Which equation represents a direct variation?

Which Equation Represents A Direct Variation?

Answers

Answer 1
y = 0.5x

Hope this helps!
Answer 2

Answer:

a y=.5x

Step-by-step explanation:

please dont look at my name


Related Questions

In Death Valley, California the highest ground temperature recorded was 94 degrees Celsius on July 15, 1972. In the formula C=5/9(F-32), C represents the temperature in degrees Celsius and F re[resents the temperature in degrees Fahrenheit. To the nearest degree, what is the highest ground temperature in Death Valley in Fahrenheit?

Answers

Well, you've already told me what C represents (94) and you've given me the formula switched around. The date and the location of this problem do not matter in this equation, so just ignore them. Now we need to switch around the formula by first multiplying both sides by (9/5) which causes the (5/9) on the right-hand side to cancel. This gives us (9/5)times C=F-32. Now we add 32 to both sides to come up with the new formula (F=C x (9/5) + 32) Substitute the original C into the equation, and you will get your answer of 201.2

Answer:

The highest ground temperature in Death Valley is [tex]201^{\circ}F [/tex].

Step-by-step explanation:

We are given that in death valley , Callifornia the highest ground temperature recorded was [tex]94^{\circ}C[/tex]

We are given formula

[tex] C=\frac{5}{9}(F-32)[/tex]

Where C represents the temperature in degrees Celsius  and F represents the temperature in degrees Fahrenheit.

We have to find the highest ground temperature in Death Valley in Fahrenheit to the nearest degree

Using formula [tex] F=\frac{9}{5}C+32[/tex]

Substituting the value of temperature in Celsius

Then we get

[tex]F=\frac{9}{5}\times 94+32[/tex]

[tex]F=\frac{846}{5}+32[/tex]

[tex]F=169.2+32[/tex]

[tex]F=201.2^{\circ}F[/tex]

[tex]F=201^{\circ}F[/tex]

Hence, the highest ground temperature in Death Valley is [tex]201^{\circ}F [/tex].

um plz help On a soccer team, 11 out of 17 players surveyed say they had two or more siblings. The league has 850 players. Which is the best prediction of the number of players in the league that have two or more siblings?

Answers

Divide 850 by 17 and you get 50, then multiply 50 and 11 and you get 550. Your answer is 550

How much greater was Miami's annual rainfall than Albany's?
The annual rainfall in Albany is 0.33 inch less than the annual rainfall in Nashville. How much less rainfall did Nashville get than Miami? Show your work.
Miami rainfall 61.05 inches
Albany rainfall 46.92 inches

Answers

A- 46.92
M-61.05
N-?


N=A+.33
N=47.25
61.05-46.92= Miami's annual rainfall is 14.13 inches more than Albany
61.05-47.25=Nashville got 13.8 inches less than Miami
Final answer:

Miami's annual rainfall was 14.13 inches greater than Albany's. It is not possible to determine from the given information how much less rainfall Nashville had than Miami.

Explanation:

To find the difference in annual rainfall between Miami and Albany, we need to subtract the rainfall of Albany from Miami.

Miami rainfall = 61.05 inches

Albany rainfall = 46.92 inches

So, Miami's annual rainfall is greater by:

61.05 inches - 46.92 inches = 14.13 inches

Now regarding the second question about Nashville and Miami, we don't have the absolute rainfall measurement for Nashville, thus we can't answer specifically how much less rainfall Nashville had than Miami.

Learn more about Annual Rainfall here:

https://brainly.com/question/31441680

#SPJ2

The Leukemia and Lymphoma Society sponsors a 5K race to raise money. It receives $55 per race entry and $10,000 in donations, but it must spend $15 per race entry to cover the cost of the race. Write and solve an inequality to determine the number of race entries the charity needs to raise at least $55,000.

Answers

x = number of entries 55x + 10000 - 15x ≥ 55000 First, subtract 10000 from each side 55x - 15x ≥ 45000 Now, we can combine 55x and 15x because they've both got the same variable attached 40x ≥ 45000 Now divide each side by 40 to isolate x (which is the number of entries) x ≥ 1125 The race needs at least 1125 entries to raise at least $55,000.

As Saturn revolves around the sun, it travels at a speed of approximately 6 miles per second. Convert this speed to miles per minute. At this speed, how many miles will Saturn travel in 4 minutes? Do not round your answers.

Answers

Saturn will travel 86,400 miles in 4 minutes.
Alright we know that there are 60 seconds in a minute. So you multiply the 60 seconds by 6 which is 360. So every minute Saturn revolves around the 60 at 360 miles per minute, which makes sense. 

To find how far it'll travel in 4 minutes, you multiply 360 by 4. 
In 4 minutes Saturn would travel 1440 miles. 

Maria incorrectly placed the decimal point when she wrote 0.65 inch fo the width of her computer. what is the correct decimal number for the width?

Answers

I think it should be 6.5 inch but I'm not positive.

I hope this helps! :))

Answer:

It should be placed after 6 it means 6.5inch

Step-by-step explanation:

Maria should placed the decimal point after 6 it means 6.5 inch. Because the order of the width of her computer should be in between 6 inch to 9 inches.

Width of a computer cannot be 0.65 inches because it will be too short and we cannot called it computer on the other hand if she put the decimal after 5 then the width of her computer will be 65 inches which is not normal.  

12^10·75^15/15^25·80^5

Answers

Final answer:

To solve this expression, apply the rules of exponents and convert the fractions to decimal values. Simplify the expression and use a calculator to find the decimal values of the powers. Divide the values and express the final result in scientific notation.

Explanation:

To solve this expression, we can first look at the different components. 12^10 means 12 raised to the power of 10. 75^15 means 75 raised to the power of 15. 15^25 means 15 raised to the power of 25. And finally, 80^5 means 80 raised to the power of 5.

Now, we can substitute these values back into the original expression: (12^10 · 75^15)/(15^25 · 80^5).

By using the rules of exponents, we can simplify this expression. For example, when you multiply two powers with the same base, you add the exponents. When you divide two powers with the same base, you subtract the exponents. Applying these rules, we get:

12^10 · 75^15/15^25 · 80^5 = (12/15)^10 · (75/80)^15/15^25 · 80^5 = (4/5)^10 · (3/4)^15/15^25 · 80^5.

To further simplify, we can convert the fractions into decimal values: 4/5 is equal to 0.8 and 3/4 is equal to 0.75. Substituting these values, we get:

(0.8)^10 · (0.75)^15/15^25 · 80^5 = 0.8^10 · 0.75^15/15^25 · 80^5.

We can use a calculator to find the decimal values of 0.8^10 and 0.75^15. After calculating the values and substituting them back into the expression, we get:

0.4 × 10^2 · 1.99 × 10^4/3.12 × 10^4 · 2.32 × 10^6 = 0.4 × 1.99/3.12 × 2.32 × 10^2 × 10^4 × 10^6 = 0.796/7.244 × 10^2 × 10^4 × 10^6.

Simplifying further, we get:

0.796/7.244 × 10^(2+4+6) = 0.796/7.244 × 10^12.

Dividing 0.796 by 7.244, we get approximately 0.1099373. So, the simplified expression is approximately 0.1099373 × 10^12.

A presidential candidate plans to begin her campaign by visiting the capitals in 3 of 48 states. What is the probability that she selects the route of three specific​ capitals?

Answers

she will most likely go to 3 specific

The probability that the candidate selects the route of three specific capitals out of 48 states is [tex]\( \frac{1}{17296} \)[/tex].

To calculate the probability of the candidate selecting the route of three specific capitals out of 48 states, we need to consider the total number of possible routes and the number of routes that include the specific capitals.

Calculate the total number of possible routes.

Since the candidate plans to visit 3 out of 48 states, the total number of possible routes is the number of ways to choose 3 states out of 48, which can be calculated using combinations:

[tex]\[ \text{Total number of routes} = \binom{48}{3} \][/tex]

Calculate the number of routes including the specific capitals.

Since the candidate plans to visit the capitals of three specific states, there is only one way to choose each of those specific states. So, the number of routes including the specific capitals is 1.

Calculate the probability.

[tex]\[ \text{Probability} = \frac{\text{Number of routes including specific capitals}}{\text{Total number of possible routes}} \][/tex]

[tex]\[ = \frac{1}{\binom{48}{3}} \][/tex]

Now, let's compute this.

[tex]\[ \binom{48}{3} = \frac{48!}{3!(48-3)!} = \frac{48 \times 47 \times 46}{3 \times 2 \times 1} = 17296 \][/tex]

So, the probability is:

[tex]\[ \text{Probability} = \frac{1}{17296} \][/tex]

Therefore, the probability that the candidate selects the route of three specific capitals out of 48 states is [tex]\( \frac{1}{17296} \)[/tex].

what is 0.04 as a standard form

Answers

.4 because it is .04 multiply by 10^

Answer:

4.0 *  10^-2

Step-by-step explanation:

Assuming that Standard Form is using Scientific Notation, then you would move the decimal until it is directly after the 4. Then, you would multiply that by 10 raised to the negative exponent of how many spaces that you had to move the decimal. In this case, you moved it two places to the right (+), SO THE EXPONENT IS NEGATIVE!


0.04 = 4.0 * 10^-2

Ken spent 1/5 of his allowance on a movie, 3/8 on snacks, and 2/7 on games. If his allowance was $20, how much did Ken have left?

Answers

Answer:

Ken is left with $2.79.

Step-by-step explanation:

We are given the following information in the question:

Ken allowance =  $20

Money spent on movies =

[tex]\displaystyle\frac{1}{5}\times 20 = \$4[/tex]

Money spent n snacks =

[tex]\displaystyle\frac{3}{8}\times 20 = \$7.5[/tex]

Money spent on games =

[tex]\displaystyle\frac{2}{7}\times 20 = \$5.71[/tex]

Total money spent =

[tex]4 + 7.5 + 5.71 = \$17.21[/tex]

Money left =

[tex]=\text{Allowance}-\text{ Total money spent}\\= 20 - 17.21\\=\$2.79[/tex]

Ken is left with $2.79.

use two unit multipliers to convert 56 centimeters to feet

Answers

You would do 56 centimeters times 1 inch per 2.54 centimeters times 1 foot per 12 inches. 

Mathematically, it will look like (56 * 1) / (2.54* 12) = approximately 1.837

In sentence form: There are approximately 1.837 feet in 56 centimeters. 

Joanna wants to buy a car. Her parents loan her 5,000 for 5 years at 5% simple interest. How much will Joanna pay in imterest?

Answers

if she pays 5% a year for interest on a $5,000 loan she will pay $1,250 

$225 a year for 5 years
Hello!

Data:

I = ?
P = $5000
rate = 5% = 0.05
t = 5

[tex]I = P*r*t[/tex]
[tex]I = 5000*0.05*5[/tex]
[tex]\boxed{\boxed{I = 1.250}}\end{array}}\qquad\quad\checkmark[/tex]

Find the point on the parabola y^2 = 4x that is closest to the point (2, 8).

Answers

Answer:

(4, 4)

Step-by-step explanation:

There are a couple of ways to go at this:

Write an expression for the distance from a point on the parabola to the given point, then differentiate that and set the derivative to zero.Find the equation of a normal line to the parabola that goes through the given point.

1. The distance formula tells us for some point (x, y) on the parabola, the distance d satisfies ...

... d² = (x -2)² +(y -8)² . . . . . . . the y in this equation is a function of x

Differentiating with respect to x and setting dd/dx=0, we have ...

... 2d(dd/dx) = 0 = 2(x -2) +2(y -8)(dy/dx)

We can factor 2 from this to get

... 0 = x -2 +(y -8)(dy/dx)

Differentiating the parabola's equation, we find ...

... 2y(dy/dx) = 4

... dy/dx = 2/y

Substituting for x (=y²/4) and dy/dx into our derivative equation above, we get

... 0 = y²/4 -2 +(y -8)(2/y) = y²/4 -16/y

... 64 = y³ . . . . . . multiply by 4y, add 64

... 4 = y . . . . . . . . cube root

... y²/4 = 16/4 = x = 4

_____

2. The derivative above tells us the slope at point (x, y) on the parabola is ...

... dy/dx = 2/y

Then the slope of the normal line at that point is ...

... -1/(dy/dx) = -y/2

The normal line through the point (2, 8) will have equation (in point-slope form) ...

... y - 8 = (-y/2)(x -2)

Substituting for x using the equation of the parabola, we get

... y - 8 = (-y/2)(y²/4 -2)

Multiplying by 8 gives ...

... 8y -64 = -y³ +8y

... y³ = 64 . . . . subtract 8y, multiply by -1

... y = 4 . . . . . . cube root

... x = y²/4 = 4

The point on the parabola that is closest to the point (2, 8) is (4, 4).

Find an integer x such that 37x $\equiv$ 1 (mod 101).}

Answers

[tex]101=37\times2+27[/tex]
[tex]37=27\times1+10[/tex]
[tex]27=10\times2+7[/tex]
[tex]10=7\times1+3[/tex]
[tex]7=3\times2+1[/tex]

[tex]\implies1=7-3\times2[/tex]
[tex]\implies1=7\times3-10\times2[/tex]
[tex]\implies1=127\times3-10\times8[/tex]
[tex]\implies1=27\times11-37\times8[/tex]
[tex]\implies1=101\times11-37\times30[/tex]

[tex]\implies(101\times11+37\times(-30))\equiv37\times(-30)\equiv1\pmod{101}[/tex]

[tex]\implies 37^{-1}\equiv-30\equiv(101-30)\equiv71\pmod{101}[/tex]

An experiment results in one of the sample points upper e 1e1​, upper e 2e2​, upper e 3e3​, upper e 4e4​, or upper e 5e5. complete parts a through
c.
a. find ​p(upper e 3e3​) if ​p(upper e 1e1​)equals=0.10.1​, ​p(upper e 2e2​)equals=0.10.1​, ​p(upper e 4e4​)equals=0.20.2​, and ​p(upper e 5e5​)equals=0.30.3.

Answers

Given that an experiment results in one of the sample points E1, E2, E3, E4, or E5.

Then P(e1) + P(e2) + P(e3) + P(e4) + P(e5) = 1

If P(E1)=0.1, P(E2)=0.1, P(e4)=0.2, and P(E5)=0.3., then P(E1) = 1 - 0.1 - 0.1 - 0.2 - 0.3 = 0.3

Therefore, P(e3) = 0.3

Kirin has 28 books. This is 7 times as many books as Gail has. Kirin made a model to compare the numbers of books they have. Which equation represents how to find the value of n?

Answers

Okay so Kirin has 28 books. This is 7 times as many books as Gail has. Soo..

28 / 7 = n

n = 4

Determine the common ratio and find the next three terms of the geometric sequence.


10, 2, 0.4, ...



a.

0.2; -0.4, -2, -10

c.

0.02; 0.08, 0.016, 0.0032


b.

0.02; -0.4, -2, -10

d.

0.2; 0.08, 0.016, 0.0032



Answers

Answer:

  d.  0.2; 0.08, 0.016, 0.0032

Step-by-step explanation:

The common ratio is the ratio of adjacent terms:

  r = 2/10 = 0.4/2 = 0.2

__

Multiplying the last term by this ratio gives the next term:

  0.4×0.2 = 0.08

  0.08×0.2 = 0.016

  0.016×0.2 = 0.0032

The next 3 terms are 0.08, 0.016, 0.0032.

Answer:

Option D)

Common ration = [tex] \frac{1}{5}[/tex] = 0.2

The next three terms of the given series are: 0.08, 0.016, 0.0032

Step-by-step explanation:

We are given the following information in the question:

We are given a geometric sequence:

[tex]10, 2, 0.4, ...[/tex]

Geometric Series

A geometric series is a series with a constant ratio between successive terms

We have to find the common ration of the given geometric series:

[tex]\text{Common ration} = \displaystyle\frac{\text{Second term}}{\text{First term} }=\frac{2}{10} = \frac{1}{5}[/tex]

The [tex]n^{th}[/tex] term of a geometric sequence is given by:

Formula:

[tex]a_n = a_1\timesr^{n-1},\\\text{where }a_1 \text{ is the first term of the geometric series and r is the common ratio}[/tex]

[tex]a_4 = a_1\times r^{4-1} = 10\times \bigg(\displaystyle\frac{1}{5}\bigg)^3 = 0.08\\\\a_5 = a_1\times r^{5-1} = 10\times \bigg(\displaystyle\frac{1}{5}\bigg)^4 = 0.016\\\\a_6 = a_1\times r^{6-1} = 10\times \bigg(\displaystyle\frac{1}{5}\bigg)^5 = 0.0032[/tex]

find all solutions of the equation tan^5x-9tanx=0. the answer is Akipi. where k is any integer. the constant A=

Answers

Final answer:

To solve tan^5x - 9tanx = 0, we factor to get tanx(tan^4x - 9) = 0 leading to solutions where x = kπ and x = ±π/3 + kπ. The constant A in the solution Akiπ is determined to be ±π/3.

Explanation:

To find all solutions to the equation tan^5x - 9tanx = 0, we can factor it as follows:

tanx(tan^4x - 9) = 0

This leads to two possible sets of solutions: tanx = 0 and tan^4x = 9.

For tanx = 0, x would be any integer multiple of π, i.e., x = kπ where k is an integer.

For tan^4x = 9, taking the fourth root gives us tanx = ±9√3. Since tangent is periodic with π, the solution would be of the form x = tan⁻¹(±9√3) + kπ, but since tan⁻¹(±9√3) simplifies to ±π/3, the solution can be written as x = ±π/3 + kπ.

However, if we are given that the solution is in the form Akiπ, we must determine the constant A. From the provided solutions, A must be a solution to tanx = 0 or tan⁻¹(±9√3), giving us A = 0 or ±π/3. Yet, since we cannot have a zero multiple of π (because that would give us a null solution), we dismiss A = 0 and take A from the non-zero solutions, so A = ±π/3.

For a sample of n = 100 scores, x = 45 corresponds to z = 0.50 and x = 52 corresponds to z = +1.00. what are the values for the sample mean and standard deviation? m = 31 and s = 7 m = 31 and s = 14 m = 38 and s = 7 m = 38 and s = 14

Answers

We are given a fixed number of samples, n = 100.

We are given two conditions:

x = 45, z = 0.50

x = 52, z = 1.00

 

The relevant equation we can use here is:

z = (x – m) / s

where m is the mean and s is the std dev

 

So for the two conditions:

0.50 = (45 – m) / s                            --> eqtn 1

1.00 = (52 – m) / s                            --> eqtn 2

 

Rewriting eqtn 1 in terms of m:

0.5 s = 45 – m

m = 45 – 0.5 s                                     --> eqtn 3

 

Rewriting eqtn 2 in terms of m:

1.00 s = 52 – m

m = 52 – 1.00 s                                   --> eqtn 4

 

Equating eqtn 3 and 4:

45 – 0.5 s = 52 – 1.00 s

0.5 s = 7

s = 14

 

From eqtn 4:

m = 52 - 1.00 * 14

m = 38

 

 

Therefore answers are:

 m = 38 and s = 14

What happens to the area of a circle when the radius is tripled?

Answers

The circle would triple because the radius is equal to its area
The answer should be the circle tripes

Cell phones and surveys ii the survey by the national center for health statistics further found that 49% of adults ages 25–29 had only a cell phone and no landline. we randomly select four 25–29-year-olds:
a.what is the probability that all of these adults have a only a cell phone and no landline?
b.what is the probability that none of these adults have only a cell phone and no landline?
c.what is the probability that at least one of these adults has only a cell phone and no landline?

Answers

The following is the solution for the problems given above:

A. The probability that all adults have only a cellphone is P(only cellphone) = 0.49 ^ 4 = 0.0576
B. If 49% only have a cellphone and no landline, then only 51% don’t have this combination of phones, so therefore: P (no one with only a cellphone) = 0.51^4 = 0.0677
C. If at least one of them has a cellphone: P (at least one with cell phone) = 1 – P(cellphone and/or landline) = 1 – (0.51)^4 = 0.9323

(a) The probability that all of these adults have a only a cell phone and no landline is [tex](0.49)^4[/tex]

(b) The probability that none of these adults have only a cell phone and no landline is [tex](0.51)^4[/tex].

(c) The probability that at least one of these adults has only a cell phone and no landline is [tex]1-(0.51)^4=0.9323[/tex].

According to the question, the survey by the national center for health statistics found that 49% of adults ages 25–29 had only a cell phone and no landline.

Probability that adults ages 25–29 had only a cell phone and no landline is [tex]P_1=0.49[/tex]

Probability that adults ages 25–29 have only a cell phone and no landline is

[tex]P_2=1-0.49\\P_2=0.51[/tex]

On selection of random 4 persons aged between 25–29-

(a) probability that all of these adults have a only a cell phone and no landline is [tex](0.49)^4[/tex]

(b) the probability that none of these adults have only a cell phone and no landline is [tex](0.51)^4[/tex].

(c) the probability that at least one of these adults has only a cell phone and no landline is [tex]1-(0.51)^4=0.9323[/tex].

Learn more more probability here:

https://brainly.com/question/23044118?referrer=searchResults

In 2018, a nation’s population was 10 million. Its nominal GDP was $40 billion, and its price index was 100. In 2019, its population had increased to 12 million, its nominal GDP had risen to $57.6 billion, and its price index had increased to 120. What was this nation’s economic growth rate during the year?

Answers

The nominal GDP in base year 2014 was $40 billion. The nominal GDP in year 2015 with price index 120 was $57.6 billion. The real GDP in 2015 can be calculated as follows :

GDP (real) = GDP (nominal) / price index * 100

GDP (real) = 57.6 / 120 * 100

GDP (real) = $48 billion

 

The growth rate in real GDP from 2014 to 2015 is 1.2%.

Growth rate = 48 * (100/40) = 1.2%

 

Therefore the growth rate is 12%

The nation's real GDP increased from $40 billion in 2018 to $48 billion in 2019, resulting in an economic growth rate of 20% for that year.

To calculate the economic growth rate of a nation, we need to look at the increase in its real GDP. Real GDP is calculated by dividing the nominal GDP by the GDP deflator and then multiplying by 100. The GDP deflator is like a price index that reflects the level of prices of all new, domestically produced, final goods and services in an economy.

For the nation in question:

2018 Real GDP = (Nominal GDP / Price Index)
100 = ($40 billion / 100)
100 = $40 billion.2019 Real GDP = (Nominal GDP / Price Index)
100 = ($57.6 billion / 120)
100 = $48 billion.

To find the economic growth rate, we subtract the previous year's real GDP from the current year's real GDP, divide by the previous year's real GDP, and then multiply by 100 to get a percentage:

Economic Growth Rate = [(2019 Real GDP - 2018 Real GDP) / 2018 Real GDP]
100

Economic Growth Rate = [($48 billion - $40 billion) / $40 billion]
100 = (8 / 40)
100 = 20%

The nation's economic growth rate during the year was 20%.

Which digit represents "hundreds" in the number 8732?

Answers

Our primary counting system is based on binary digits to represent numbers

what is the radius of a circle with an area of 32.1 square feet

Answers

First you need to divide the area by pi. Then take that answer and square-root it. Your answer should come out to about 3.2 is the radius.

f the centripetal and thus frictional force between the tires and the roadbed of a car moving in a circular path were reduced, what would happen?

Answers

The frictional force between the tires and the road prevent the car from skidding off the road due to centripetal force.

If the frictional force is less than the centripetal force, the car will skid when it navigates a circular path.

The diagram below shows that when the car travels at tangential velocity, v, on a circular path with radius, r, the centripetal acceleration of v²/ r acts toward the center of the circle.

The resultant centripetal force is (mv²)/r, which should be balanced by the frictional force of μmg, where μ =  coefficient of kinetic friction., and mg is the normal reaction on a car with mass, m.

This principle is applied on racing tracks, where the road is inclined away from the circle to give the car an extra restoring force  to overcome the centripetal force.

use the fundamental theorem of algebra to determine the number of roots for 2x^2+4x+7

Answers

Altho' I'm not using the fund. thm. of alg. specifically to determine the # of roots of 2x^2 + 4x + 7, polynomials of the nth degree all have n roots.

Completing the square:  2x^2 + 4x                                 + 7
                                       2(x^2 + 2x + 1   -   1)                +7
                                        2(x+1)^2           - 2                    +7
                                        2(x+1)^2 + 5

To solve for the roots, set the above = to 0 and solve for x:

2(x+1)^2 = -5   =>   (x+1)^2 = -5/2
 
 x+1 = plus or minus sqrt (-5/2)       => x+1 = plus or minus i*sqrt(5/2)

... and so on.  As expected, this 2nd order poly has 2 roots.  The roots in this case happen to be complex.                

A publisher displays its latest magazine cover on its website.
The publisher scales up the front cover of the magazine using a scale of 6 centimeters to 1 inch. The length of the scale drawing is 48 centimeters, and its width is 66 centimeters.
The length of the actual magazine cover is inches.
The width of the actual magazine cover is inches.
The scale drawing is too big to view on a computer screen without scrolling.
the publisher uses a new scale of 4 centimeters to 1 inch.
The length of the new scale drawing is centimeters.
The width of the new scale drawing is centimeters.

Answers

The length of the actual magazine cover is (48/6 = 8) inches. 
The width of the actual magazine cover is (66/6 = 11) inches. 
The length of the new scale drawing is (8 x 4 = 32) centimetres. 
The width of the new scale drawing is (11 x 4 = 44) centimetres.

Answer: 8 inches.11 inches.32 centimeters. 44 centimetres.

Step-by-step explanation:

(h) when is the particle speeding up? (enter your answer using interval notation.) (2,4)∪(6,8) incorrect: your answer is incorrect. f(t) = cos(πt/4)

Answers

The position of the particle as function of time is given as
[tex]f(t)=cos( \frac{\pi t}{4} )[/tex]

The velocity as function of time is
[tex]v(t)= - \frac{\pi}{4} sin( \frac{\pi t}{4} )[/tex]

A graph of f(t) versus t and of v(t) versus t is shown below.
The velocity increases in the intervals t = (2, 6) and t = (10, 14) and with a periodicity of 8.

In the range t = [0, 16], the velocity increases in the interval t = (2,6)∪(10, 14).

Answer: (2,6)∪(10,14)

Given the following geometric sequence, find the common ratio: {225, 45, 9, ...}.

Answers

The common ratio is 1/5

Answer:  The required common ratio for the given geometric sequence is [tex]\dfrac{1}{5}.[/tex]

Step-by-step explanation:  We are given to find the common ratio for the following geometric sequence :

225,   45,   9,   .   .   .

We know that

in a geometric sequence, the ratio of any term with the preceding term is the common ratio of the sequence.

For the given geometric sequence, we have

a(1) = 225,  a(2) = 45,   a(3) = 9,  etc.

So, the common ratio (r) is given by

[tex]r=\dfrac{a(2)}{a(1)}=\dfrac{a(3)}{a(2)}=~~.~~.~~.~~.[/tex]

We have

[tex]\dfrac{a(2)}{a(1)}=\dfrac{45}{225}=\dfrac{1}{5},\\\\\\\dfrac{a(3)}{a(2)}=\dfrac{9}{45}=\dfrac{1}{5},~etc.[/tex]

Therefore, we get

[tex]r=\dfrac{1}{5}.[/tex]

Thus, the required common ratio for the given geometric sequence is [tex]\dfrac{1}{5}.[/tex]

Suppose you obtain a $1,300 T-note with a 9% annual rate, paid monthly, with maturity in 6 years. How much interest will be paid to you each month?

Answers

We know that,
Interest, I = [tex] \frac{P×R×T}{100} [/tex]
Where, P = Principal = $1300
R = rate of interest = 9% annually = [tex] \frac{9}{12} [/tex]%
T = Time  = 1 month

So, I = [tex] \frac{1300×[tex] \frac{9}{12} [/tex]×1}{100} [/tex]
        = $9.75

Interest paid per month is $9.75

Answer:

simple interest  = $9.75

Step-by-step explanation:

given data:

Principle = $1300

annual rate  = 9% [tex]= \frac{9}{`12} = 0.75 [/tex]

time = 6 year =

we knwo that simple interest is given as

Simple interest [tex]= \frac{P\times R\times T}{100}[/tex]

FOR ABOVE QUESTION

Time is 1 month

simple interest  [tex]= \frac{1300\times 0.75 \times 1}{100}[/tex]

simple interest  = $9.75

Other Questions
Christians in the muslim territories were called __________. This was the second town built in the colony of Georgia and it later became the second capital of the state. How does the GDP help determine the economic health of a nation? How does andrew knoll's idea that "prokaryotic metabolisms form the fundamental ecological circuitry of life; bacteria, not mammals, underpin the efficient and long-term functioning of the biosphere" relate to the nitrogen cycle? A translation of trapezoid PQRS (blue) to trapezoid P'Q'R'S' (green) is shown, where the location of Q' is the origin. The coordinates of point R' are A company that sells personal care products sends a trained observer to watch potential buyers in their natural environments. this is an example of ________ research. most atoms form compounds by forming octets in their outer shell. what does octet really mean? A(n) _____ is an organized pattern of knowledge that an individual holds as true about his or her world.a. normb. motivec. beliefd. attitude Which phrase BEST describes the effect of an increase in U.S. steel imports The level of weight that the body tries to maintain is known as what is the main component of the cell membrane? a. lipids b. carbohydrates c. cholesterol d. proteins On Anne's bicycle, the ratio of pedal turns to rear- wheel turns in second gear is 4 to 7. If her rear wheel turns 875 times per mile, how many times does she turn the pedal in one mile? HINT: Set up and solve as a proportion to find x. Define and describe the Middle Passage Determine the electronegativity difference between the probable bond type and the more electronegative atom with respect to bonds formed between the pairs of atoms Se and S Andrew has 10 more goldfish than todd.together they have 50 goldfish.how many goldfish each boy have? In "Not Waving but Drowning," each of the following speakers contributes to the poem except?A.the narratorB.the drowned manC.the friends of the dead manD.the mother of the dead man Which of the following is the point underground where rock layers first move during an earthquake? True or false? in his description of new world plants, monardes condemned tobacco as a deadly, poisonous substance. if an object is moving then the magnitude of it _____ cannot be zero A. speedB. velocity C. accelerationB. A and BE. A,B, and C Which best describes interest groups in the early to mid 1800s Steam Workshop Downloader