Answer: 2 and 4/5
Step-by-step explanation: To write an improper fraction as a mixed number, divide the denominator into the numerator.
[tex]\sqrt[5]{14}[/tex] = 2 with a remainder of 4
Therefore, 14/5 can be written as the mixed number 2 and 4/5.
Describe a strategy for converting a rate measured in one pair of units to rate measured in a diferrent pair of unit. for example how would you convert ounces per cup to pound per gallon
Final answer:
One strategy for converting a rate measured in one pair of units to a rate measured in a different pair of units is to use unit analysis. The conversion from ounces per cup to pounds per gallon is 1 lb / 2 gal.
Explanation:
One strategy for converting a rate measured in one pair of units to a rate measured in a different pair of units is to use unit analysis. This involves setting up conversion factors to cancel out the unwanted units. Here's an example:
Given the rate of ounces per cup, we know that there are 8 fluid ounces in 1 cup.To convert to pounds per gallon, we need to find the conversion factor between ounces and pounds, which is 16 ounces per pound.We also need to find the conversion factor between cups and gallons, which is 16 cups per gallon.Now, set up the conversion factor using unit analysis: 8 fl oz × 1 lb / 16 fl oz × 16 cups / 1 gal.Cancel out the unwanted units: 8 lb / 16 gal.Simplify the expression: 1 lb / 2 gal.Therefore, the conversion from ounces per cup to pounds per gallon is 1 lb / 2 gal.
A classmate claims that having no slope and having a slope of 0 are the same. Is your classmate correct? Explain. ...?
Grandpa's age is 6 yrs less than 6 times junior's age. The sum of their age is 78. find each of their ages?
Jamie is a salesperson in a shoe store and earns $95 per week, plus 20% of her weekly sales. If Jamie makes $475 in one week, what are her sales for that week?
Jamie made $2375 of sales on one week and earns 20% of it as a commission.
What is the percentage?A percentage is a value per hundredth. Percentages can be converted into decimals and fractions by dividing the percentage value by a hundred.
Jamie is a salesperson in a shoe store and earns $95 per week, plus 20% of her weekly sales.
Jamie makes $475 in one week which is 20% of the total sale assuming he made $x worth of sales.
∴ (20/100)×x = 475.
0.2x = 475.
x = 475/0.2.
x = $2375
learn more about percentages here :
https://brainly.com/question/24159063
#SPJ5
Eliminate y to solve for x. Plug in x into the second equation to solve for y
The graph of f(x) = 6(0.25)x and its reflection across the y-axis, g(x), are shown.
What is the domain of g(x)?
all real numbers
all real numbers less than 0
all real numbers greater than 0
all real numbers greater than or equal to 0
The correct answer is the first option: All real numbers.
I just did the quiz and got it right.
For all the non BrainlyPlus members
Find the length of arc XPY.
Answer:
Arc length XPY =28.26 m.
Step-by-step explanation:
Given : A circle with two arc XY and XPY and radius 6 m.
To find : Arc length XPY.
Solution : We have given that arc XY and XPY .
Radius = 6 m.
Central angle formed by arc XPY = 360 - 90 = 270.
Arc length = 2 *pi* r ( [tex]\frac{central\ angle}{360}[/tex].
Plugging the values
Arc length = 2 *3.14 * 6 ( [tex]\frac{270}{360}[/tex].
Arc length =37.68 ( [tex]\frac{3}{4}[/tex].
Arc length =37.68 * 0.75
Arc length XPY =28.26 m.
Therefore, Arc length XPY =28.26 m.
Answer:
The length of arc XPY=28.26 m
Step-by-step explanation:
We are given that a circle in which
Radius=6 m
Central angle made by arc XPY=[tex]360-90=270^{\circ}[/tex]
We have to find the length of arc XPY.
We know that
Arc length formula:[tex]\frac{central\;angle}{360^{\circ}}\times 2\pi r[/tex]
Substitute the value in the formula then we get
Length of arc XPY=[tex]\frac{270}{360}\times 2\times 3.14 \times 6=28.26 m[/tex] ([tex]\pi=3.14[/tex])
Hence, the length of arc XPY=28.26 m
Round 7.832 to the nearest tenth
the car was 28000 the car value go down at the rate of 7.25% what would its value be after 5 years
Why is it important to learn, in algebra, the proper order in which to read algebraic expressions and solve algebraic equations?
Learning the proper order in which to read algebraic expressions and solve algebraic equations is important in algebra for understanding the order of operations, developing logical reasoning, and ensuring consistency in mathematical communication.
Explanation:It is important to learn the proper order in which to read algebraic expressions and solve algebraic equations in algebra for several reasons:
Order of operations: Understanding the order of operations (PEMDAS) is crucial to correctly evaluating algebraic expressions. This ensures that the operations are performed in the correct order and leads to the correct result. For example, without following the order of operations, the expression 8 + 2 x 3 could be evaluated as 10 x 3 = 30 instead of 8 + 6 = 14.Logical reasoning: Solving algebraic equations requires logical reasoning and following a step-by-step process. Learning the proper order helps develop this logical reasoning and helps students approach problems systematically. It allows them to break down complex problems into simpler steps and solve them more efficiently.Consistency and communication: Following the proper order in algebra ensures consistency in mathematical communication. It allows students and mathematicians to communicate their solutions and reasoning effectively. When everyone understands and follows the same order, they can accurately communicate and discuss algebraic expressions and equations. A small business purchases a
piece of equipment for $875. After 5 years the equipment will be outdated, having no value.
(a) Write a linear equation giving the value of the equipment y in terms of the time
(b) Find the value of the equipment when X=2
(c) Estimate (to two-decimal-place accuracy) the time when the value of the equipment is $200. ...?
Using the straight-line depreciation method, the linear equation for the equipment's value over time is y = -175t + 875. After 2 years, the equipment's value is $525. To find when the equipment's value is $200, solve for t and get approximately 3.86 years.
To calculate the depreciation of the equipment using a linear equation, we'll use the straight-line depreciation method. The business purchases the equipment for $875 and it will be worthless after 5 years, so it depreciates $875 over 5 years.
Part A
To write the linear equation representing the value of the equipment y over time t, we need to find the slope (m) of the line which in this case is the annual depreciation. The slope is the change in value divided by the time, thus m = -$175/year. The initial value (intercept) is $875. The equation is:
y = -175t + 875
Part B
Substitute t = 2 into the equation to find the value of the equipment at year 2:
y = -175(2) + 875
y = -350 + 875
y = $525
Part C
We want to find the time t when the value y is $200. Substitute y = $200 into the equation:
200 = -175t + 875
-175t = 200 - 875
-175t = -675
t = [tex]\frac{-675}{-175}[/tex]
Casey is taking pictures outdoors. She knows that the darker it is outside, the stronger she needs to set her flash
The flash on Casey's camera needs to be set stronger when it is darker outside.
Explanation:The subject of this question is Physics. In physics, the behavior of light and the properties of a camera flash can be studied. When it is darker outside, Casey needs to set her flash stronger to compensate for the lack of natural light. This is because the flash provides an additional burst of light that illuminates the subject, making it clearer in the photo.
Solve for x: –4(3x – 2) = 6x + 2
A.
2003-05-01-00-00_files/i0050000.jpg
B.
2003-05-01-00-00_files/i0050001.jpg
C.
2003-05-01-00-00_files/i0050002.jpg
D.
2003-05-01-00-00_files/i0050003.jpg
Hence, the value of x is:
[tex]x=\dfrac{1}{3}[/tex]
Step-by-step explanation:We have to solve for x i..e we have to find the value of 'x' by solving this equation.
The equation is given as:
[tex]-4(3x-2)=6x+2[/tex]
firstly we will solve the bracket term as:
[tex]-4\times 3x-4\times (-2)=6x+2\\\\-12x+8=6x+2[/tex]
Now we take like terms together i..e the variable term is taken to the right hand side of the equation and the constant term is kept on the left side of the equation as:
[tex]8-2=6x+12x\\\\\\6=18x[/tex]
on dividing both side of the equation by 18, we obtain:
[tex]x=\dfrac{6}{18}\\\\x=\dfrac{1}{3}[/tex]
Hence, the value of x is:
[tex]x=\dfrac{1}{3}[/tex]
Answer:
B
Step-by-step explanation:
Why can't quadrilaterals have four obtuse angles?
what is 0.83 repeating as a fraction?
Maggie has $14,100 to invest, and wishes to gain $4,000 in interest over the next eight years. Approximately what is the minimum simple interest rate Maggie needs to reach her goal? a. 2.89% b. 3.55% c. 4.95% d. 5.18%
Answer
Find out the what is the minimum simple interest rate Maggie needs to reach her goal .
To proof
Formula
[tex]Simple\ interest = \frac{principle\times rate\times time}{100}[/tex]
As given
Maggie has $14,100 to invest, and wishes to gain $4,000 in interest over the next eight years.
put all the values in the formula
[tex]4000 = \frac{14100\times rate\times 8}{100}[/tex]
Solving
[tex]rate = \frac{4000\times 100}{14100\times8}[/tex]
solving the above
[tex]rate = \frac{400000}{112800}[/tex]
rate =3.55% (approx)
the minimum simple interest rate Maggie needs to reach her goal is 3.55% .
Option (b) is correct .
Hence proved
James made a deposit in a savings account 5 years ago. The account pays 4% simple annual interest. Since then, he has earned $120 in interest. What is the current balance in his account?
A. $200
B. $600
C. $720
D. $780
Answer:
720 is correct
1. 8q + 6; q = 2
10
14
20
22
2. 9 + 4g; g = −3
–3
3
21
13
3. 7x – 7; x = 4
0
21
35
28
4. 10 – 3.2n; n = 2
6.8
3.6
13.2
16.4
5. 12p + 4; p = 1.5
14
16
18
22
For questions 6–10, solve the equation using number sense.
6. 5w + 10 = 40
6
10
30
50
7. 4y – 12 = 60
12
18
48
72
8. 10k + 5 = 65
6
7
60
70
9. 2b – 15 = 33
4
9
24
48
10. 3d + 18 = 21
–1
1
3
13
help
a table that originally cost $196 is on sale for $160.00. What is the percent of decrease, rounded to the nearest tenth?
A thin, rectangular sheet of metal has mass M and sides of length a and b. Find the moment of inertia of this sheet about an axis that lies in the plane of the plate, passes through the center of the plate, and is parallel to the side with length b.
The moment of inertia of the thin rectangular sheet of metal about the specified axis is[tex]\( \frac{Ma^2}{4} + \frac{Mb^2}{12} \).[/tex]
To find the moment of inertia I of the thin rectangular sheet of metal about an axis passing through its center and parallel to the side with length b, we can use the parallel axis theorem.
This theorem states that the moment of inertia about any axis parallel to the axis passing through the center of mass can be found by adding the moment of inertia about the center of mass and the product of the mass and the square of the perpendicular distance between the two axes.
The moment of inertia of a thin rectangular plate about its center and perpendicular to its plane is given by:
[tex]\[ I_c = \frac{M}{12}(a^2 + b^2) \][/tex]
where M is the mass of the plate, a and b are the lengths of the sides of the rectangle.
Now, let's denote d as the perpendicular distance between the axis passing through the center and the axis parallel to the side with length b. Since the axis is passing through the center of the rectangle, d is half the length of side a, so [tex]\( d = \frac{a}{2} \)[/tex].
Using the parallel axis theorem, the moment of inertia about the desired axis is:
[tex]\[ I = I_c + Md^2 \][/tex]
[tex]\[ I = \frac{M}{12}(a^2 + b^2) + M\left(\frac{a}{2}\right)^2 \][/tex]
[tex]\[ I = \frac{M}{12}(a^2 + b^2) + \frac{M}{4}a^2 \][/tex]
[tex]\[ I = \frac{Ma^2}{12} + \frac{Mb^2}{12} + \frac{3Ma^2}{12} \][/tex]
[tex]\[ I = \frac{Ma^2}{4} + \frac{Mb^2}{12} \][/tex]
Thus, the moment of inertia of the thin rectangular sheet of metal about the specified axis is[tex]\( \frac{Ma^2}{4} + \frac{Mb^2}{12} \).[/tex]
If x<0 and y>0, determine the sign of the real number x-y/xy ...?
The real number resulting from the expression x-y/xy is positive when x is negative and y is positive. This is determined by following the rules of signs in arithmetic where subtracting a positive number from a negative results in a negative and dividing a negative number by another negative results in a positive.
Explanation:The given expression in question is x-y/xy. To understand the sign of the resulting real number we have to discern the signs of x, y and the result of subtraction, x-y.
As mentioned, x is less than 0 and hence negative and y is greater than 0, thus positive. So when you subtract a positive number y from the negative number x, the result will obviously be negative. This is due to the 'rules of signs' in arithmetic.
Then, for the division, when you divide this negative result by the multiplication of x (which is negative) and y (which is positive), the answer will be positive. This is again because of the 'rules of signs' for division - a negative number divided by a negative number yields a positive number.
So, the sign of the result of the real number expression x-y/xy is positive when x<0 and y>0.
Learn more about Rules of Signs here:https://brainly.com/question/14001532
#SPJ11
Find (fg)(-4) when f(x) = x + 5 and g(x) = 5x2 + 10x - 5.
A manufacturer of mountain bikes has found that when 20 bikes are produced per day, the average cost is $200 and the marginal cost is $150. Based on the information, approximate the total cost of producing 21 bikes per day. ...?
Felix buys a carpet for $230. The price is $3.50 per square foot. If Felix had a special discount coupon for $50 off, which linear equation could be used to find the area, A, of the carpet?
The linear equation to find the area of the carpet after applying Felix's $50 discount is 3.50 × A = 180, where A represents the area in square feet. After solving the equation, we find that the area is 51.43 square feet.
To find the area, A, of the carpet that Felix buys, we can set up a linear equation based on the total cost after the discount and the cost per square foot. The original price of the carpet is $230, but Felix has a coupon for a $50 discount, reducing the cost to $180. Since the cost per square foot of the carpet is $3.50, we can denote the area of the carpet as A, and set up the equation:
3.50 × A = 180
To solve for A, we divide both sides of the equation by 3.50:
A = 180 / 3.50
A = 51.43 square feet
what is the value of the expression 10 C 6? A.210 B.720 C.5040 D.151,200
Answer: A. 210
Step-by-step explanation:
We know that the number of combinations of n things taking r at time is given by expression :-
[tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex] (1)
The given expression : [tex]^{10}C_{6}[/tex] which basically gives the number of combinations of 10 things taking 6 at a time.
Using (1) , we have
[tex]^{10}C_{6}=\dfrac{10!}{6!(10-6)!}\\\\=\dfrac{10\times9\times8\times7\times6!}{6!4!}\\\\=\dfrac{10\times9\times8\times7}{4!}\ \ [\text{Cancel }6!\text{ from numerator and denominator}]\\\\=\dfrac{10\times9\times8\times7}{4\times3\times2\times1}\\\\=210[/tex]
Hence, the correct answer is A. 210 .
Find the solution.
(x - 3)(x + 2) = 0
General admission tickets to the fair cost 3.50 per person. Ride passes cost an additional 5.50 per person. Parking costs 6 dollars for the family. the total costs for ride passes and parking was 51 dollars. How many people in the family attend the fair
Find the dimensions of a rectangle with area 343 m2 whose perimeter is as small as possible.
For a rectangle with a given area, the smallest possible perimeter is achieved when the rectangle is a square. Hence, for a rectangle with an area of 343 m², the dimensions that give the smallest perimeter are approximately 18.5 m x 18.5 m.
Explanation:The subject of this question is related to the optimization problems in Calculus. Given that the area of a rectangle is 343 m², we are looking for the smallest possible perimeter. The area of a rectangle can be defined as the product of its length and width (l*w), and the perimeter is defined as the sum of all sides (2l + 2w).
According to the properties of rectangles, a rectangle will have the smallest possible perimeter if it is a square, because rectangles with the same area have larger perimeters as their shapes become more elongated.
So, if the rectangle is a square, its area is side² or s². Given that the area is 343 m², s² = 343, thus the side s equals the square root of 343, which is approximately 18.5202591775 meters. Therefore, the dimensions of the rectangle with the smallest possible perimeter are approximately 18.5 m × 18.5 m.
Learn more about area of a rectangle here:https://brainly.com/question/8663941
#SPJ3
An illusionist needs up to 10 volunteers for a show. She needs no fewer than 4 female volunteers. Let x represent the number of female volunteers and y represent the number of male volunteers.
Which inequalities model the situation?
Choose exactly three answers that are correct.
A- x + y < 10
B- x + y ≤ 10
C- x > 4
D- x ≥ 4
E- y > 0
G- y ≥ 0
The answer is
x ≥ 4
x + y ≤ 10
y ≥ 0
In a 30-60-90 triangle, the hypotenuse is 20 feet long. Find the length of the length of the long leg and the short leg