation?
Of(x) = 8+2[x-1, where x > 0
Of(x) = 6+2Lx-1), where x > 0
O (x) = 6+2[x+1), where x > 0
Of(x) = 6+2x+1), where x > 0
Answer:
6 + 2[x - 1) , where x > 0. I think.
Answer:
f(x) = 6+2Lx-1), where x > 0
Step-by-step explanation:
To answer this you need to understand two things, variables and constants, the constant price of the shipping is $6 so that is a constant, now the company would charge you with $2 for every fraction or pound extra over the one pound that you are charged for the $6, so your variable is the weight of the package, and this will be expressed by X
So the function would look like this:
[tex]f(x)= 6+ 2(x-1) when x > 0[/tex]
If the weight of your package is less than oneyou´d just pay the 6 bucks, since when the weight is bigger than 1 pound you would pay 2 extra bucks, you just need yo know how many extra buck you´ll pay that´s why it´s expressed with the Lx-1)
Dimetri says that a function that is made of terms
where the variable is raised only to an odd power
will be an odd function. Do you agree with
Dimetri?
Answer:
Dimetri says that a function that is made of terms
where the variable is raised only to an odd power
will be an odd function. Do you agree with
Dimetri?
Step-by-step explanation:
If g is an odd function and f is an odd function then g ◦ f is odd.
g ◦ f (x) = g (f (x)) = g (−f (−x)) = −g (- (- f (−x))) = −g (f (−x)) = - g ◦ f (−x)
The answer is: No, I am not agree with Dimetri, statement is false because there are so many counterexamples.
Answer:
Sample Response: He is correct only if there is no constant term. −x to an odd power is −x, so the signs will change on the terms with the variable but not on the constant term.
Step-by-step explanation:
The function s(V) = describes the side length, in units, of a cube with a volume of V cubic units. Jason wants to build a cube with a minimum of 64 cubic centimeters.
What is a reasonable range for s, the side length, in centimeters, of Jason’s cube?
s > 0
s 4
s 8
s 16
Answer:
[tex]s\geq 4\ cm[/tex]
Step-by-step explanation:
we know that
[tex]s(V)=\sqrt[3]{V}[/tex]
where
s is the side length, in units, of a cube
V is the volume of a cube in cubic units
For a [tex]V=64\ cm^{3}[/tex]
substitute in the formula
[tex]s=\sqrt[3]{64}[/tex]
[tex]s=4\ cms[/tex]
If Jason wants to build a cube with a minimum of 64 cubic centimeters
therefore
the minimum length side of the cube is 4 cm
[tex]s\geq 4\ cm[/tex]
f(-5) if f(x)=|x+1|
Answer:
The answer is 6.
Step-by-step explanation:
Plug in: f(-5)=|-5+1|
Because this an absolute problem -5 is positive within |x|
so therefore f(-5)= |6|
Which of the following is the point-slope form of the line?
Answer:
A
Step-by-step explanation:
We can see that the slope is positive, which means that the x-term must be positive.
If you expand and simply both equations into the form y = mx + b, you will find that m is positive for A and negative for B, hence A is the correct answer.
Find the difference:
[tex] \sqrt[ {8ab}^{3} ]{{ac}^{2} } - \sqrt[ {14ab}^{3} ]{ {ac}^{2} } [/tex]
Answer: The difference cannot be found because the indices of the radicals are not the same.
Step-by-step explanation:
To find the difference you need to subtract the radicals. But it is important ot remember the following: To make the subtraction of radicals, the indices and the radicand must be the same.
In this case you have these radicals:
[tex]\sqrt[ {8ab}^{3} ]{{ac}^{2} }- \sqrt[ {14ab}^{3}]{{ac}^{2} }[/tex]
You can observe that the radicands are the same, but their indices are not the same.
Therefore, since the indices are different you cannot subtract these radicals.
Slope-intercept form of the equation for the line?
Answer:
[tex]\large\boxed{y=-\dfrac{3}{10}x+\dfrac{1}{2}}[/tex]
Step-by-step explanation:
The slope-intercept form of an equation of a line:
[tex]y=mx+b[/tex]
m - slope
b - y-intercept
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points from the graph (-5, 2) and (5, -1).
Substitute:
[tex]m=\dfrac{-1-2}{5-(-5)}=\dfrac{-3}{10}=-\dfrac{3}{10}[/tex]
We have the equation in form:
[tex]y=-\dfrac{3}{10}x+b[/tex]
Put the coordinates of the point (5, -1) to the equation:
[tex]-1=-\dfrac{3}{10}(5)+b[/tex]
[tex]-1=-\dfrac{3}{2}+b[/tex]
[tex]-\dfrac{2}{2}=-\dfrac{3}{2}+b[/tex] add 3/2 to both sides
[tex]\dfrac{1}{2}=b\to b=\dfrac{1}{2}[/tex]
Consider this equation: 2x + 2 = 11 - x
Now consider the equation written as: 3x + 2 = 11
Which of the following is the correct property of equality that justifies rewriting the equation?
Answer: Addition property of equality
Step-by-step explanation: You added the x to the other side, which is clearly using addition. Hope this help!
Order these values given in scientific notation from least to greatest.
1.49 x 10^5
1.05 x 10^-6
3.81 x 10^8
2.44 x 10^-9
3.75 X 10^4
Answer:
2.44x10^-9
1.05x10^-6
3.75x10^4
1.49x10^5
3.81x10^8
Final answer:
Values in scientific notation are ordered by their exponent values. First, compare the sign and size of the exponents, and then compare the coefficients if necessary. The ordered values from least to greatest are: 2.44 x 10^-9, 1.05 x 10^-6, 3.75 x 10^4, 1.49 x 10^5, 3.81 x 10^8.
Explanation:
To order the given values in scientific notation from least to greatest, we look at the exponent to determine their relative sizes. The values with negative exponents will be smaller than those with positive exponents, and among those with the same sign exponents, the one with the smaller absolute value of exponent is smaller. Then we compare the coefficients if necessary, that is if the exponents are the same.
[tex]2.44 x 10^-9[/tex]
[tex]1.05 x 10^-6[/tex]
[tex]3.75 x 10^4[/tex]
[tex]1.49 x 10^5[/tex]
[tex]3.81 x 10^8[/tex]
PLEASE HELP PLEASE
Tricia has the same number of nickels and dimes in her pocket. The coins total $3.60. How many of each coin does she have?
A) 12 nickels and 12 dimes
B) 24 nickels and 24 dimes
C) 36 nickels and 36 dimes
D) 48 nickels and 48 dimes
Answer:
B
Step-by-step explanation:
Find out the total value of each option and see which one gives a total of $3.60
For A, 12 nickels + 12 dimes = 12 x $0.05 + 12 x $0.10 = $1.80 ≠ $3.60
For B, 24 nickels + 24 dimes = 24 x $0.05 + 24 x $0.10 = $3.60 (correct)
For C, 36 nickels + 36 dimes = 36 x $0.05 + 36 x $0.10 = $5.40 ≠ $3.60
For D, 48 nickels + 48 dimes = 48 x $0.05 + 48 x $0.10 = $7.20 ≠ $3.60
Answer:
For my opinion, the best option it B.
Choose the required figure.
A right triangle circumscribed about a circle:
Answer:I think that in this problem you need a right angle with a circle in it
A license plate consists of three letters followed by
three digits. How many license plates are possible if
no letter may be repeated?
Answer: 15,600,000
Step-by-step explanation:
26 x 25 x 24 =15,600 combinations of letter with no repeats
10 x 10 x 10 = 1000 with repeating numbers
15,600 x 1000 = 15,600,000
The total number of possible license plates is 26*25*24*10*9*8.
The number of possible license plates with no repeated letters can be calculated by multiplying the number of choices for each position. Since no letter can be repeated, the choices for the first position would be 26 letters, then 25, and then 24 for the three positions. For the digits, there are 10 choices for each position.
So, the total number of possible license plates would be 26*25*24*10*9*8.
Yuto solved the equation below.
What is the solution to Yuto’s equation?
For this case we have the following equation:
[tex]-2 (x + 5) = - 2 (x-2) +5[/tex]
We apply distributive property to the terms within parentheses:
[tex]-2x-10 = -2x + 4 + 5[/tex]
We add similar terms to the right side of the equation:
[tex]-2x-10 = -2x + 9[/tex]
We add 2x to both sides of the equation:
[tex]-10 = 9[/tex]
Equality is not fulfilled, so the equation has no solution.
Answer:
It has no solution
Answer: Yuto's equation has no solution.
Step-by-step explanation:
To find the solution to Yuto’s equation, you need to solve for the variable "x":
Apply Distributive property:
[tex]-2(x+5)=-2(x-2)+5\\\\-2x-10=-2x+4+5\\\\-2x-10=-2x+9[/tex]
Add [tex]2x[/tex] to both sides of the equation:
[tex]-2x-10+2x=-2x+9+2x\\\\0x-10=9\\\\-10=9\ (False)[/tex]
Therefore, the equation has no solution.
The lines shown below are parallel. If the green line has a slope of --, what is
the slope of the red line?
Answer: the answer would be -1/11
Step-by-step explanation: the reason being the slope of the green is a negative slope because it is going down ward not upwards therefore it is negative and because the the lines are parallel they are equal so the slope of both lines are -1/11
71, 92, 94, 93, 98, 85, 66, 70, 68, 93, 87, 71, 85, 52, 61, 62, 85, 69, 95, 79
Calculate the mean for the data list above.
ОА. 82
ОВ. 78.8
Ос. 93
Op. 87
To find the mean you must add all the numbers together then divide the sum by the total amount of numbers in the data set
71 + 92 + 94 + 93 + 98 + 85 + 66 + 70 + 68 + 93 + 87 + 71 + 85 + 52 + 61 + 62 + 85 + 69 + 95 + 79 = 1576
There are at total of 20 numbers in this data set so you must divide 1576 by 20
1576 / 20 = 78.8
Hope this helped!
~Just a girl in love with Shawn Mendes
gerard’s baby brother spends 7/8 of his day sleeping. How many hours does his baby brother sleep? i
[tex] \frac{7}{8} \times 24 = 21 \\ [/tex]
You multiply 7/8 to the number of hours in a day which 24
Gerard's baby brother sleeps for 7/8 of the day, which equals 21 hours when calculated (7/8 * 24 hours).
Explanation:Gerard's baby brother spends 7/8 of his day sleeping.
To calculate how many hours this is, we need to know how many hours there are in a full day.
A full day has 24 hours. So, we multiply 7/8 by 24 to find out the total hours spent sleeping.
Here's the step-by-step calculation:
Multiply the fraction of the day spent sleeping (7/8) by the total number of hours in a day (24).7/8 * 24 = 21 hours.Therefore, Gerard's baby brother sleeps for 21 hours a day.