When the displacement in SHM is equal to 1/3 of the amplitude xm, what fraction of the total energy is (a) kinetic energy and (b) potential energy? (c) At what displacement, in terms of the amplitude, is the energy of the system half kinetic energy and half potential energy? (Give the ratio of the answer to the amplitude)

Answers

Answer 1

Answer:

Explanation:

Given

Displacement is [tex]\frac{1}{3}[/tex] of Amplitude

i.e. [tex]x=\frac{A}{3}[/tex] , where A is maximum amplitude

Potential Energy is given by

[tex]U=\frac{1}{2}kx^2[/tex]

[tex]U=\frac{1}{2}k(\frac{A}{3})^2[/tex]

[tex]U=\frac{1}{18}kA^2[/tex]

Total Energy of SHM is given by

[tex]T.E.=\frac{1}{2}kA^2[/tex]

Total Energy=kinetic Energy+Potential Energy

[tex]K.E.=\frac{1}{2}kA^2 -\frac{1}{18}kA^2[/tex]

[tex]K.E.=\frac{8}{18}kA^2[/tex]

Potential Energy is [tex]\frac{1}{8}[/tex] th of Total Energy

Kinetic Energy is [tex]\frac{8}{9}[/tex] of Total Energy

(c)Kinetic Energy is [tex]0.5\times \frac{1}{2}kA^2[/tex]

[tex]P.E.=\frac{1}{4}kA^2[/tex]

[tex]\frac{1}{2}kx^2=\frac{1}{4}kA^2[/tex]

[tex]x=\frac{A}{\sqrt{2}}[/tex]                  

Answer 2

Answer:

Explanation:

Let the amplitude is A.

Displacement, x = one third of the amplitude = A/3

The total energy of the body executing Simple Harmonic Motion is given by

[tex]T=\frac{1}{2}KA^{2}[/tex]

(a) Kinetic energy of the particle executing SHM is given by

[tex]K=\frac{1}{2}K\left (A^{2} -x^{2} \right )[/tex]

[tex]K=\frac{1}{2}K\left (A^{2} -\frac{A}{9}^{2} \right )[/tex]

[tex]K=\frac{1}{2}\times \frac{8A^{2}}{9}[/tex]

So, the ratio of kinetic energy to the total energy is given by

K / T = 8 / 9

(b) Potential energy of a particle executing SHM is given by

[tex]U=\frac{1}{2}Kx^{2}[/tex]

[tex]T=\frac{1}{2}\times \frac{A^{2}}{9}[/tex]

So, the ratio of potential energy to the total energy is given by

U / T = 1 / 9

(c) Let at a displacement y the kinetic energy is equal to the potential energy

[tex]\frac{1}{2}\times K\times \left ( A^{2}-y^{2} \right )=\frac{1}{2}\times K\times y^{2}[/tex]

[tex]y=\frac{A}{\sqrt{2}}[/tex]


Related Questions

This question relates to the practicality of searching for intelligent life in other solar systems by detecting their radio broadcasts (or aliens find us from ours). The closest stars are 4 light years away from us. How far away must you be from a 781 kHz radio station with power 50.0 kW for there to be only one photon per second per square meter? Assume that the photons spread out spherically. The area of a sphere is 4????????2.

Answers

Answer:

[tex]2.77287\times 10^{15}\ m[/tex]

Explanation:

P = Power = 50 kW

n = Number of photons per second

h = Planck's constant = [tex]6.626\times 10^{-34}\ m^2kg/s[/tex]

[tex]\nu[/tex] = Frequency = 781 kHz

r = Distance at which the photon intensity is i = 1 photon/m²

Power is given by

[tex]P=nh\nu\\\Rightarrow n=\dfrac{P}{h\nu}\\\Rightarrow n=\dfrac{50000}{6.626\times 10^{-34}\times 781000}\\\Rightarrow n=9.66201\times 10^{31}\ photons/s[/tex]

Photon intensity is given by

[tex]i=\dfrac{n}{4\pi r^2}\\\Rightarrow 1=\dfrac{9.66201\times 10^{31}}{4\pi r^2}\\\Rightarrow r=\sqrt{\dfrac{9.66201\times 10^{31}}{4\pi}}\\\Rightarrow r=2.77287\times 10^{15}\ m[/tex]

The distance is [tex]2.77287\times 10^{15}\ m[/tex]

You must stay at a distance of [tex]2.77287*10^1^5m[/tex]

How can we arrive at this result?First, we have to find the number of protons per second. This will be done using the equation: [tex]n= \frac{P}{h*v}[/tex]

In this equation, the "h" represents Planck's constant and will take on the value of  [tex]6.626*10^-^3^4m^2\frac{Kg}{s}[/tex]

The "r" will be equal to 1 photon/m² and the "P' will be equal to 50 kW.

Therefore, we will solve the equation as follows:

[tex]n= \frac{50000}{(6.626*10^-^3^4*781000)}= 9.66201*10^3^1 \frac{protons}{s}[/tex]

From this value, we can calculate the appropriate distance for you to position yourself. For this, we will use the equation:

[tex]r^2=\frac{n}{4*\pi} \\r= \sqrt{\frac{9.6621*10^3^1}{4*\pi } } = 2.77287*10^1^5m[/tex]

More information about protons is in the link:

https://brainly.com/question/1013246

A horizontal tube consists of a 7.0-cm-diameter pipe that narrows to a 2.0-cm-diameter throat. In the pipe, the water pressure is twice atmospheric pressure and the water flows with a speed of 0.40 m/s. What is the pressure in the throat, assuming that the water behaves like an ideal fluid? The density of water is 1000 kg/m3 , and atmospheric pressure is 1.01 × 105 Pa.

Answers

Answer:

[tex]1.9\times10^{5} Pa[/tex]

Explanation:

[tex]d_{p}[/tex] = diameter of the pipe = 7 cm

[tex]v_{p}[/tex] = speed of water in the pipe = 0.40 m/s

[tex]A_{p}[/tex] = Area of cross-section of pipe = [tex](0.25)\pi d_{p}^{2}[/tex]

[tex]d_{t}[/tex] = diameter of the throat = 2 cm

[tex]v_{t}[/tex] = speed of water in the throat

[tex]A_{t}[/tex] = Area of cross-section of throat = [tex](0.25)\pi d_{t}^{2}[/tex]

Using equation of continuity

[tex]A_{p} v_{p} = A_{t} v_{t} \\(0.25)\pi d_{p}^{2} v_{p} = (0.25)\pi d_{t}^{2} v_{t} \\(7)^{2} (0.40) = (2)^{2} v_{t}\\v_{t} = 4.9 ms^{-1}[/tex]

[tex]P_{o}[/tex] = atmospheric pressure = 1.01 x 10⁵ Pa

[tex]P_{p}[/tex] = Pressure in the pipe = [tex]2 P_{o}[/tex] = 2.02 x 10⁵ Pa

[tex]P_{t}[/tex] = Pressure in the throat

Using Bernoulli's theorem

[tex]P_{t} + (0.5)\rho v_{t}^{2} = P_{p} + (0.5)\rho v_{p}^{2}\\P_{t} + (0.5)(1000) (4.9)^{2} = 2.02\times10^{5} + (0.5)(1000) (0.40)^{2}\\P_{t} + 12005 = 202080\\P_{t} = 190075 Pa\\P_{t} = 1.9\times10^{5} Pa[/tex]

Final answer:

The pressure in the throat of the pipe, assuming that the water behaves like an ideal fluid, can be obtained using the continuity equation and Bernoulli's equation. The velocity at the throat is first calculated using the continuity equation and then Bernoulli's equation is used to find the pressure. The pressure comes out to be 1.94 x 105 Pa.

Explanation:

This problem can be resolved using the continuity equation and Bernoulli's equation, both of which refer to the conservation laws of mass and energy respectively in fluid dynamics. Bernoulli's equation states that, along a streamline, the sum of all forms of fluid energy is constant with respect to any increase in height. The continuity equation states that the mass flow rate must remain constant in the pipe i.e., the velocity of fluid at the wide end of the pipe multiple by its area will be equal to the velocity at the narrow end multiplied by its area.

The velocity at the throat can be found using the continuity equation: (7)^2 x (0.40) = (2)^2 x V2. Solving this gives V2 = 2.45 m/s.

Next, we'll use Bernoulli's equation, P1 + 0.5 x rho x (V1)^2 = P2 + 0.5x rho(V2)^2, where P1 is the pressure at the wide end (which is given as twice of atmospheric pressure), rho is density of water, V1 is velocity at the wide end, P2 is the pressure at the narrow end (which we are to find), and V2 is the velocity at the narrow end.

Substituting the given values, we have (2 x 1.01e5) + 0.5 x 1000 x (0.4)^2 = P2 + 0.5*1000*(2.45)^2. Solving this equation gives P2 = 1.94 x 105 Pa.


Learn more about Bernoulli's and Continuity Equations here:

https://brainly.com/question/30504672

#SPJ11

A baseball catcher extends his arm straight up to catch a fast ball with a speed of 40 m/s. The baseball is 0.145 kg and the catcher’s arm length is 0.5 m and mass 4.0 kg. (a) What is the angular velocity of the arm immediately after catching the ball as measured from the arm socket? (b) What is the torque applied if the catcher stops the rotation of his arm 0.3 s after catching the ball?

Answers

Final answer:

To solve the problem, we require an understanding of physics concepts like angular velocity, moment of inertia, and torque. The catcher catching the ball changes its angular momentum, resulting in an angular velocity. The torque experienced when the arm stops the rotation can be computed using known equations.

Explanation:

This question involves concepts of physics like angular velocity, moment of inertia, and torque. Initially, with the catcher's arm at the ready position, the system (arm and ball) has zero angular velocity. Then when the catcher catches the ball, he applies an impulse to it and changes not just the linear momentum but the angular momentum about the shoulder as well.

The change in angular momentum (angular impulse) will be equal to the product of the mass of the baseball, its velocity, and the arm's length, i.e., 0.145kg × 40m/s × 0.5m= 2.9 kg m²/s. This change in angular momentum over time will induce an angular velocity, which can be calculated by dividing the change in angular momentum by the moment of inertia of the system (arm and ball).

For part (b), the torque experienced by the arm when it stops the rotation can be computed from the known equation Torque = (Moment of Inertia × Angular Acceleration). The angular acceleration is determined by the change in angular velocity divided by the time taken which in this case is 0.3 seconds. Taking all these physics concepts into account will yield the correct numerical solutions for parts (a) and (b).

Learn more about Physics - Angular Momentum here:

https://brainly.com/question/29716949

#SPJ11

To find the angular velocity of the arm after catching the ball, conservation of angular momentum was used, resulting in an angular velocity of 7.85 rad/s. The torque needed to stop the arm's rotation in 0.3 seconds is -9.66 N - m, calculated using the angular deceleration. The answer involves concepts of angular momentum and torque.

A baseball catcher extends his arm straight up to catch a fast ball with a speed of 40 m/s. The baseball is 0.145 kg and the catcher’s arm length is 0.5 m and mass 4.0 kg.

(a) What is the angular velocity of the arm immediately after catching the ball?

To find the angular velocity of the arm immediately after catching the ball, we need to use the principle of conservation of angular momentum. The initial angular momentum of the ball can be calculated using:

L_initial = m_ball  * v_ball * r_arm

where m_ball = 0.145 kg, v_ball = 40 m/s, and r_arm = 0.5 m.

L_initial = 0.145 kg * 40 m/s * 0.5 m = 2.9 kg·m²/s

The moment of inertia of the arm plus the ball (approximated as point mass at the end) is:

I_total = I_arm + m_ball * r_arm²

Using the formula for the moment of inertia of a rod about one end: I_arm = (1/3) * m_arm * (r_arm)², where m_arm = 4.0 kg and r_arm = 0.5 m:

I_arm = (1/3) * 4.0 kg * (0.5 m)² = 0.333 kg·m²

Adding the moment of inertia of the ball:

I_total = 0.333 kg·m² + 0.145 kg * (0.5 m)² = 0.333 kg·m² + 0.03625 kg·m² = 0.36925 kg·m²

Since angular momentum is conserved, L_initial = I_total * ω, where ω is the angular velocity:

ω = L_initial / I_total = 2.9 kg·m²/s / 0.36925 kg·m² = 7.85 rad/s

(b) What is the torque applied if the catcher stops the rotation of his arm 0.3 s after catching the ball?

Torque (τ) can be calculated using the relationship between torque, angular deceleration (α), and moment of inertia (I):

τ = I_total * α

First, we find the angular deceleration. The arm stops, meaning final angular velocity is 0.

Using the angular kinematic equation: ω_final = ω_initial + α * t, where ω_final = 0 and t = 0.3 s:

0 = 7.85 rad/s + α * 0.3 s

α = -7.85 rad/s / 0.3 s = -26.17 rad/s²

Now, calculate torque:

τ = 0.36925 kg·m² * (-26.17 rad/s²) = -9.66 N·m

The negative sign indicates that the torque is in the direction opposite to the rotation.

The emission of x rays can be described as an inverse photoelectric effect.

What is the potential difference through which an electron accelerates to produce x rays with a wavelength of 0.10 nm?

Answers

Answer:

The potential difference through which an electron accelerates to produce x rays is [tex]1.24\times 10^4\ volts[/tex].                                                  

Explanation:

It is given that,

Wavelength of the x -rays, [tex]\lambda=0.1\ nm=0.1\times 10^{-9}\ m[/tex]

The energy of the x- rays is given by :

[tex]E=\dfrac{hc}{\lambda}[/tex]

The energy of an electron in terms of potential difference is given by :

[tex]E=eV[/tex]

So,

[tex]\dfrac{hc}{\lambda}=eV[/tex]

V is the potential difference

e is the charge on electron

[tex]V=\dfrac{hc}{e\lambda}[/tex]

[tex]V=\dfrac{6.63\times 10^{-34}\times 3\times 10^8}{1.6\times 10^{-19}\times 0.1\times 10^{-9}}[/tex]

V = 12431.25 volts

or

[tex]V=1.24\times 10^4\ volts[/tex]

So, the potential difference through which an electron accelerates to produce x rays is [tex]1.24\times 10^4\ volts[/tex]. hence, this is the required solution.

A team of dogs drags a 53.9 kg sled 1.62 km over a horizontal surface at a constant speed. The coefficient of friction between the sled and the snow is 0.234. The acceleration of gravity is 9.8 m/s 2 . Find the work done by the dogs. Answer in units of kJ.

Answers

Answer:

200.24 kJ

Explanation:

[tex]m[/tex] = mass of sled = 53.9 kg

[tex]d[/tex] = distance traveled by the sled = 1.62 km = 1620 m

[tex]\mu[/tex] = Coefficient of friction between sled and snow = 0.234

frictional force acting on the sled is given as

[tex]f = \mu mg[/tex]

[tex]F[/tex] = Applied force by the dogs on the sled

Since the sled moves at constant speed, the force equation for the motion of the sled is given as

[tex]F = f \\F = \mu mg[/tex]

[tex]W[/tex] = Work done by the dogs on the sled

Work done by the dogs on the sled is given as

[tex]W = F d\\W = \mu mg d\\W = (0.234) (53.9) (9.8) (1620)\\W = 200237.64 J\\W = 200.24 kJ[/tex]

The work done by the dogs is 200.238 kJ.

The work done by the dog is equal to the work done to move the sled through the distance and the work done against friction.

Formula:

W = dma+μmgd............. Equation 1

Where:

W = work done by the dogsm = mass of the sleda = acceleration of the sledg = acceleration due to gravityμ = coefficient of friction

From the question,

Given:

m = 53.9 kga = 0 m/s² (move with constant speed)d = 1.62 km = 1620 mg = 9.8 m/s²μ = 0.234

Substitute these values into equation 1

W = (53.9×0×1620)+(53.9×9.8×0.234×1620)W = 2002378 JW = 200.238 kJ

Hence, The work done by the dogs is 200.238 kJ.

Learn more about work done here: https://brainly.com/question/8119756

A glass column is filled with mercury and inverted in a pool of mercury. The mercury column stabilizes at a height of 735 mm above the pool of mercury. What is the pressure of the atmosphere?

Answers

Answer:

[tex] 735 mm Hg = 0.967 atm= 97991.940 Pa=97.992Pa[/tex]

Explanation:

Previous concepts

Atmospheric pressure is defined as "the force per unit area exerted against a surface by the weight of the air above that surface".

Torricelli shows that we can calculate the atmosphric pressure with a glass tube inside of a tank and with the height we can find the pressure with the relation

[tex]P_{atm}=\rho_{Hg} g h[/tex]

Solution to the problem

For this case we can use the following conversion factor:

[tex]1 atm = 760 mm Hg[/tex]

And if we convert the 735 mm Hg to atm we got this:

[tex]735 mm Hg * \frac{1atm}{760 mm Hg}=0.967 atm[/tex]

And also we can convert this value to Pa and Kpa since we have this conversion factor:

[tex] 1 atm =101325 Pa[/tex]

And if we apply the conversion we got:

[tex]0.967 atm *\frac{101325 Pa}{1 atm}=97991.940 Pa[/tex]

And that correspond to 97.99 Kpa.

Finally we can express the atmospheric pressure on different units for this case :

[tex] 735 mm Hg = 0.967 atm= 97991.940 Pa=97.992Pa[/tex]

The atmospheric pressure (atm) resulting from the mercury column is 0.967 atm.

The given parameters;

the height of the mercury column, h = 735 mm Hg

The atmospheric pressure (atm) resulting from the mercury column is calculated as follows;

760 mmHg ------- 1 atm

735 mmHg -------- ?

[tex]= \frac{735 \ \times \ 1 atm}{760} \\\\= 0.967 \ atm[/tex]

Thus, the atmospheric pressure (atm) resulting from the mercury column is 0.967 atm.

Learn more here:https://brainly.com/question/9165035

Interactive Solution 9.37 presents a method for modeling this problem. Multiple-Concept Example 10 offers useful background for problems like this one. A cylinder is rotating about an axis that passes through the center of each circular end piece. The cylinder has a radius of 0.130 m, an angular speed of 78.0 rad/s, and a moment of inertia of 1.25 kg·m2. A brake shoe presses against the surface of the cylinder and applies a tangential frictional force to it. The frictional force reduces the angular speed of the cylinder by a factor of 6 during a time of 3.00 s. (a) Find the magnitude of the angular deceleration of the cylinder. (b) Find the magnitude of the force of friction applied by the brake shoe.

Answers

Answer:

21.67 rad/s²

208.36538 N

Explanation:

[tex]\omega_f[/tex] = Final angular velocity = [tex]\dfrac{1}{6}78=13\ rad/s[/tex]

[tex]\omega_i[/tex] = Initial angular velocity = 78 rad/s

[tex]\alpha[/tex] = Angular acceleration

[tex]\theta[/tex] = Angle of rotation

t = Time taken

r = Radius = 0.13

I = Moment of inertia = 1.25 kgm²

From equation of rotational motion

[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\dfrac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\dfrac{13-78}{3}\\\Rightarrow \alpha=-21.67\ rad/s^2[/tex]

The magnitude of the angular deceleration of the cylinder is 21.67 rad/s²

Torque is given by

[tex]\tau=I\alpha\\\Rightarrow \tau=1.25\times -21.67\\\Rightarrow \tau=-27.0875[/tex]

Frictional force is given by

[tex]F=\dfrac{\tau}{r}\\\Rightarrow F=\dfrac{-27.0875}{0.13}\\\Rightarrow F=-208.36538\ N[/tex]

The magnitude of the force of friction applied by the brake shoe is 208.36538 N

The angular deceleration of the cylinder is 46.0 rad/s².

The force of friction applied by the brake shoe is 1180 N.

Here's how we can approach it:

(a) Angular Deceleration:

Initial Angular Speed (ω₀): 92.0 rad/s

Final Angular Speed (ωf): ω₀/2 = 92.0 rad/s / 2 = 46.0 rad/s

Time (Δt): 4.00 s

We can use the following equation to find the angular deceleration (α):

α = (ωf - ω₀) / Δt

Substituting the values:

α = (46.0 rad/s - 92.0 rad/s) / 4.00 s

α = -46.0 rad/s² (negative sign indicates deceleration)

Therefore, the magnitude of the angular deceleration of the cylinder is 46.0 rad/s².

(b) Force of Friction:

Moment of Inertia (I): 1.36 kg·m²

Angular Deceleration (α): 46.0 rad/s²

The net torque (τ) acting on the cylinder is equal to the product of its moment of inertia and angular deceleration:

τ = I * α

The frictional force (F) applied by the brake shoe creates a torque that opposes the cylinder's rotation. This torque is equal to the force multiplied by the radius of the cylinder (r):

τ = F * r

Since the net torque is caused solely by the frictional force, we can equate the two torque equations:

I * α = F * r

Solving for the force of friction:

F = I * α / r

Substituting the values:

F = 1.36 kg·m² * 46.0 rad/s² / 0.0530 m

F = 1180 N

Therefore, the magnitude of the force of friction applied by the brake shoe is 1180 N.

what consistent physiological pattern is more common in men's' teeth? A. Men have more room in their mouths for their molars. B. Men generally have stronger enamel. C. Men have more teeth. D. Men generally have larger teeth.

Answers

Answer:

B.

Explanation:

Men generally have stronger enamel than the women.

A disk is rotating with angular speed ω1=2.0 rad/s about axle. The moment of inertia of disk & axle is 0.47 kg m2. A second disk of moment of inertia 0.31 kg m2 is dropped onto first. If dropped disk is rotating in opposite direction of ω1 with angular velocity ω2=1.0 rad/s, find magnitude of angular velocity of combination of two disks. Express your answer in rad/s.

Answers

Answer:

 w = 0.808 rad / s

Explanation:

As indicated by the moment of inertia t the angular velocity of the disks we use the concept of conservation of the angular momentum, for this we define the system as formed by the two discs, therefore the torque during the crash is internal and the angular momentum is conserved

Let's write in angular momentum

Initial. Before impact

         L₀ = I₁ w₁ + I₂ w₂

Final. After the rock has stuck

          [tex]L_{f}[/tex] = (I₁ + I₂) w

The two discs are rotating in opposite directions, we consider the rotation of the first positive disc, so the angular velocity of the second is negative

          L₀ =[tex]L_{f}[/tex]

           I₁ w₁ - I₂ w₂ = (I₁ + I₂) w

           w = (I₁ w₁ - I₂ w₂) / (I₁ + I₂)

Let's calculate

          w = (0.47 2.0 - 0.31 1.0) / (0.47+ 0.31)

          w = 0.63 / 0.78

          w = 0.808 rad / s

in the direction of disc rotation 1

1. A 70-kg swimmer dives horizontally off a 500-kg raft. The diver's speed immediately after leaving the raft is 6.0 m/s. A micro-sensor system attached to the edge of the raft measures the time interval during which the diver applies an impulse to the raft just prior to leaving the raft surface. If the time interval is read as 0.25 s, what is the magnitude of the average horizontal force by diver on the raft?

Answers

To solve this problem it is necessary to apply the concepts related to momentum theorem.

The equation for impulse is given as

[tex]I = Ft[/tex]

Where

I = Force

t = Time

At the same time we have the equation for momentum is given as

[tex]p = mv[/tex]

The impulse momentum theorem states that the change in momentum of an object is equal to the impulse applied to it. Therefore

I = p

Ft = mv

Solving to find the force

[tex]F = \frac{mv}{t}[/tex]

[tex]F = \frac{(70)(6)}{0.25}[/tex]

[tex]F = 1680N[/tex]

Therefore the magnitude of the average horizontal force by diver on the raft is 1680N

Final answer:

The magnitude of the average horizontal force exerted by the diver on the raft is 1680 N.

Explanation:

To find the magnitude of the average horizontal force exerted by the diver on the raft, we need to start by calculating the change in momentum of the diver. The momentum of an object is given by the equation p = mv, where p is the momentum, m is the mass, and v is the velocity. The change in momentum is equal to the impulse, which is given by the equation J = Δp = mΔv.

Since the swimmer dives horizontally, the change in velocity is equal to the initial velocity of the swimmer. Therefore, Δv = 6.0 m/s. Substituting the values, we get J = (70 kg)(6.0 m/s) = 420 kg·m/s.

The impulse is equal to the average force multiplied by the time interval, so we can rearrange the equation to solve for the average force. F = J / Δt = 420 kg·m/s / 0.25 s = 1680 N.

Learn more about average horizontal force here:

https://brainly.com/question/30825707

#SPJ11

A seaside cliff is 30 m above the ocean surface, and Sam is standing at the edge of the cliff. Sam has three identical stones. The first stone he throws off the cliff at 30° above the horizontal. The second stone he throws vertically downward into the ocean. The third stone he drops into the ocean.
1. In terms of magnitude, which stone has the largest change in its velocity over a one second time interval after its release? (Sam’s throwing speed is 10 m/s.)

Answers

Answer:

In terms of magnitude, the stones 2 and 3 have the largest change in its velocity over a one second time interval after their release.

Explanation:

Stone 1:

vi = 10 m/s

vix = vi*Cos ∅ = (10 m/s)*Cos 30° = 8.66 m/s = vx

viy = vi*Sin ∅ = (10 m/s)*Sin 30° = 5 m/s

vy = viy - g*t = (5 m/s) - (9.8m/s²)*(1 s) = -4.8

then

v = √(vx²+vy²) = √((8.66)²+(-4.8)²) = 9.90 m/s

Δv = v - vi = 9.902 m/s - 10 m/s

⇒  Δv = -0.098 m/s

Stone 2:

vi = 10 m/s

v = vi + g*t = (10 m/s) + (9.8m/s²)*(1 s) = 19.8 m/s

Δv = v - vi = (19.8 m/s) - (10 m/s)

⇒  Δv = 9.8 m/s

Stone 3:

vi = 0 m/s

v = g*t = (9.8m/s²)*(1 s) = 9.8 m/s

Δv = v - vi = (9.8 m/s) - (0 m/s)

⇒  Δv = 9.8 m/s

Finally, in terms of magnitude, the stones 2 and 3 have the largest change in its velocity over a one second time interval after their release.

Bored, a boy shoots his pellet gun at a piece of cheese that sits, keeping cool for dinner guests, on a massive block of ice. On one particular shot, his 1.3 g pellet gets stuck in the cheese, causing it to slide 25 cm before coming to a stop. If the muzzle velocity of the gun is 73 m/s and the cheese has a mass of 109 g, what is the coefficient of friction between the cheese and ice?

Answers

Final answer:

To calculate the coefficient of friction between the cheese and ice, we can use the work-energy theorem. By calculating the work done on the cheese by the friction force, we can determine the coefficient of friction. By plugging in the given values, the coefficient of friction is found to be 0.047.

Explanation:

To find the coefficient of friction between the cheese and ice, we can use the concept of work-energy theorem. The work done on the cheese by the friction force is equal to the change in kinetic energy of the cheese. The work done by friction is given by the equation:

Work = Force x Distance

In this case, the force is the friction force and the distance is the distance the cheese slid. We can express the friction force as:

Friction Force = coefficient of friction x Normal Force

Since the cheese is in contact with the ice, the normal force exerted on the cheese is equal to its weight:

Normal Force = mass of cheese x acceleration due to gravity

Substituting the expressions for friction force and normal force into the work equation, we get:

Work = (coefficient of friction x mass of cheese x acceleration due to gravity) x distance

Since the work done is equal to the change in kinetic energy of the cheese, we have:

0.5 x mass of cheese x final velocity^2 - 0.5 x mass of cheese x initial velocity^2 = (coefficient of friction x mass of cheese x acceleration due to gravity) x distance

Simplifying the equation, we can solve for the coefficient of friction:

coefficient of friction = (0.5 x mass of cheese x (final velocity^2 - initial velocity^2)) / (mass of cheese x acceleration due to gravity x distance)

Plugging in the given values, we find that the coefficient of friction between the cheese and ice is 0.047.

The answer is  [tex]\mu \[/tex]approx 0.0153.

The coefficient of friction between the cheese and the ice can be determined by analyzing the conservation of momentum and the work-energy principle.

First, let's calculate the initial momentum of the pellet:

[tex]\[ p_{pellet} = m_{pellet} \cdot v_{pellet} \][/tex]

[tex]\[ p_{pellet} = 0.0013 \, \text{kg} \cdot 73 \, \text{m/s} \][/tex]

[tex]\[ p_{pellet} = 0.0949 \, \text{kg} \cdot \text{m/s} \][/tex]

When the pellet gets stuck in the cheese, the momentum is transferred to the cheese-pellet system. By conservation of momentum:

[tex]\[ m_{pellet} \cdot v_{pellet} = (m_{pellet} + m_{cheese}) \cdot v_{cheese} \][/tex]

[tex]\[ 0.0013 \, \text{kg} \cdot 73 \, \text{m/s} = (0.0013 \, \text{kg} + 0.109 \, \text{kg}) \cdot v_{cheese} \][/tex]

[tex]\[ v_{cheese} = \frac{0.0013 \, \text{kg} \cdot 73 \, \text{m/s}}{0.1103 \, \text{kg}} \][/tex]

[tex]\[ v_{cheese} = \frac{0.0949 \, \text{kg} \cdot \text{m/s}}{0.1103 \, \text{kg}} \][/tex]

[tex]\[ v_{cheese} \approx 0.8608 \, \text{m/s} \][/tex]

Now, we use the work-energy principle to find the coefficient of friction. The work done by friction is equal to the kinetic energy lost by the cheese as it slides to a stop:

[tex]\[ W_{friction} = f \cdot d \][/tex]

[tex]\[ f = \mu \cdot N \][/tex]

[tex]\[ N = m_{cheese} \cdot g \][/tex]

[tex]\[ W_{friction} = \mu \cdot m_{cheese} \cdot g \cdot d \][/tex]

The kinetic energy lost by the cheese is equal to its initial kinetic energy:

[tex]\[ KE_{initial} = \frac{1}{2} m_{cheese} \cdot v_{cheese}^2 \][/tex]

[tex]\[ KE_{initial} = \frac{1}{2} \cdot 0.109 \, \text{kg} \cdot (0.8608 \, \text{m/s})^2 \][/tex]

[tex]\[ KE_{initial} \approx 0.0396 \, \text{kg} \cdot \text{m}^2/\text{s}^2 \][/tex]

[tex]\[ KE_{initial} \approx 0.0396 \, \text{J} \][/tex]

Setting the work done by friction equal to the kinetic energy lost:

[tex]\[ \mu \cdot m_{cheese} \cdot g \cdot d = KE_{initial} \][/tex]

[tex]\[ \mu \cdot 0.109 \, \text{kg} \cdot 9.81 \, \text{m/s}^2 \cdot 0.25 \[/tex], [tex]\text{m} = 0.0396 \, \text{J} \][/tex]

[tex]\[ \mu \cdot 2.5963 \, \text{kg} \cdot \text{m/s}^2 = 0.0396 \[/tex], [tex]\text{J} \][/tex]

[tex]\[ \mu \approx \frac{0.0396 \, \text{J}}{2.5963 \, \text{kg} \cdot \text{m/s}^2} \] \[ \mu \approx 0.0153 \][/tex]

 The correct format for the answer is:

[tex]\[ \boxed{\mu \approx 0.0153} \][/tex]

An 80 kg astronaut has gone outside his space capsule to do some repair worlc Unfortunately, he forgot to lock his safetytether in place, and he has drifted 5.0 m away from the capsule. Fortunately, he has a 1000 w portable laser with freshbatteries that will operate it for 1.0 hr His only chance is to accelerate himself toward the space capsule by firing the laser inthe opposite direction. He has a 10-h supply of oxygen. How long will it take him to reach safety?

Answers

Final answer:

The question involves using the principles of conservation of momentum and kinematics in space to rescue an astronaut adrift from their space capsule using a laser for propulsion. However, the time required for the astronaut to reach safety cannot be calculated without the thrust or force specifics of the laser.

Explanation:

The scenario described involves the principles of conservation of momentum and the astronaut's ability to utilize a laser as a propulsion device. The astronaut's mass is 80 kg, and they need to use the laser to accelerate towards the space capsule. Without any external forces, momentum is conserved, and hence, the astronaut can generate thrust in space by expelling photons in the opposite direction of the desired movement, albeit very weak thrust. To determine how long it will take him to reach safety, we would need to calculate the actual propulsion force of the laser and the resulting acceleration. This can be derived from the conservation of momentum and Newton's second law of motion. However, with the current information provided, it is impossible to provide an accurate estimate without knowing the momentum or thrust provided by the laser.

Without such crucial information, assuming an ideal scenario and if the astronaut could somehow generate a constant force to obtain a tangible acceleration, we can use kinematics equations to estimate travel time once the acceleration is known. Yet in this specific situation, it's not feasible to calculate the time required for the astronaut to reach the space capsule without additional details about the actual force the laser can exert on the astronaut.

Helium-oxygen mixtures are used by divers to avoid the bends and are used in medicine to treat some respiratory ailments. What percent (by moles) of He is present in a helium-oxygen mixture having a density of 0.518 g/L at 25 ∘ C and 721 mmHg ?

Answers

Answer:

The percentage by mole of Helium present in the Helium-Oxygen mixture is = 66.6%

Explanation:

From General gas equation.

PV = nRT...............................  Equation 1

Where n = number of moles, V = volume, P = pressure, T = temperature, P = pressure, V = volume.

n = mass/molar mass .................. Equation 2

substituting equation 2 into equation 1.

PV = (mass/molar mass)RT

⇒ Mass/molar mass = PV/RT..................... Equation 3

But mass = Density × Volume

⇒ M = D × V.................... Equation 4

Where D = density, M = mass

Substituting equation 4 into equation 3

DV/molar mass = PV/RT............ Equation 5

Dividing both side of the equation by Volume (V) in Equation 5

D/molar mass = P/RT .............. Equation 6

Cross multiplying equation 6

D × RT = P × molar mass

∴ Molar mass = (D × RT)/P.................. Equation 7

Where D = 0.518 g/L , R = 0.0821 atm dm³/K.mol,

T = 25°C = 25 + 273 = 298 K,

P =721 mmHg = (721/760) atm= 0.949 atm

Substituting these values into equation 7

Molar mass = (0.518 × 0.0821 × 298)/0.949

Molar mass = 13.35 g/mole

The molar mass of the mixture is =13.35 g/mole

Let y be the mole fraction of Helium and 1-y be the mole fraction of oxygen.

∴ 13.35 = 4(y) + 32(1-y)

13.35 = 4y + 32 - 32y

Collecting like terms in the equation,

32y - 4y = 32 - 13.35

28y = 18.65

y = 18.65/28

y =0.666

y = 0.666 × 100 = 66.6%

∴The percentage by mole of Helium present in the Helium-Oxygen mixture is = 66.6%

Final answer:

The percent (by moles) of He in the helium-oxygen mixture with a density of 0.518 g/L at 25 ∘C and 721 mmHg is 13.6%.

Explanation:

To determine the percent (by moles) of He in the helium-oxygen mixture, we need to use the Ideal Gas Law equation:

PV = nRT

Where:

P is the pressure (721 mmHg)V is the volume (0.518 L)n is the number of moles of the gas we're interested in (He in this case)R is the ideal gas constant (0.0821 L·atm/mol·K)T is the temperature in Kelvin (25 + 273 = 298 K)

Rearranging the equation to solve for n:

n = PV / RT

Substituting the values:

n = (721 mmHg * 0.518 L) / (0.0821 L·atm/mol·K * 298 K)

n = 0.136 mol

Since the total number of moles in the mixture is 1 (as it is a binary mixture), the percent (by moles) of He can be calculated as:

Percent of He = (0.136 mol of He / 1) * 100%

Percent of He = 13.6%

Learn more about Helium-oxygen mixture here:

https://brainly.com/question/34707926

#SPJ3

wo parallel-plate capacitors have the same dimensions, but the space between the plates is filled with air in capacitor 1 and with plastic in capacitor 2. Each capacitor is connected to an identical battery, such that the potential difference between the plates is the same in both capacitors. Compare the magnitudes of the electric fields between the plates, ????1 and ????2, and the magnitudes of the free charges on the plates, ????1 and ????2.

Answers

Final answer:

The electric field between the plates will be the same in both capacitors, but the charge on the plates of capacitor 2 with plastic between the plates will be greater than the charge on the plates of capacitor 1 with air between the plates.

Explanation:

When comparing the magnitudes of the electric fields between the plates, we can use the formula E = Q / (ε0 * A), where E is the electric field, Q is the charge on the plates, ε0 is the permittivity of free space, and A is the area of the plates. In this case, since the capacitors have the same dimensions and the same charge, the electric field between the plates in both capacitors will be the same.

Regarding the magnitudes of the free charges on the plates, we know that Q = C * V, where Q is the charge, C is the capacitance, and V is the potential difference. Since the capacitance is directly proportional to the dielectric constant of the material between the plates, and the charge is the product of the capacitance and potential difference, the charge on the plates of capacitor 2 with plastic between the plates will be greater than the charge on the plates of capacitor 1 with air between the plates, because the dielectric constant of plastic is greater than 1.

At high noon, the sun delivers 1 000 W to each square meter of a blacktop road.

What is the equilibrium temperature of the hot asphalt, assuming its emissivity e = 1? (σ = 5.67 × 10−8W/m2⋅K4) .

a. 75°Cb. 84°Cc. 91°Cd. 99°C

Answers

Answer:

The correct answer is c, T = 91.3°C

Explanation:

For this exercise let's use Stefan's equation on the emission of a black body

         P = σ A e T⁴

Where σ is the Stefan-Boltzmann constant, A the area, and 'e'  emissivity and T the absolute temperature

In this case give the absorbed power is 1000W per square meter, let's clear the temperature equation

        T⁴ = (P / A) 1/σ e

Let's calculate

       T⁴ = 1000 1 / (5.67 10⁻⁸ 1)

       T⁴ = 176.37 10⁸

       T =[tex]\sqrt[4]{176.37   10^8}[/tex]  

       T = 3.6442 10² K

Let's reduce to degrees Celsius

       T = 364.42 -273.15

       T = 91.3 ° C

The correct answer is c

The equilibrium temperature of the hot asphalt, assuming it behaves as a perfect blackbody with emissivity of 1, can be calculated using the Stefan-Boltzmann law, resulting in approximately 91°C, making choice (c) the correct answer.

To determine the equilibrium temperature of the hot asphalt, we can use the concept of blackbody radiation.

Since the emissivity (e) is 1, the asphalt behaves as a perfect blackbody, which means it absorbs and emits radiation efficiently.

The power per unit area absorbed by the asphalt is:

P = 1000 W/m²

According to the Stefan-Boltzmann law, the power radiated per unit area by a blackbody is given by:

P = σeT⁴

where

σ is the Stefan-Boltzmann constant (5.67 × 10⁻⁸ W/m²·K⁴), and T is the equilibrium temperature in Kelvin

Given that e = 1 for a perfect blackbody, we can set the absorbed power equal to the emitted power:

1000 = 5.67 × 10⁻⁸ T⁴

Solving for T:

T⁴ = 1000 / 5.67 × 10⁻⁸T⁴ ≈ 1.76 × 10¹⁰T ≈ (1.76 x 10¹⁰)∧1/4T ≈ 278.8 K

Converting to Celsius:

T ≈ 278.8 K - 273.15 ≈ 5.65°C

This result does not match any answer choices, which suggests a potential issue. The correct calculations should yield a higher temperature due to an error in an earlier assumption or value misunderstanding. Revisiting the calculations correctly:

Solving again for higher accuracy:

T ≈ (1000 / 5.67 x 10⁻⁸)∧1/4 ≈ 364 K ≈ 91°C

Therefore, the correct equilibrium temperature is 91°C, making the correct choice:  (c) 91°C

In 1995 a research group led by Eric Cornell and Carl Wiemann at the University of Colorado successfully cooled Rubidium atoms to the 20-200 nK temperature range. Assuming (incorrectly) that the Rubidium atoms behave like particles of a classical ideal gas, calculate the RMS speed of a Rubidium atom at a temperature of 85.0 nK. In the experiments one particular isotope of Rubidium was used, Rubidium-87. The molar mass of this isotope is 86.91 g/mol.

Answers

Answer:

0.00493 m/s

Explanation:

T = Temperature of the isotope = 85 nK

R = Gas constant = 8.341 J/mol K

M = Molar mass of isotope = 86.91 g/mol

Root Mean Square speed is given by

[tex]v_r=\sqrt{\dfrac{3RT}{M}}\\\Rightarrow v_r=\sqrt{\dfrac{3\times 8.314\times 85\times 10^{-9}}{86.91\times 10^{-3}}}\\\Rightarrow v_r=0.00493\ m/s[/tex]

The Root Mean Square speed is 0.00493 m/s

Final answer:

The RMS speed of Rubidium-87 atoms at 85 nK can be estimated using the ideal gas approximation and the formula 'Urms = √(3kBT/M)'. The molar mass is converted to kg/mol and the temperature to kelvins before calculation.

Explanation:

To calculate the root-mean-square (RMS speed) of Rubidium-87 atoms at a temperature of 85.0 nK assuming classical ideal gas behavior, we can use the formula:


Urms = √(3kBT/M)

Where Urms is the root-mean-square speed, kB is Boltzmann's constant (1.38 × 10-23 J/K), T is the absolute temperature in kelvins, and M is the molar mass in kilograms per mole. First, we convert the molar mass of Rubidium-87 from grams per mole to kilograms per mole by dividing it by 1000:


M = 86.91 g/mol ∖ 0.08691 kg/mol

Next, we convert the temperature from nanokelvins to kelvins:


T = 85.0 nK = 85.0 × 10-9 K

Substituting the values into the RMS speed equation gives us:


Urms = √(3 × (1.38 × 10-23 J/K) × (85.0 × 10-9 K) / 0.08691 kg/mol)

After calculating, we find that the RMS speed of Rubidium-87 atoms at 85.0 nK is:


Urms ≈ ... m/s

Note that the calculation here assumes that the Rubidium atoms behave as a classical ideal gas, which is not an accurate assumption for atoms at such low temperatures.

I take 1.0 kg of ice and dump it into 1.0 kg of water and, when equilibrium is reached, I have 2.0 kg of ice at 0°C. The water was originally at 0°C.
The specific heat of water = 1.00 kcal/kg⋅°C, the specific heat of ice = 0.50 kcal/kg⋅°C, and the latent heat of fusion of water is 80 kcal/kg.

The original temperature of the ice was:
a. one or two degrees below 0°C.b. −80°C.c. −160°C.d. The whole experiment is impossible.

Answers

Answer:

.c. −160°C

Explanation:

In the whole process one kg of water at  0°C loses heat to form one kg of ice and heat lost by them is taken up by ice at −160°C . Now see whether heat lost is equal to heat gained or not.

heat lost by 1 kg of water at  0°C

= mass x latent heat

= 1 x 80000 cals

= 80000 cals

heat gained by ice at −160°C to form ice at  0°C

= mass x specific heat of ice x rise in temperature

= 1 x .5 x 1000 x 160

= 80000 cals

so , heat lost = heat gained.

Final answer:

The original temperature of the ice was a. one or two degrees below 0°C.

Explanation:

Heat transfer is the process by which thermal energy is exchanged between systems. It occurs through conduction, where heat moves through materials, convection, involving the movement of fluids, and radiation, which involves electromagnetic waves. Understanding heat transfer is essential in fields like physics, engineering, and environmental science.

To find the original temperature of the ice, we need to calculate the heat transferred during the process. First, we need to bring the ice up to 0°C and melt it. This requires a heat transfer of 4.74 kcal. This will lower the temperature of the water by 23.15°C. After the ice has melted and the system reaches equilibrium, the final temperature of the water is 20.6°C. Therefore, the original temperature of the ice was one or two degrees below 0°C.

Two parallel disks of diameter D 5 0.6 m separated by L 5 0.4 m are located directly on top of each other. Both disks are black and are maintained at a temperature of 450 K. The back sides of the disks are insulated, and the environment that the disks are in can be considered to be a blackbody at 300 K. Determine the net rate of radiation heat transfer from the disks to the environment.

Answers

To solve this problem it is necessary to apply the concepts related to the Stefan-Boltzmann law which establishes that a black body emits thermal radiation with a total hemispheric emissive power (W / m²) proportional to the fourth power of its temperature.

Heat flow is obtained as follows:

[tex]Q = FA\sigma\Delta T^4[/tex]

Where,

F =View Factor

A = Cross sectional Area

[tex]\sigma =[/tex] Stefan-Boltzmann constant

T= Temperature

Our values are given as

D = 0.6m

[tex]L = 0.4m\\T_1 = 450K\\T_2 = 450K\\T_3 = 300K[/tex]

The view factor between two coaxial parallel disks would be

[tex]\frac{L}{r_1} = \frac{0.4}{0.3}= 1.33[/tex]

[tex]\frac{r_2}{L} = \frac{0.3}{0.4} = 0.75[/tex]

Then the view factor between base to top surface of the cylinder becomes [tex]F_{12} = 0.26[/tex]. From the summation rule

[tex]F_{13} = 1-0.26[/tex]

[tex]F_{13} = 0.74[/tex]

Then the net rate of radiation heat transfer from the disks to the environment is calculated as

[tex]\dot{Q_3} = \dot{Q_{13}}+\dot{Q_{23}}[/tex]

[tex]\dot{Q_3} = 2\dot{Q_{13}}[/tex]

[tex]\dot{Q_3} = 2F_{13}A_1 \sigma (T_1^4-T_3^4)[/tex]

[tex]\dot{Q_3} = 2(0.74)(\pi*0.3^2)(5.67*10^{-8})(450^4-300^4)[/tex]

[tex]\dot{Q_3} = 780.76W[/tex]

Therefore the rate heat radiation is 780.76W

Final answer:

The net radiation heat transfer from the disks to the environment is computed by applying the Stefan-Boltzmann law for the radiation heat transfer of black bodies. The area of one side of the disk and the given temperatures are substituted into the law's formula to obtain the desired value.

Explanation:

The physical concept relevant to the question is the Stefan-Boltzmann law related to radiation heat transfer. Since both disks are black, they are considered perfect black bodies with an emissivity (e) of 1.

Firstly, we calculate the area (A) of one disk as A = π(D/2)² (because the back sides are insulated on both disks, we only need to consider the radiation from one side of each disk). Then, using Stefan-Boltzmann law formula: Qnet = 2σeA(T₁⁴ - T₂⁴) (the factor 2 is due to having two disks), where T₁ = 450K (temperature of the disks) and T₂ = 300K (temperature of the surrounding environment) is used to find the desired rate of heat transfer (Qnet). The Stefan-Boltzmann constant (σ) is known to be 5.67 × 10⁻⁸ J/s.m².K⁴.

With the value of A calculated from the given diameter and the above values substituted, we can calculate Qnet.

Learn more about Stefan-Boltzmann law here:

https://brainly.com/question/31676048

#SPJ3

When the daughter nucleus produced in a radioactive decay is itself unstable, it will eventually decay and form its own daughter nucleus. If the newly formed daughter nucleus is also unstable, another decay will occur, and the process will continue until a nonradioactive nucleus is formed. Such a series of radioactive decays is called a decay chain.

A good example of a decay chain is provided by 232 90Th, a naturally occurring isotope of thorium.

What is the energy Q released in the first step of the thorium-232 decay chain? The atomic mass of 232 90Th is 232.038054 u and the atomic mass of 228 88Ra is 228.0301069 u.

Answer in (MeV) and show your work

Answers

Answer:

4.981 MeV

Explanation:

The quantity of energy Q can be calculated using the formula

Q = (mass before - mass after) × c²

Atomic Mass of thorium = 232.038054 u, atomic of Radium = 228.0301069 u and mass of Helium = 4.00260. The difference of atomic number and atomic mass  between the thorium and radium ( 232 - 228)  and ( 90 - 88)  show α particle was emitted.

1 u = 931.494 Mev/c²

Q = (mass before - mass after) × c²

Q = ( mass of thorium - ( mass of Radium + mass of Helium ) )× c²

Q = 232.038054 u - ( 228.0301069 + 4.00260) × c²

Q = 0.0053471 u × c²

replace 1 u = 931.494 MeV/ c²

Q = 0.0053471 × c² × (931.494 MeV / c²)

cancel c²  from the equation

Q = 0.0053471 × 931.494 MeV = 4.981 MeV

Unpolarized light with intensity S is incident on a series of polarizing sheets. The first sheet has its transmission axis oriented at 0°. A second polarizer has its transmission axis oriented at 45° and a third polarizer oriented with its axis at 90°. Determine the fraction of light intensity exiting the third sheet with and without the second sheet present.

Answers

Answer:

Explanation:

Given

Initial Intensity of light is S

when an un-polarized light is Passed through a Polarizer then its intensity reduced to half.

When it is passed through a second Polarizer with its transmission axis [tex]\theat =45^{\circ}[/tex]

[tex]S_1=S_0\cos ^2\theta [/tex]

here [tex]S_0=\frac{S}{2}[/tex]

[tex]S_1=\frac{S}{2}\times \frac{1}{(\sqrt{2})^2}[/tex]

[tex]S_1=\frac{S}{4}[/tex]

When it is passed through third Polarizer with its axis [tex]90^{\circ}[/tex] to first but [tex]\theta =45^{\circ}[/tex] to second thus [tex]S_2[/tex]

[tex]S_2=S_0\cos ^2\theta [/tex]

[tex]S_2=\frac{S}{4}\times \frac{1}{2}[/tex]

[tex]S_2=\frac{S}{8}[/tex]

When middle sheet is absent then Final Intensity will be zero                    

Final answer:

The first polarizing sheet reduces the intensity of unpolarized light to 50%. The second polarizing sheet further reduces the intensity to 25%. The third polarizing sheet, with the second sheet present, does not allow any light to pass through.

Explanation:

When unpolarized light passes through a polarizing sheet, the intensity of the light reduces by half. The first polarizing sheet reduces the intensity to 50% of the original intensity. The second polarizing sheet, oriented at an angle of 45° to the first sheet, further reduces the intensity by 50%. So, the intensity exiting the second sheet is 25% of the original intensity (50% x 50% = 25%).

However, the third polarizing sheet, oriented at an angle of 90° to the first, does not allow any light to pass through because the transmission axis of the third sheet is perpendicular to the polarization direction of the light. Therefore, the fraction of light intensity exiting the third sheet, with the second sheet present, is 0%.

You are comparing two diffraction gratings using two different lasers: a green laser and a red laser. You do these two experiments

1. Shining the green laser through grating A you see the first maximum 1 meter away from the center
2. Shining the red laser through grating B, you see the first maximum 1 meter away from the center

In both cases, the gratings are the same distance from the screen.

(a) What can you deduce about the gratings?
(b) What would you observe if you shone the green laser through grating B:?

a. (a) grating A has more lines/mm; (b) the first maximum less than 1 meter away from the center
b. (a) grating B has more lines/mm; (b) the first maximum less than 1 meter away from the center
c.(a) grating B has more lines/mm; (b) the first maximum more than 1 meter away from the center
d. (a) grating B has more lines/mm: (b) the first maximum 1 meter away from the center
e. (a) grating A has more lines/mm; (b) the first maximum more than 1 meter away from the center
f. (a) grating A has more lines/mm; (b) the first maximum 1 meter away from the center

Answers

Answer:

a. (a) grating A has more lines/mm; (b) the first maximum less than 1 meter away from the center

Explanation:

Let  n₁ and n₂ be no of lines per unit length  of grating A and B respectively.

λ₁ and λ₂ be wave lengths of green and red respectively , D be distance of screen and d₁ and d₂ be distance between two slits of grating A and B ,

Distance of first maxima for green light

= λ₁ D/ d₁

Distance of first maxima for red light

= λ₂ D/ d₂

Given that

λ₁ D/ d₁ = λ₂ D/ d₂

λ₁ / d₁ = λ₂ / d₂

λ₁ / λ₂  = d₁ / d₂

But

λ₁  <  λ₂

d₁ < d₂

Therefore no of lines per unit length of grating A will be more because

no of lines per unit length  ∝ 1 / d

If grating B is illuminated with green light first maxima will be at distance

λ₁ D/ d₂

As λ₁ < λ₂

λ₁ D/ d₂ < λ₂ D/ d₂

λ₁ D/ d₂ < 1 m

In this case position of first maxima will be less than 1 meter.

Option a is correct .

Final answer:

Comparison of the diffraction patterns for two lasers and two gratings reveals that Grating B must have more lines per millimeter, and if the green laser were shone through Grating B, the first maximum would be more than 1 meter away from the center.

Explanation:

To analyze this problem, we need to apply our knowledge of diffraction gratings and wavelength of light. The position of the maxima on the screen depends on the grating spacing (number of lines per millimeter) and the wavelength of the light. The formula for the angle of the maxima for a diffraction grating is:

nλ = d sin θ,

where:

n is the order of the maximum,λ is the wavelength of the light,d is the distance between adjacent lines on the grating, andθ is the angle of the maximum from the normal.

When comparing two diffraction gratings with different lasers:

A green laser (shorter wavelength) producing a first maximum at 1 meter suggests that the spacing between lines (d) in grating A supports this particular maximum for that wavelength.A red laser (longer wavelength) producing a first maximum at the same distance suggests that grating B must have a smaller d (more lines per mm) to compensate for its longer wavelength to produce a maximum at the same distance.

Hence, the answer is (c):

a) Grating B has more lines/mm; because it compensates for the longer wavelength of the red light to still create a maximum at the same position as the green light with grating A.

b) If the green laser (shorter wavelength) were shone through grating B (more lines/mm), the first maximum would be more than 1 meter away from the center, since a grating with more lines per millimeter spreads the maxima further apart for the same wavelength, compared to a grating with fewer lines per millimeter.

9. Would the maximin criterion achieve perfect income equality? a. Yes. There would be no way to reallocate resources to raise the utility of the poor. b. Yes. The maximin criterion would eliminate poverty. c. No. It is impossible for complete equality to benefit the worst-off people in society. d. No. Complete equality would reduce incentives to work, which would reduce total income, which would reduce the incomes of the worst-off people in society.

Answers

Answer:

C

Explanation:

Although the maximin criterion emphasizes the worst-off person in society and it's targeted towards equalizing of the distribution of income by transferring income from the rich to the poor, it will not lead to a complete egalitarian society. Because this will make the people not to have incentive to work hard and the societal total income will substantially fall off and the least fortunate person will be worse off. Thus, this rule still allows disparities in income.

Blood flows through a section of a horizontal artery that is partially blocked by a deposit along the artery wall. As a hemoglobin molecule moves from the narrow region into the wider region, its speed changes from v2 = 0.800 m/s to v1 = 0.630 m/s. What is the change in pressure, P1 - P2, that it experiences? The density of blood is 1060 kg/m3.

Answers

Answer:

[tex]\Delta P=128.843\ Pa[/tex]

Explanation:

given,                                

speed of blood = v₂ = 0.800 m/s

v₁ = 0.630 m/s            

density of blood = 1060 kg/m³          

Atmospheric pressure =  8.89 ✕ 10⁴ N/m²

Using  Bernoulli equation                  

[tex]P_1 - P_2 = \dfrac{1}{2}\rho (v_2^2-v_1^2)[/tex]  

[tex]\Delta P= \dfrac{1}{2}\rho (0.8^2-0.63^2)[/tex]            

[tex]\Delta P= \dfrac{1}{2}\times 1060\times (0.8^2-0.63^2)[/tex]            

[tex]\Delta P=128.843\ Pa[/tex]

the change of pressure is equal to [tex]\Delta P=128.843\ Pa[/tex]

A refrigerator is being pulled up a ramp with a horizontal force P, which acts at the top corner. The refrigerator has a mass of 75 kg, acting through point G. The ramp is inclined at 20º, and the coefficient of static friction is 0.3 between the refrigerator and the ramp.
(a) Find the force P required to move the refrigerator.
(b) Does the refrigerator tip or slide?

Answers

Answer:

(a) P = 459.055 N.

(b) the refrigerator tips.

Explanation:

Given, the angle of ramp is 20°.

When the weight of refrigerator is resolved in directions parallel and perpendicular to ramp, 75×g×sin(20°) and 75×g×cos(20°).

⇒ normal contact force is 75×g×cos(20°).

⇒ frictional force is 0.3×75×g×cos(20°) = 207.414 N

so, total opposite force is 207.414 + 75×g×sin(20°) = 459.055 N.

so, the force needed is P = 459.055 N

And as the moment due to both opposite force and P force are in same direction the refrigerator tips rather than just sliding.

Starting from rest, your friend dives from a high cliff into a deep lake below, yelling in excitement at the thrill of free-fall on her way down. You watch her, as you stand on the lake shore, and at a certain instant your keen hearing recognizes that the usual frequency of her yell, which is 919 Hz, is shifted by 55.9 Hz. How long has your friend been in the air when she emits the yell whose frequency shift you hear? Take 342 m/s for the speed of sound in air and 9.80 m/s2 for the acceleration due to gravity.

Answers

Answer:

2 seconds

Explanation:

f = Frequency of yell = 919 Hz

[tex]\Delta f[/tex] = Shifted frequency = 55.9 Hz

v = Speed of sound in air = 342 m/s

[tex]v_r[/tex] = Velocity of friend

a = Acceleration due to gravity = 9.81 m/s²

From the Doppler shift formula we have

[tex]\dfrac{f+\Delta f}{f}=\dfrac{v}{v-v_r}\\\Rightarrow v_r=v-\dfrac{vf}{f+\Delta f}\\\Rightarrow v_r=342-\dfrac{342\times 919}{919+55.9}\\\Rightarrow v_r=19.61\ m/s[/tex]

The velocity of the my friend is 19.61 m/s

[tex]v=u+at\\\Rightarrow t=\dfrac{v-u}{a}\\\Rightarrow t=\dfrac{19.61-0}{9.8}\\\Rightarrow t=2\ s[/tex]

The time my friend is in the air is 2 seconds

An oil film with index of refraction 1.64 is trapped between two pieces of glass with index of refraction 1.43. No light is reflected by such a film when 578 nm light falls on it at normal incidence. What is the nonzero minimum thickness of the oil film that will satisfy these conditions? Answer in units of nm.

Answers

Final answer:

The minimum nonzero thickness of an oil film with index of refraction 1.64, between glass with index 1.43 to achieve no reflection for 578 nm light at normal incidence, is approximately 88 nm. This results from the condition for destructive interference.

Explanation:

When light of wavelength 578 nm hits the film at normal incidence and no light is reflected, it means that the reflected light waves from the top and bottom surfaces of the oil film are exactly out of phase, causing destructive interference.

For destructive interference to occur, the path difference between the two reflected waves must be an odd multiple of half the wavelength in the medium, which is given by the formula:

Path Difference (in the medium) = 2 × n × thickness of the film = [tex](m + \(\frac{1}{2}\)) \times \(\frac{\lambda}{n}\)[/tex], where m = 0, 1, 2, ...

Considering that there is a [tex]\(\frac{\lambda}{2}\)[/tex] phase shift when light reflects off a medium with a lower index of refraction to a higher one, and the film's index of refraction is greater than that of the surrounding glass, we take m = 0 for the smallest non-zero thickness. Thus, the minimum thickness of the oil film is:

Thickness = [tex]\(\frac{\lambda}{4 * n}\)[/tex] = [tex]\(\frac{578 nm}{4 \times 1.64}\)[/tex] = 88.16 nm

The nonzero minimum thickness of the oil film that will satisfy the conditions of no reflected light is therefore approximately 88 nm.

A person is trying to judge whether a picture (mass = 1.05 kg) is properly positioned by temporarily pressing it against a wall. The pressing force is perpendicular to the wall. The coefficient of static friction between the picture and the wall is 0.720. What is the minimum amount of pressing force that must be used?

Answers

Answer:

the minimum amount of pressing force P will be 14.29 N

Explanation:

the friction force Fr will be

Fr = μ*N

where μ= coefficient of static friction , N= force normal to the plane

then N=P (force applied by the person)

from Newton's first law

net force = F = 0

Fr - weight = 0

μ*P - m*g =0

P = m*g/μ = 1.05 kg*9.8 m/s² / 0.720 = 14.29 N

P = 14.29 N

A slice of bread contains about 100 kcal. If specific heat of a person were 1.00 kcal/kg·°C, by how many °C would the temperature of a 70.0-kg person increase if all the energy in the bread were converted to heat?a. 2.25°Cb. 1.86°Cc. 1.43°Cd. 1.00°C

Answers

Answer:

(c) 1.43°C

Explanation:

If the energy in the bread are converted to heat.

Then, The heat transferred from the bread to person = 100 kcal.

From specific heat capacity,

Q = cmΔT............................ equation 1

Where Q = quantity of heat, m = mass of the person, c = specific heat capacity of the person, Δ = increase in temperature.

Making ΔT the subject the equation 1,

ΔT = Q/cm........................ equation 2

Where Q = 100 kcal, c= 1.00 kcal/kg.°C, m = 70.0 kg

Substituting these values into equation 2,

ΔT = 100/(1×70)

ΔT = 100/70

ΔT = 1.428

ΔT ≈ 1.43°C

The increase in temperature of the body is = 1.43°C

The right option is (c) 1.43°C

The surface of the Sun has a temperature of about 5 800 K. If the radius of the Sun is 7 × 108 m, determine the power output of the sun. (Take e = 1, and σ = 5.67 × 10−8W/m2⋅K4).
a. 3.95 × 1026 W
b. 5.17 × 1027 W
c. 9.62 × 1028 W
d. 6.96 × 1030 W

Answers

Answer:

a. [tex]3.95\times10^{26} [/tex]W

Explanation:

[tex]T[/tex] = temperature of the surface of sun = 5800 K

[tex]r[/tex] = Radius of the Sun = 7 x 10⁸ m

[tex]A[/tex] = Surface area of the Sun

Surface area of the sun is given as

[tex]A = 4\pi r^{2} \\A = 4(3.14) (7\times10^{8})^{2}\\A = 6.2\times10^{18} m^{2}[/tex]

[tex]e[/tex] = Emissivity = 1

[tex]\sigma[/tex] = Stefan's constant = 5.67 x 10⁻⁸ Wm⁻²K⁻⁴

Using Stefan's law, Power output of the sun is given as

[tex]P = \sigma e AT^{4} \\P = (5.67\times10^{-8}) (1) (6.2\times10^{18}) (5800)^{4}\\P = 3.95\times10^{26} W[/tex]

Other Questions
what is meant by social cost 2014 2015 2016 2017 2018 Stock return 21.25% 14.45% 25.50% 35.70% 11.05% Given the preceding data, the average realized return on BLMs stock is . The preceding data series represents of BLMs historical returns. Based on this conclusion, the standard deviation of BLMs historical returns is . 8. Personaje del Antiguo Testamento que anunci al Mesas y=-2 y=3x+1 in graph Think of a time when you have heard a person give an individual-centered explanation, such as, The poor are just lazy, or Pregnant teens have no morals, for a social problem. Share the statement, and explain the larger social problem that it identifies. How would a system-centered explanation differ? Bridges and automobiles are either painted or coated with zinc. Why is it not electroplated? John is an athlete. He has $120 to spend and wants to buy either a heart rate monitor or new running shoes. Both the heart rate monitor and running shoes cost $120, so he can only buy one. This illustrates the principle that Moral indignation is jealousy with a halo. The true strength of rulers and empires lies not in armies or emotions, but in the belief of men that they:________ Science Chemical compound formula Which of the following versions of corporate social responsibility suggests that the long - term financial well - being of every firm is directly tied questions of how the firm both affects and is affected by the natural environment? a. Social entrepreneurship b. Sustainability c. Social web d. philanthropic The roots of a quadratic equation are -7 and 1. Write an equation that could represent this function. Give your answer in standard form and factored form. Identify the social contract theory principle that supports the Declaration of Independence principles. "We hold these truths to be self-evident, that all men are created equal ... with certain unalienable rights ... Life, Liberty, and ... Happiness." The Business Auto Coverage Form is intended for which of the following businesses? Select all that apply.a. Owned private passenger autosb. Mobile equipment registered to drive on public roadsc. Automatic coverage for physical damage to trailersd. Automobiles owned by employees used for business purposes For the open-ended question below, be sure to show your work and/or explain your reasoning.Scott has $15.00, and he earns $6.00 an hour babysitting.a) Write an equation for the amount of money (m) Scott has after a number of hours babysitting (h).b) After how many hours of babysitting will Scott have $51.00? Graph the equation using the point and the slope.y-5= 1/5(x-5)Use the graphing tool to graph the equation. Use the point contained in the equation when drawing the line. Brett knew that if he did a good job on the international assessments project, he would be up for the promotion of division head at his company. The possibility of this promotion gives Brett a feeling of personal investment in the project and demonstrates the concept of _____. If P= (-1,5), Find:Rx=1 (P)([?],[]) "Given a nodal delay of 84.1ms when there is no traffic on the network (i.e. usage = 0%), what is the effective delay when network usage = 39.3% ? (Give answer is miliseconds, rounded to one decimal place, without units. So for an answer of 0.10423 seconds you would enter "104.2" without the qu" Suppose you invested $1200 for 6 years. You earned $396 in simple interest at the end of the 6 years what is the annual interest rate During REM sleep, our muscles are paralyzed. The Activation Synthesis Theory of dreams says that this temporary paralysis _____ the brain. a. confuses b. destroys c. deceives d. assists