Answer:
A) it can measure data by experiments
Explanation:
Chemistry is testable which means that when a scientist claims a certain observation happening in chemical sciences then other chemists globally can verify that observation by carrying out independent experiments. When similar observations are made only then there is a consensus in the scientific community.
When someone is conducting an experiment, series of test will be carried out with the available data, and if an observation by a scientist in chemistry environment is carried out in one part of the world, other scientist arround the globe can as well carry out independent experiment so as to verify the previous observation. In a case, when similar observation are carried out, then we can say there is an agreement as regards the scientific community.
Therefore, chemistry is testable
Learn more at: https://brainly.com/question/17756498?referrer=searchResults
3. How many electrons are present in 1.6 g of methane?
Answer:
They present 1 electron
Express the following number in scientific notation.
0.026890 =
To express 0.026890 in scientific notation, it is written as 2.6890 x [tex]10^{-2}[/tex].
Express the following number in scientific notation:
0.026890 = 2.6890 x [tex]10^{-2}[/tex]
Scientific notation is a way to represent very large or very small numbers more concisely. It is written as a number between 1 and 10 multiplied by a power of 10.
How is an endothermic reaction identified
Answer:
An endothermic reaction is identified by noting the drop in temperature in the system.
Explanation:
An endothermic reaction occurs by absorbing heat energy from the environment( apparatus and solution). Once the energy in the surrounding reduces the temperature drops. The energy absorbed is used to form new bonds. The energy absorbed is directly proportional to the temperature drop.
Answer:
An endothermic reaction absorbs heat from its surroundings.
Explanation:
An example is the reaction of acetic acid with baking soda.
Three ways to tell if a reaction is endothermic:
Do the experiment. The system cools down, and you can use a thermometer or your hand to tell that the flask becomes colder .Heat will appear as a reactant in the chemical equation:CH₃COOH + NaHCO₃ + heat ⟶ CH₃COONa + H₂O + CO₂ The sign of ΔH is positive. N₂ + 2O₂ ⟶ 2NO₂ ; ΔH = +33.1 kJ·mol⁻¹Where are the products in a chemical equation located
A On the left side of the snow in the equation
. On the night wide of the arrow in the equation
C. Between the reactants of the chemical equation
. At the beginning of the chemical equation
O
O
Answer:
the answer is B
Explanation:
reactants are on the left because they are the ones reacting. products are on the right because they are the final products.
The pressure on 7.0 L of gas is increased from 15 psi to 1420 torr, at constant
temperature. What is the new volume of the gas?
Answer:
3.85L
Explanation:
Given parameters:
Initial pressure P₁ = 15psi (1psi = 52mmHg)
converting to mmHg gives (15x52)mmHg = 780mmHg
Initial volume V₁ = 7.0L
Final pressure P₂ = 1420torr= 1420mmHg
Unknown:
Final volume V₂ = ?
Condition of the process: Constant temperature
Solution
To solve this problem, we simply apply Boyle's law. Boyle's law states that "The volume of a given mass of gas varies inversely as the pressure changes, if the temperature is constant".
It is mathematically expressed as ;
P₁V₁ = P₂V₂
The unknown here is V₂ and we simply express it as the subject of the formula:
V₂ = [tex]\frac{P_{1} V_{1} }{P_{2} }[/tex]
V₂ = [tex]\frac{780 x 7 }{1420}[/tex]
V₂ = [tex]\frac{5460}{1420}[/tex] = 3.85L
why is radioactive dating important when approximating the age of earth?
Answer:
So, we rely on radiometric dating to calculate their ages. Radiometric dating, or radioactive dating as it is sometimes called, is a method used to date rocks and other objects based on the known decay rate of radioactive isotopes.
Explanation:
radiometric dating is a very accurate way to date the Earth.We know it is accurate because radiometric dating is based on the radioactive decay of unstable isotopes. When an unstable Uranium (U) isotope decays, it turns into an isotope of the element Lead (Pb).
Answer:
The radioactive dating method is one of the efficiently used methods in order to calculate the age of the rocks, meteorites, fossils and various other objects, depending upon the rate at which radioactive isotopes decay. In this method, an unstable element changes into a stable one, releasing some amount of radiation and losing a certain amount of energy.
This is efficient in determining the age of the earth. The earth is comprised of rocks that are present from the time of its formation. These rocks can be dated using this method and the approximate age of the rock is evaluated.
The Uranium-Lead dating (²³⁸U-²⁰⁶Pb) method was used to date the smaller zircon crystals of Australia that are about 4.4 billion years old. The half-life of U-238 is approximately 4.5 billion years, which shows that these are one of the oldest rocks on earth and helps in understanding how old the earth is.
Half-life is defined as the time required by a radioactive isotope to decay half of its atoms.
So the radioactive dating method is one of the common method gives the approximate age of the earth.
which of the following is described by the equation H2O(s)+ heat=H2O(I)
A Freezing
Melting
Condensing
Evaporating
Answer: Melting
Explanation: Just confirming the other answer
This equation described is of Melting.
What is melting?Melting is the change of a solid into a liquid when heat is applied to the substance.How solid changes to liquid in heating? Application of heat to the molecules of a solid , speed up the motion and molecules overcomes the attractions and move past each other as a liquid.
Learn more about Melting here
https://brainly.com/question/40140
#SPJ2
Water striders are insects that have the ability to walk across the surface of water. Which properties of water allow the water strider to do this? Choose 2 answers: Choose 2 answers: (Choice A) A Surface tension (Choice B) B Adhesion (Choice C) C Specific heat (Choice D) D Capillary action
The properties of water that enables the water striders to walk across the surface of water is surface tension and adhesion.
Surface tension is a force that acts on the surface of water that makes it behave as if it is a stretched elastic skin. The ability of water molecules to stick to other surfaces is called adhesion.
As a result of surface tension and adhesion, insects such as water striders are able to walk across the surface of water.
Learn more: https://brainly.com/question/571207
Which statement correctly identifies the nuclide that is most likely to be unstable and describes why?
a) Carbon-14 (14C) is likely an unstable nuclide because it has 8 neutrons and 6 protons, and the ideal neutron-to-proton ratio is 1:5.
b) Uranium-238 (238U) is likely an unstable nuclide because it has a neutron-to-proton ratio that is 1.6:1 and the ideal neutron-to-proton ratio is 1:1.
c) Carbon-14 (14C) is likely an unstable nuclide because it has 8 neutrons and 6 protons, and the ideal neutron-to-proton ratio is 1:2.
d) Uranium-238 (238U) is likely an unstable nuclide because it has a neutron-to-proton ratio that is 1.6:1 and the ideal neutron-to-proton ratio is 1:2.
The molar volume of a gas at STP, in liters, is
Which of the following lists the atmospheric layers in the correct order beginning at the Earth's surface?
Answer:Troposphere, Stratosphere, Mesosphere and Thermosphere
Explanation:
What happens when an atom of sulfur combines with two atoms of chlorine to produce SCI2?
A.
Each chlorine atom shares a pair of electrons with the sulfur atom.
B.
An electron is transferred from each chlorine atom to the sulfur atom.
C.
An electron is transferred from the sulfur atom to each chlorine atom.
D.
Each chlorine atom shares all its valence electrons with the sulfur atom.
Answer:
A.) Each chlorine atom shares a pair of electrons with the sulfur atom.
There are two types of chemical compound one is covalent compound and another is ionic compound in chemistry. In ionic bonds, electrons are completely transferred. The correct option is option A.
What is chemical Compound?Chemical Compound is a combination of molecule, Molecule forms by combination of element and element forms by combination of atoms in fixed proportion.
Covalent compounds are formed by covalent bond and ionic compounds are formed by ionic bond. The melting and boiling points are higher in ionic compounds.
Covalent bond is formed by sharing of electron and ionic bond are formed by complete transfer of electron. Ionic bonds are stronger than covalent bonds. SCI[tex]_2[/tex] is a covalent compound. During formation of SCI[tex]_2[/tex], each chlorine atom shares a pair of electrons with the sulfur atom.
Therefore, the correct option is option A.
To learn more about chemical compound, here:
https://brainly.com/question/26487468
#SPJ2
If a simple machine aduces the strength of a force, what must be increased?
the speed of the input force
the work the simple machine performs
the size of the simple machine
the distance over which the force is applied
Answer:
the work the simple machine performs (second choice)
How do you identify the anode on a power source such as a battery? How do you identify the cathode? How are terms anion and cation?
Answer:
On a power source such as a battery, the anode is labelled with a + (plus)
The cathode on the other side is labelled with a - (minus)
When ionic compounds ionize, they produce both positive and negative ions.
Anion- This is a negatively charged ion for example chloride ion (Cl⁻)
Cation- This is a positively charged ion for example sodium ion (Na⁺)
Which of the following is an example of point-source pollution? A. Salt from roads B. Water from a sewage treatment plant C. Fertilizer from agricultural runoff D. Acid from abandoned mines
Answer:
Acid from abandoned mines- D.
Answer:
Water from a sewage treatment plant
Explanation:
Water from a sewage treatment plant is an example of point-source pollution.
When the pressure that a gas exerts
on a sealed container changes from
22.5 psi to_ psi, the
temperature changes from 110°C to
65.9°C.
The answer is:
When the pressure that a gas exerts on a sealed container changes from
22.5 psi to 19.86 psi, the temperature changes from 110°C to
65.9°C.
Why?To calculate which is the last pressure, we need to use Gay-Lussac's law.
The Gay-Lussac's Law states that when the volume is kept constant, the temperature (absolute temperature) and the pressure are proportional.
The Gay-Lussac's equation states that:
[tex]\frac{P_1}{T_1}=\frac{P_2}{T_2}[/tex]
We are given the following information:
We need to remember that since the temperatures are given in Celsius degrees, we need to convert it to Kelvin (absolute temperature) before use the equation, so:
[tex]P_1=22.5Psi\\T_1=110\°C=110\°C+273.15=383.15K\\T_1=65.9\°C=65\°C+273.15=338.15K[/tex]
Now, calculating we have:
[tex]\frac{P_1}{T_1}*(T_2)=P_2\\\\P_2=\frac{P_1}{T_1}*(T_2)=\frac{22.5Psi}{383.15}*338.15=19.86Psi[/tex]
Hence, the final pressure is equal to 19.86 Psi.
Have a nice day!
Answer:
The final pressure at 65.9°C is 19.91 psi.
Explanation:
To calculate the final pressure of the system, we use the equation given by Gay-Lussac Law.
This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,
[tex]\frac{P_1}{T_1}=\frac{P_2}{T_2}[/tex] (at constant Volume)
where,
[tex]P_1\text{ and }T_1[/tex] are the initial pressure and temperature of the gas.
[tex]P_2\text{ and }T_2[/tex] are the final pressure and temperature of the gas.
We are given:
[tex]P_1=22.5 psi\\T_1=110^oC=383.15 K\\P_2=?\\T_2=65.9^oC=339.05 K[/tex]
Putting values in above equation, we get:
[tex]\frac{22.5 psi}{383.15 K}=\frac{p_2}{339.05 K}[/tex]
[tex]P_2=\frac{22.5 psi}{383.15 K}\times 339.05 K=19.91 psi[/tex]
The final pressure at 65.9°C is 19.91 psi.
The following questions A24 - A26 relate to 100 ml of 0.0150 M solution of benzoic acid
(C6H3COOH). Ka(C6H3COOH) = 6.4 x 10^-5.
What is the pH of the solution after the addition of 1 x 10^-3 moles of NaOH? You may assume no volume change to the solution upon addition of the NaOH.
Answer:
PH of the weak acid: approximately 2.513.
PH of the buffer solution: approximately 4.495.
Explanation:
The Ka value of benzoic acid is much smaller than 1. Benzoic acid will dissociate but only partially when dissolved in water. Construct a RICE table for this process. Let the equilibrium of [tex]\rm H^{+}[/tex] be [tex]x\; \rm mol\cdot L^{-1}[/tex]. Note that [tex]x \ge 0[/tex].
[tex]\displaystyle \begin{array}{c|ccccc}\textbf{R}&\mathrm{C_6H_5COOH} & \rightleftharpoons & \mathrm{C_6H_5COO^{-}} & + &\mathrm{H^{+}}\\\textbf{I} & 0.015 & & 0 & & 0\\\textbf{C} & -x & & +x & & +x\\\textbf{E} & 0.015-x & & x & & x\end{array}[/tex]
[tex]\displaystyle \frac{[\mathrm{C_6H_5COO^{-}}]\cdot [\mathrm{H^{+}}]}{[\mathrm{C_6H_5COOH}]} = \mathrm{pK}_{a}[/tex].
[tex]\displaystyle \frac{x^{2}}{0.015 - x} = 6.4\times 10^{-5}[/tex].
Solve this quadratic equation for [tex]x[/tex]:
[tex]x^{2}+ 6.4\times 10^{-5}\;x - 6.4\times 10^{-5}\times 0.150 = 0[/tex].
[tex]\displaystyle x = \frac{-6.4\times 10^{-5} \pm \sqrt{(6.4\times 10^{-5})^{2} - 4\times (- 6.4\times 10^{-5}\times 0.150)}}{2}[/tex].
Take only the non-negative root. [tex]x \approx 0.00306655[/tex].
[tex]\rm [H^{+}] = 0.00306655\; mol\cdot L^{-1}[/tex].
[tex]\displaystyle \mathrm{pH} = -\log_{10}{[\mathrm{H^{+}}]} = 2.513[/tex].
Each benzoic acid contains only one carboxyl group [tex]\mathrm{-COOH}[/tex]. Benzoic acid is thus a monoprotic acid. Each mole of the acid will react with only one mole of [tex]\rm NaOH[/tex]. The 100 mL solution initially contains [tex]1.50\times 10^{-3}[/tex] moles of benzoic acid. The [tex]1\times 10^{-3}[/tex] moles of [tex]\rm NaOH[/tex] will neutralize only part of the acid. The solution will eventually contain [tex]1\times 10^{-3}[/tex] moles of [tex]\mathrm{C_6H_5COO^{-}}[/tex] (from the salt [tex]\mathrm{C_6H_5COONa}[/tex]) and [tex]0.50\times 10^{-3}[/tex] moles of [tex]\mathrm{C_6H_3COOH}[/tex].
Both the acid [tex]\mathrm{C_6H_5COOH}[/tex] and the conjugate base of the acid [tex]\mathrm{C_6H_5COO^{-}}[/tex] exist in large amounts in the solution. Apply the Henderson-Hasselbalch equation for weak acid buffers to find the pH of this buffer solution.
[tex]\mathrm{pK}_{a} = -\log_{10}{\mathrm{K}_{a}} \approx 4.19382[/tex] for benzoic acid.
[tex]\begin{aligned}\mathrm{pH} &= \mathrm{pK}_{a} + \log{\frac{{[\text{Conjugate Base}]}}{[\text{Weak Acid}]}} \\ &= \mathrm{pK}_{a} + \log{\frac{{[\mathrm{C_6H_5COO^{-}}]}}{[\mathrm{C_6H_5COOH}]}}\\ &= 4.19382 + \log{\frac{0.01}{0.005}}\\ &\approx 4.495 \end{aligned}[/tex].
State Avogadro's Hypothesis.
Answer: Avogadro's Hypothesis simply states that all gases of equal volume have the same number of molecules.
Explanation: Avogadro's Hypothesis is an experimental gas law and it serves as a specific case of the ideal gas law. Mathematically,
Volume (V) is proportional to the Number of mole (n) of the gas
V/n = K
Where K is the constant of proportionality.
Avogadro's hypothesis states that equal volumes of gases contain the same number of particles. It is an important concept in the study of gases.
Explanation:Avogadro's hypothesis states that equal volumes of gases, at the same temperature and pressure, contain the same number of particles. This hypothesis helps explain the concept of molar volume and is a fundamental principle in the study of gases. For example, 1 mole of any gas occupies the same volume as 1 mole of any other gas at the same temperature and pressure.
Learn more about Avogadro's hypothesis here:https://brainly.com/question/31906243
#SPJ6
Which of the following elements would you expect to have the lowest ionization energy value? Fluorine, lithium, neon, nitrogen
Answer:
Lithium (Li)
Explanation:
Lithium had the lowest ionization energy value because it has a low effective nuclear charge and a large radius
Answer:
lithium
Explanation:
Element
Mass Number
Atomic Number
Aluminum
27
13
Nitrogen
14
7
Helium
4
2
Fluorine
19
9
Which element has the most neutrons in the nucleus?
Aluminum
Nitrogen
Helium
Fluorine
Answer:
Aluminum
Explanation:
An atom of any elements has an outer electron and a proton and neutron located in the nucleus . The proton and neutron found in the nucleus of an atom determine the mass number of an element. The mass number of an element is the sum of the proton(atomic number) and the neutron number.
Mathematically,
Mass number = proton number(atomic number) + neutron number
Therefore,
neutrons number = mass number - proton number
Aluminium has the highest neutron
neutron = 27 - 13 = 14
Neutron of aluminium = 14
Final answer:
Aluminum, with a mass number of 27 and an atomic number of 13, has the most neutrons in its nucleus among the given elements, totaling 14 neutrons.
Explanation:
To determine which element has the most neutrons in its nucleus, we need to subtract the atomic number from the mass number for each element. The atomic number represents the number of protons, and the mass number is the sum of protons and neutrons in the nucleus.
Aluminum has a mass number of 27 and an atomic number of 13, resulting in 27 - 13 = 14 neutrons.
Nitrogen has a mass number of 14 and an atomic number of 7, resulting in 14 - 7 = 7 neutrons.
Helium has a mass number of 4 and an atomic number of 2, resulting in 4 - 2 = 2 neutrons.
Fluorine has a mass number of 19 and an atomic number of 9, resulting in 19 - 9 = 10 neutrons.
Comparing the number of neutrons calculated for each element, we can see that Aluminum has the most neutrons in its nucleus.
How much heat, in joules and in calories, is required to heat a 28.4-g (1-oz) ice cube from −23.0 °C to −1.0 °C?
a. The quantity of heat in Joules is equal to 1,305.832 Joules.
b. The quantity of heat in Calories is equal to 312.10 Cal.
Given the following data:
Mass of ice cube = 28.4 gramsInitial temperature = -23.0°CFinal temperature = -1.0°CScientific data:
Specific heat capacity of ice = 2.09 J/g°CTo determine the quantity of heat in Joules:
Mathematically, quantity of heat is given by the formula;
[tex]Q=mc\theta[/tex]
Where:
Q represents the quantity of heat.m represents the mass of an object.c represents the specific heat capacity.∅ represents the change in temperature.Substituting the given parameters into the formula, we have;
[tex]Q = 28.4 \times 2.09 \times (-1.0 -[-23.0])\\\\Q=59.356 \times (-1.0+23.0)\\\\Q=59.356 \times22[/tex]
Quantity of heat, Q = 1,305.832 Joules.
In Calories:
[tex]Calories =\frac{1305.832}{4.184}[/tex]
Calories = 312.10 Cal.
Read more: https://brainly.com/question/2834175
Describe the redox reaction. Check all that apply 2AI(s) + 3ZnCI2(g) → 3Zn(s) + 2AICI3(aq).
Aluminum atoms transfer electrons to chlorine atoms.
Zinc is reduced.
Zinc is the reducing agent.
The oxidation number of chlorine does not change.
Aluminum is oxidized.
Answer:
Zinc is reduced.
The oxidation number of chlorine does not change.
Aluminum is oxidized.
Explanation:
For the reaction:2AI(s) + 3ZnCI₂(g) → 3Zn(s) + 2AICI₃(aq).
For the elements in the reactants side:
Al has (0) oxidation state and converted to (+3) oxidation state in the products (AlCl₃), which means Al is oxidized and it is the reducing agent.
So, we can check that: Aluminum is oxidized.
Zn has the oxidation state (+2) in the reactants side (ZnCl₂) and converted to (0) in the products side (Zn), which means that Zn is reduced and it is the oxidizing agent.
So, we can check that: Zinc is reduced.
and can not check: Zinc is the reducing agent.
The oxidation state of Cl does not change, it is the same in both sides (-1).
So, we can check: The oxidation number of chlorine does not change.
and can not check: Aluminum atoms transfer electrons to chlorine atoms.
So, the choices will be:
Zinc is reduced.
The oxidation number of chlorine does not change.
Aluminum is oxidized.
Answer: B, D,E
Explanation:
Jason combines the two intermediate steps shown.
Na(g)+O2(g) ->2NO(g)
2NO(g)+O2(g) 2NO2(g)
Which best describes what Jason should do with the oxygen molecules?
Place two of them as products.
Place two of them as reactants.
Cancel them out because there is one in each equation.
Double them because there is one in each equation.
Answer:
Place two of them as reactants.
Explanation:
We have the two steps of reactions:1) N₂(g ) + O₂(g) → 2NO(g).
2) 2NO(g )+ O₂(g) → 2NO₂(g).
Adding the two equation with cancelling the intermediate (NO), we get:
N₂(g ) + 2O₂(g) → 2NO₂(g).
NO is cancelled out because there is one in each equation in the products side in eq. 1 and in oriduct side in eq. 2.
So, we place two of oxygen as reactants.
Answer:
Place two of them as reactants
Explanation:
plese HELP I AM NEW
On the basis of Bohr's model, the radius of the 3rd orbit
is -
(A) Equal to the radius of first orbit
(B) Three times the radius of first orbit
(C) Five times the radius of first orbit
(D) Nine time the radius of first orbit
Answer:
[tex]\boxed{\text{(D) Nine times the radius of the first orbit}}[/tex]
Explanation:
On the basis of Bohr's model, the radius of the nth orbit is
r = a₀n²
where a₀ is a constant called the Bohr radius.
r₃\r₁ = (a₀ × 3)²/(a₀ × 1)² = 9/1 = 9
The radius of the third Bohr orbit is nine times the radius of the first orbit.
Answer:
The correct answer is option D.
Explanation:
Formula used for the radius of the [tex]n^{th}[/tex] orbit will be,
[tex]r_n=\frac{n^2\times 52.9}{Z}[/tex] (in pm)
where,
[tex]r_n[/tex] = radius of [tex]n^{th}[/tex] orbit
n = number of orbit
Z = atomic number
Radius of the first orbit, n = 1
[tex]r_1=\frac{1^2\times 52.9}{Z}=\frac{1\times 52.9}{Z}[/tex]..[1]
Radius of the third orbit, n = 3
[tex]r_3=\frac{3^2\times 52.9}{Z}=\frac{9\times 52.9}{Z}[/tex]..[2]
[1] ÷ [2]
[tex]\frac{r_1}{r_3}=\frac{\frac{1\times 52.9}{Z}}{\frac{9\times 52.9}{Z}}[/tex]
[tex]r_1\times 9=r_3[/tex]
The radius of the 3rd orbit is nine times the radius of first orbit.
0.00781 g = kg
helppppp
Answer: The answer is: " 7.81 kg " .
___________________________________________________
Explanation:
___________________________________________________
Note the exact conversion: 1000 g = 1 kg ;
0.00781 g = ? kg :
So: To convert "0.0781 g" ; to "units in kg" ;
→ we multiply the value: 0.00781 g ; by "1000" ;
So: Given: " 0.00781 g " ;
→ we move the decimal point "3 (three) spaces forward" ;
to get: " 7.81 kg " .
___________________________________________________
Hope this helps!
Wishing you the best in your academic pursuits
— and within the "Brainly" community!
___________________________________________________
Answer:
0.00000781kg
Explanation:
An object was measured by a worker as
14.6cm long, however, the manufacturer
specifications list the length of the object at
14.4cm. What is the percent error in the
worker's measurement?
The percent error in the worker's measurement, when compared to the manufacturer's specifications, is 1.39%.
To calculate the percent error in the worker's measurement, we need to compare the measured value to the accepted value given by the manufacturer's specifications. The formula to determine percent error is:
[tex]Percent\ Error = |\frac{Measured\ Value\ -\ True\ Value}{True\ Value}| \times 100\%[/tex]
In this case:
Measured Value = 14.6 cmTrue Value = 14.4 cmApplying the values to the formula, we get:
[tex]Percent\ Error = |\frac{14.6 cm - 14.4 cm}{14.4 cm}| \times 100\% = |\frac{0.2 cm}{14.4 cm}| \times 100\% = 0.0139 \times 100\% \\ = 1.39\%[/tex]
Therefore, the percent error in the worker's measurement is 1.39%.
Once formed how are coordinates covalent bonds different for other covalent bonds?
Answer:
Explanation:
Coordinate covalent bonds differs from other types of covalent bonds in that the two atoms bonds in such a way that one member of the bonding pair supplies both electrons to be shared. In normal covalent bonds, both atoms supplies the electrons to be shared.
This type of bond is used to join two covalent compounds together. They can also be used in joining protons to neutral covalent molecules together.
Final answer:
Once established, coordinate covalent bonds are indistinguishable in strength and function from other covalent bonds.
Explanation:
The question asks about the difference between a coordinate covalent bond and other covalent bonds once they are formed. A coordinate covalent bond is a type of covalent bond where a single atom provides a pair of
electrons for the bond, while a regular covalent bond involves each atom contributing one electron to the shared pair. A classic example of a coordinate covalent bond is found in the carbon monoxide molecule (CO), where one of the three bonds between carbon and oxygen is a coordinate covalent bond because oxygen donates both electrons for that bond.
However, once formed, a coordinate covalent bond is just as strong and behaves in the same way as any other covalent bond.
Atoms typically form a characteristic number of covalent bonds that can include double bonds or triple bonds, as depicted in Lewis electron dot diagrams. Whether a bond is a coordinate covalent bond or not does not affect the eventual strength or final properties of the bond.
Blood serum is typically about 0.0044 M in K+ (aq). Calculate the mass of the potassium ions in 4,785. mL of blood serum. The molar mass of potassium is 39.10 g/mol
Answer:
0.823 g.
Explanation:
Molarity (M) is defined as the no. of moles of solute dissolved in a 1.0 L of the solution.M = (no. of moles of K⁺)/(Volume of the solution (L).
∵ no. of moles of K⁺ = (mass/molar mass) of K⁺.
∴ M = (mass/molar mass) of K⁺/(Volume of the solution (L).
M = 0.0044 M.
Volume of the solution = 4785.0 mL = 4.785 L.
mass of K⁺ = ??? g.
molar mass of K⁺ = 39.01 g/mol.
∴ mass of K⁺ = (M)((molar mass of K⁺)(volume of the solution (L)) = (0.0044 M)(39.10 g/mol)(4.785 L) = 0.823 g.
How do you measure density
Answer:
d = m / v
Explanation:
This is the formula for density. d stands for density. m stands for mass. lastly, v stands for volume. just divide the mass by the volume and boom, you've got the density of an object ^-^
A solution is made by dissolving 19.5 grams of glucose (C6H12O6) in 0.245 kilograms of water. If the molal freezing point constant for water (Kf) is -1.86 °C/m, what is the resulting Δtf of the solution? Show all he steps taken to solve this problem.
Will make brainliest!!
20 points!!
Answer:
- 0.8217°C.
Explanation:
We can solve this problem using the relation:ΔTf = Kf.m,
ΔTf is the depression in the freezing point.
Kf is the molal freezing point constant for water (Kf = -1.86 °C/m).
m is the molality of glucose.
We need to calculate the molality:Molality (m) is the no. of moles of solute in 1.0 kg of solvent.
∴ m = (mass/molar mass) of glucose/(mass of water (kg))
∴ m = (19.5 g/180.156 g/mol)/(0.245 kg) = 0.4418 m.
∴ ΔTf = Kf.m = (-1.86 °C/m)(0.4418 m) = - 0.8217°C.