What will happen to the pH of a buffer if acid/base ratio is increased by 100?
plz respond within an hour :)

Answers

Answer 1

Answer:

It will decrease by 2 units.

Explanation:

The Henderson-Hasselbalch equation for a buffer is

pH = pKa + log(base/acid)

Let's assume your acid has pKa = 5.

(a) If the base: acid ratio is 1:1,

pH(1) = 5 + log(1/1) = 5  + log(1) = 5 + 0 = 5

(b) If the base: acid ratio is 1:100,

pH(2) = 5 + log(1/100) = 5  + log(0.01) = 5 - 2 = 3

(c) Difference

ΔpH = pH(2) - pH(1) = 5 - 3 = -2

If you increase the acid:base ratio to 100:1, the pH will decrease by two units.


Related Questions

Directions: Using the definition of molarity, the given balanced equations, and stoichiometry, solve the following problems.

Sodium chloride solution and water react to produce sodium hydroxide and chlorine gas according to the following balanced equation: 2NaCl(aq) + 2H20(l) <-> 2Na0H(aq) + Cl2(g)
a. How many liters of 0.4 M sodium chloride do you need in order to have 3.0 moles of chlorine gas?
b. Find the number of moles of water needed to produce 3.0 L of chlorine gas at STP.

Answers

Answer:

15L of 0.40M NaCl(aq) solution

Explanation:

2NaCl(aq) + 2H₂O(l) → 2NaOH(aq) + Cl₂(g)

2Na⁺(aq) + 2Clˉ(aq) + 2H₂O(l) → 2Na⁺(aq) + 2OHˉ(aq) + Cl₂(g)

Na⁺(aq) is a spectator ion in the given reaction and does not enter into the reaction process…

Net Ionic Equation is then 2Clˉ(aq) + 2H₂O(l) → 2OHˉ(aq) + Cl₂(g)

From Rxn, 2 moles Clˉ(aq) is needed to produce 1 mole of  Cl₂(g)

Therefore, 6 moles Clˉ(aq) is needed to produce 3 moles of Cl₂(g)

That is, 6 moles NaCl(aq) → 6 moles Clˉ(aq) = 0.40M x V(NaCl)liters  

V(NaCl) liters = 6 moles Clˉ(aq)/(0.40mole/liter) = 15 liters of 0.40M NaCl(aq)

Final answer:

7.5 liters of 0.4M sodium chloride solution are needed to produce 3.0 moles of chlorine gas, and 0.134 moles of water are needed to produce 3.0 liters of chlorine gas at STP.

Explanation:

The question is related to molarity and stoichiometry. Let's solve part (a) and (b).

Part A:

Molarity is represented by moles of solute / liters of solution. The balanced equation gives a 1:1 ratio between NaCl and Cl2. The question gives us 3.0 moles of Cl2 gas, implying that we need the same moles of NaCl.

So, Moles = Molarity x Volume, Volume = Moles / Molarity, Volume = 3.0 moles / 0.4 M = 7.5 liters of NaCl solution are needed.

Part B:

For part (b), we see from the stoichiometry of the balanced reaction that the number of moles of water is equal to the number of moles of chlorine. According to the ideal gas law (PV=nRT), at standard temperature and pressure (STP), 1 mole of any gas occupies 22.4L. So, 3.0L of Cl2 gas corresponds to 3.0 L / 22.4 L/mole = 0.134 moles. Therefore, you'll need 0.134 moles of water.

Learn more about Molarity & Stoichiometry here:

https://brainly.com/question/9402899

#SPJ3

In which main energy level does the 'd' sublevel first appear? K (first main energy level) L (second main energy level) M (third main energy level) N (fourth main energy level)

Answers

Answer:

M (third main energy level)

Explanation:

The third main energy level bears the first appearance of the 'd' sublevel. The principal quantum number(n) depicts the main energy levels in which an orbital is located. It takes values of n=1,2,3,4,5..... and it can be represented by the shells k,l,m,n.......

The subshells in these main orbitals are represented by s,p,d and f. For the K shell, the principal quantum number is m and its sublevel notations are s,p and d. This is where the d-sublevel first appears.

Final answer:

The 'd' sublevel first appears in the third main energy level (M). This is because the electron configuration in atoms is organized into main energy levels and sublevels, which define an electron's distance from the nucleus and energy.

Explanation:

The 'd' sublevel first appears in the third main energy level, also labeled as M. The electron configuration in atoms is organized into main energy levels and sublevels, which help define an electron's relative distance from the nucleus and its energy. The main energy levels are generally labeled K, L, M, N, etc., starting from the nucleus. Each energy level has one or more sublevels: s, p, d, f. The 's' sublevel appears in all main energy levels, the 'p' sublevel starts from the second (L), and the 'd' sublevel commences from the third (M) main energy level. Therefore, the 'd' sublevel does not exist in the first (K) or second (L) main energy levels.

Learn more about 'd' sublevel here:

https://brainly.com/question/34831957

#SPJ6

The pH of a solution is measured eight times by one operator using the same instrument. She obtains the following data: 7.15, 7.20, 7.18, 7.19, 7.21, 7.20, 7.16, and 7.20. (a) Calculate the sample mean. Round your answer to 3 decimal places.

Answers

Answer:

7.186

Explanation:

The mean is the average of some given data from a sample point.

To calculate the mean, we use the formula below:

             Mean = ∑fx/∑f

Where f = frequency

           x = sample data

   

From the given pH of the solutions, we can form a table:

      x                                     f                                          fx

    7.15                                  1                                         7.15

    7.16                                  1                                         7.16

    7.18                                  1                                         7.18

    7.19                                  1                                         7.19

    7.20                                 3                                        21.6

    7.21                                  1                                         7.21

Now ∑fx = 7.15 +7.16 +7.18 + 7.19 + 7.20 + 7.21 = 57.49

         ∑f = 1 + 1 + 1 + 1 + 3 + 1 = 8

The mean = [tex]\frac{57.49}{8}[/tex] = 7.18625 = 7.186

Hydroxyapatite, Ca5(PO4)3(OH), is the main mineral component of dental enamel, dentin, and bone, and thus has many medical uses. Coating it on metallic implants (such as titanium alloys and stainless steels) helps the body accept the implant. In the form of powder and beads, it is used to fill bone voids, which encourages natural bone to grow into the void. Hydroxyapatite is prepared by adding aqueous phosphoric acid to a dilute slurry of calcium hydroxide. (a) Write a balanced equation for this preparation. (b) What mass of hydroxyapatite could form from 100. g of 85% phosphoric acid and 100. g of calcium hydroxide?

Answers

Answer:

(a) 5Ca(OH)₂ + 3H₃PO₄ = Ca₅(PO₄)₃(OH) + 9H₂O.

(b) 135.62 g.

Explanation:

(a) Write a balanced equation for this preparation.

The balanced equation for

5Ca(OH)₂ + 3H₃PO₄ = Ca₅(PO₄)₃(OH) + 9H₂O,

that 5 mol of Ca(OH)₂ react with 3 mol of H₃PO₄ to produce 1 mol of Ca₅(PO₄)₃(OH) "hydroxyapatite" and 9 mol of H₂O.

(b) What mass of hydroxyapatite could form from 100.0 g of 85% phosphoric acid and 100.0 g of calcium hydroxide?

Firstly, we need to calculate the no. of moles of 100.0 g of 85% phosphoric acid and 100.0 g of calcium hydroxide:

The no. of moles of 100.0 g of 85% phosphoric acid:

∵ The percent of phosphoric acid = 85%.

∴ The actual mass of phosphoric acid in solution = 85.0 g.

∴ no. of moles of phosphoric acid = mass/molar mass = (85.0 g)/(97.994 g/mol) = 0.87 mol.

The no. of moles of 100.0 g of calcium hydroxide:

∴ no. of moles of calcium hydroxide = mass/molar mass = (100.0 g)/(74.093 g/mol) = 1.35 mol.

From the stichiometry, Ca(OH)₂ react with H₃PO₄ with (5: 3) molar ratio.

∴ 1.35 mol of calcium hydroxide "limiting reactant" react completely with 0.813 mol of phosphoric acid "excess reactant" with (5: 3) molar ratio.

Now, we can find the no. of moles of produced Ca₅(PO₄)₃(OH) "hydroxyapatite":

Using cross multiplication:

5 mol of Ca(OH)₂ produce → 1 mol Ca₅(PO₄)₃(OH), from stichiometry.

1.35 mol of Ca(OH)₂ produce → ??? mol Ca₅(PO₄)₃(OH).

∴ The no. of moles of produced Ca₅(PO₄)₃(OH) "hydroxyapatite" = (1.35 mol)(1 mol)/(5 mol) = 0.27 mol.

Finally, we can get the mass of produced Ca₅(PO₄)₃(OH) "hydroxyapatite" = (no. of moles)(molar mass) = (0.27 mol)(502.3 g/mol) = 135.62 g.

The equation of the reaction is:

5Ca(OH)₂ + 3H₃PO₄ ---> Ca₅(PO₄)₃(OH) + 9H₂O.

Based on the data provided, the mass of hydroxyapatite formed is  135.62 g.

What are minerals?

Minerals are substances which contain metallic elements combined with other elements found in the earth's crust.

Example of a mineral is Hydroxyapatite, Ca5(PO4)3(OH).

The balanced equation for the  preparation of hydroxyapatite is given below:

5Ca(OH)₂ + 3H₃PO₄ ---> Ca₅(PO₄)₃(OH) + 9H₂O,

that 5 mol of Ca(OH)₂ react with 3 mol of H₃PO₄ to produce 1 mol of Ca₅(PO₄)₃(OH) and 9 mol of H₂O.

The mass of hydroxyapatite prepared from 100.0 g of 85% phosphoric acid and 100.0 g of calcium hydroxide? is calculated as follows:

100.0 g of 85% phosphoric acid contains 100 * 85/100 g of  phosphoric acid = 85.0 g.

moles of phosphoric acid in 85 g = mass/molar mass

molar mass of phosphoric acid = 97.994 g/mol

moles of phosphoric acid in 85 g = 85.0 g/97.994 g/mol

moles of phosphoric acid in 85 g = 0.87 moles

moles of calcium hydroxide in 100.0 g = mass/molar mass

molar mass of calcium hydroxide = 74.093 g/mol

moles of calcium hydroxide in 100.0 g = 100.0 g/74.093 g/mol

moles of calcium hydroxide in 100.0 g = 1.35 moles

From the equation of the reaction, Ca(OH)₂ react with H₃PO₄ in a 5: 3 molar ratio.

5 mol of Ca(OH)₂ produce 1 mole Ca₅(PO₄)₃(OH)

1.35 mol of Ca(OH)₂ will  produce 1.35 * 1/5 moles of Ca₅(PO₄)₃(OH) = 0.27 moles

mass of 0.27 moles of hydroxyapatite = no. of moles * molar mass

molar mass of hydroxyapatite = 502.3 g/mol

mass of hydroxyapatite =  0.27 mol * 502.3 g/mol

mass of hydroxyapatite = 135.62 g

Therefore, the mass of hydroxyapatite produced is 135.62 g

Learn more about minerals at: https://brainly.com/question/89259

Aluminum chloride can be formed from its elements:
(i) 2Al(s) + 3Cl2 (g) ⟶ 2AlCl3 (s) ΔH° = ? Use the reactions here to determine the ΔH° for reaction (i):
(ii) HCl(g) ⟶ HCl(aq) ΔH(ii) ° = −74.8 kJ
(iii) H2 (g) + Cl2 (g) ⟶ 2HCl(g) ΔH(iii) ° = −185 kJ
(iv) AlCl3 (aq) ⟶ AlCl3 (s) ΔH(iv) ° = +323 kJ/mol
(v) 2Al(s) + 6HCl(aq) ⟶ 2AlCl3 (aq) + 3H2 (g) ΔH(v) ° = −1049 kJ

Answers

Answer: The [tex]\Deltas H^o_{formation}[/tex] for the reaction is -1406.8 kJ.

Explanation:

Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.

According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.

The chemical reaction for the formation reaction of [tex]AlCl_3[/tex] is:

[tex]2Al(s)+3Cl_2(g)\rightarrow 2AlCl_3 (s)[/tex]    [tex]\Delta H^o_{formation}=?[/tex]

The intermediate balanced chemical reaction are:

(1) [tex]HCl(g)\rightarrow HCl(aq.)[/tex]    [tex]\Delta H_1=-74.8kJ[/tex]    ( ×  6)

(2) [tex]H_2(g)+Cl_2(g)\rightarrow 2HCl(g)[/tex]    [tex]\Delta H_2=-185kJ[/tex]     ( ×  3)

(3) [tex]AlCl_3(aq.)\rightarrow AlCl_3(s)[/tex]    [tex]\Delta H_3=+323kJ[/tex]     ( ×  2)

(4) [tex]2Al(s)+6HCl(aq.)\rightarrow 2AlCl_3(aq.)+3H_2(g)[/tex]    [tex]\Delta H_4=-1049kJ[/tex]

The expression for enthalpy of formation of [tex]AlCl_3[/tex] is,

[tex]\Delta H^o_{formation}=[6\times \Delta H_1]+[3\times \Delta H_2]+[2\times \Delta H_3]+[1\times \Delta H_4][/tex]

Putting values in above equation, we get:

[tex]\Delta H^o_{formation}=[(-74.8\times 6)+(-185\times 3)+(323\times 2)+(-1049\times 1)]=-1406.8kJ[/tex]

Hence, the [tex]\Deltas H^o_{formation}[/tex] for the reaction is -1406.8 kJ.

Final answer:

The change in enthalpy for the reaction 2Al(s) + 3Cl2(g) ⟶ 2AlCl3(s) is -832.2 kJ, calculated by manipulating and summing the enthalpy changes of the given reactions using Hess's Law.

Explanation:

The change in enthalpy (∆H°) of the reaction 2Al(s) + 3Cl2(g) ⟶ 2AlCl3(s) can be calculated using Hess's Law, which states that the total enthalpy change for a reaction is the sum of the enthalpy changes for each step in the reaction. In this case, we want to find the enthalpy change of reaction (i) using reactions (ii) - (v).

To achieve this, let's manipulate the reactions as follows:
1. Reverse reaction (ii) and multiply by 6. This will give it the same number of HCl (moles) as in reaction (v): 6HCl(aq) ⟶ 6HCl(g), ∆H′ = +74.8 kJ * 6 = +448.8 kJ.
2. Multiply reaction (iii) by 3 to match the number of H2 (moles) and HCl in reaction (v): 3H2 (g) + 3Cl2 (g) ⟶ 6HCl(g), ∆H′′ = -185 kJ * 3 = -555 kJ.
Reaction (iv) remains unchanged: AlCl3 (aq) ⟶ AlCl3 (s), ∆H′′′ = +323 kJ.
3. Using reaction (v) in the forward direction: 2Al(s) + 6HCl(aq) ⟶ 2AlCl3 (aq) + 3H2 (g), ∆H′′′′ = -1049 kJ.

Summing these manipulated reactions will give you reaction (i): ∆H° = ∆H′ + ∆H′′ + ∆H′′′ + ∆H′′′′ = 448.8 kJ - 555 kJ + 323 kJ - 1049 kJ = -832.2 kJ

Learn more about Enthalpy Calculation here:

https://brainly.com/question/29254242

#SPJ3

What is the correct net ionic equation, including all coefficients, charges, and phases, for the following set of reactants? Assume that the contribution of protons from H2SO4 is near 100 %.Ba(OH)2(aq)+H2SO4(aq)→

Answers

Final answer:

The net ionic equation for the reaction between barium hydroxide and sulfuric acid is Ba2+(aq) + SO42-(aq) → BaSO4(s), which shows the formation of an insoluble precipitate of barium sulfate.

Explanation:

The correct net ionic equation for the reaction between barium hydroxide and sulfuric acid is as follows:

Ba2+(aq) + SO42−(aq) → BaSO4(s)

In this equation, Ba2+(aq) represents the barium ion in aqueous solution, SO42−(aq) denotes the sulfate ion in aqueous solution, and BaSO4(s) is the precipitate of barium sulfate. It is important to remember that net ionic equations must be balanced by both mass and charge, and in this case, the equation follows these rules with a product that is insoluble in water.

given a condensed structural formula, write a line-angle formula for (CH3)2CHCH(CH3)2

Answers

Answer : The line-angle formula for [tex](CH_3)_2CHCH(CH_3)_2[/tex] is shown below.

Explanation :

Condensed structural formula : It is a formula in which the lines are used between the bonded atoms and the atoms are also shown in the structural formula.

Line-angle formula : In the line-angle formula, the carbon atoms are represented at the corner and ends of the lines with some angle and the hydrogen atoms are hidden.

The line-angle formula for [tex](CH_3)_2CHCH(CH_3)_2[/tex] is shown below.

Final answer:

The line-angle formula for (CH3)2CHCH(CH3)2 is CH3 CH3   CH2  CH3 CH3.

Explanation:

The line-angle formula for (CH3)2CHCH(CH3)2 can be written as:

CH3         CH3

  |

 CH2

 |

CH3         CH3

This formula represents the structural arrangement of atoms in the molecule, with each line representing a bond between carbon atoms. The ends of the lines represent carbon atoms, and any additional atoms or groups attached to those carbon atoms are shown as branches off the main line.

Learn more about Line-angle formula here:

https://brainly.com/question/34267875

#SPJ6

An open flask sitting in a lab fridge looks empty, but it is actually filled with a mixture of gases called air. If the flask volume is 2.50 L, and the air is at standard temperature and pressure, how many gaseous molecules does the flask contain?

Answers

Answer: [tex]0.67\times 10^{23}[/tex]  molecules are contained in the flask.

Explanation:

According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number [tex]6.023\times 10^{23}[/tex] of particles.

Standard condition of temperature (STP) is 273 K and atmospheric pressure is 1 atm respectively.

According to the ideal gas equation:'

[tex]PV=nRT[/tex]

P= Pressure of the gas = 1 atm

V= Volume of the gas = 2.50 L

T= Temperature of the gas = 273 K

R= Value of gas constant = 0.0821 Latm/K mol

[tex]n=\frac{PV}{RT}=\frac{1\times 2.50L}{0.0821 \times 273}=0.11moles[/tex]

1 mole of gas contains=[tex]6.022\times 10^{23}[/tex]  molecules  

0.11 moles of gas contains=[tex]\frac{6.022\times 10^{23}}{1}\times 0.11=0.67\times 10^{23}[/tex]  molecules

[tex]0.67\times 10^{23}[/tex]  molecules are contained in the flask.

You want to remove as much CO2 gas as possible from a water solution. Which of the following treatments would?
a. cool the solution
b. filter the solution
c. boil the solution
d. aerate the solution

Answers

a. Cool the solution
The correct answer is: cool the solution

Enough of a monoprotic weak acid is dissolved in water to produce a 0.0172 M solution. If the pH of the resulting solution is 2.39 at 20 °C, determine the pKa for the acid.

Answers

Answer:

9.7 x 10⁻⁴

Explanation:

              HA     ⇄           H⁺     +        A⁻

C(eq)   0.0174             10⁻²·³⁹         10⁻²·³⁹

                              =0.0041M     =0.0041M

Ka = [H⁺][A⁻]/[HA] = (0.0014)²/(0.0174) = 9.7 x 10⁻⁴

Iodine is prepared both in the laboratory and commercially by adding Cl2(g)Cl2(g) to an aqueous solution containing sodium iodide. 2NaI(aq)+Cl2(g)⟶I2(s)+2NaCl(aq) 2NaI(aq)+Cl2(g)⟶I2(s)+2NaCl(aq) How many grams of sodium iodide, NaI,NaI, must be used to produce 89.1 g89.1 g of iodine, I2?I2? mass: g NaI

Answers

Answer : The mass of sodium iodide used to produced must be, 105.22 grams.

Explanation : Given,

Mass of [tex]I_2[/tex] = 89.1 g

Molar mass of [tex]I_2[/tex] = 253.8 g/mole

Molar mass of [tex]NaI[/tex] = 149.89 g/mole

First we have to calculate the moles of [tex]I_2[/tex].

[tex]\text{Moles of }I_2=\frac{\text{Mass of }I_2}{\text{Molar mass of }I_2}=\frac{89.1g}{253.8g/mole}=0.351moles[/tex]

Now we have to calculate the moles of [tex]NaI[/tex].

The balanced chemical reaction is,

[tex]2NaI(aq)+Cl_2(g)\rightarrow I_2(s)+2NaCl(aq)[/tex]

From the balanced chemical reaction, we conclude that

As, 1 mole of [tex]I_2[/tex] obtained from 2 moles of [tex]NaI[/tex]

So, 0.351 moles of [tex]I_2[/tex] obtained from [tex]2\times 0.351=0.702[/tex] moles of [tex]NaI[/tex]

Now we have to calculate the mass of [tex]NaI[/tex].

[tex]\text{Mass of }NaI=\text{Moles of }NaI\times \text{Molar mass of }NaI[/tex]

[tex]\text{Mass of }NaI=(0.702mole)\times (149.89g/mole)=105.22g[/tex]

Therefore, the mass of sodium iodide used to produced must be, 105.22 grams.

Final answer:

To produce 89.1 grams of iodine (I2), 178.2 grams of sodium iodide (NaI) must be used.

Explanation:

To find the number of grams of sodium iodide (NaI) needed to produce 89.1 g of iodine (I2), we need to use the stoichiometric coefficients from the balanced chemical equation:

2NaI(aq) + Cl2(g) ⟶ I2(s) + 2NaCl(aq)

From the equation, we can see that 2 moles of NaI react to produce 1 mole of I2. The molar mass of NaI is 149.89 g/mol. We can set up a proportion:

(2 mol NaI / 1 mol I2) = (x g NaI / 89.1 g I2)

Solving for x:

x = (2 mol NaI / 1 mol I2) * (89.1 g I2 / 1 mol I2) = 178.2 g NaI

Therefore, 178.2 grams of sodium iodide (NaI) must be used to produce 89.1 grams of iodine (I2).

Learn more about Calculating mass using stoichiometry here:

https://brainly.com/question/19380653

#SPJ3

Complete the following reaction by drawing the missing reactant ("Structure A"). (Draw only one neutral organic compound in the empty box. "Ph" is an abbreviation for a benzene ring. Draw the benzene ring out in your answer.)

Answers

Answer:

what I dont get this bro

The equilibrium constant, Kc, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) + Cl2(g) Calculate the equilibrium concentrations of reactant and products when 0.323 moles of COCl2(g) are introduced into a 1.00 L vessel at 600 K.

Answers

Answer : The equilibrium concentrations of [tex]COCl_2,CO\text{ and }Cl_2[/tex] are, 0.2646, 0.0584 and 0.0584.

Explanation : Given,

Moles of  [tex]COCl_2[/tex] = 0.323 mole

Volume of solution = 1 L

Initial concentration of [tex]COCl_2[/tex] = 0.323 M

Let the moles of [tex]CO\text{ and }Cl_2[/tex] be, 'x'. So,

Concentration of [tex]CO[/tex] = x M

Concentration of [tex]Cl_2[/tex] = x M

The given balanced equilibrium reaction is,

                             [tex]COCl_2(g)\rightleftharpoons CO(g)+Cl_2(g)[/tex]

Initial conc.          0.323 M          0          0

At eqm. conc.    (0.323-x) M    (x M)       (x M)

The expression for equilibrium constant for this reaction will be,

[tex]K_c=\frac{[CO][Cl_2]}{[COCl_2]}[/tex]

Now put all the given values in this expression, we get :

[tex]1.29\times 10^{-2}=\frac{(x)\times (x)}{(0.323-x)}[/tex]

By solving the term 'x', we get :

x = 0.0584

Thus, the concentrations of [tex]COCl_2,CO\text{ and }Cl_2[/tex] at equilibrium are :

Concentration of [tex]COCl_2[/tex] = (0.323-x) M  = (0.323-0.0584) M = 0.2646 M

Concentration of [tex]CO[/tex] = x M = 0.0584 M

Concentration of [tex]Cl_2[/tex] = x M = 0.0584 M

Therefore, the equilibrium concentrations of [tex]COCl_2,CO\text{ and }Cl_2[/tex] are, 0.2646, 0.0584 and 0.0584.

A single electron can have the following set of quantum numbers: n=3, l=2, ml=0, ms= -1/2.

True or False

Answers

Answer:

True => (3, 2, 0, -1/2) => 3d₀² electron

Explanation:

Phosgene (carbonyl chloride), COCl2, is an extremely toxic gas that is used in manufacturing certain dyes and plastics. Phosgene can be produced by reacting carbon monoxide and chlorine gas at high temperatures: CO(g)+Cl2(g)⇌COCl2(g) Carbon monoxide and chlorine gas are allowed to react in a sealed vessel at 480 ∘C . At equilibrium, the concentrations were measured and the following results obtained: Gas Partial Pressure (atm) CO 0.820 Cl2 1.27 COCl2 0.230 What is the equilibrium constant, Kp, of this reaction?

Answers

Answer:

0.2208 is the equilibrium constant,[tex]K_p[/tex].

Explanation:

Equilibrium constant is defined as ratio of concentration of products to the concentration of reactants raised to the power equal to their stoichiometric coefficients in balanced chemical equation. It is expressed as [tex]K_c[/tex]

If the equilibrium is in gaseous phase then instead of concentration take partial pressure of each compound.The It is expressed as [tex]K_p[/tex].

[tex]CO(g)+Cl_2(g)\rightarrow COCl_2(g)[/tex]

Partial pressure of the[tex] p_{[CO]} = 0.820 atm[/tex]

Partial pressure of the[tex] p_{[Cl_2]} = 1.27 atm[/tex]

Partial pressure of the [tex]p_{[COCl_2]} = 0.230 atm[/tex]

The expression of an equilibrium constant is given as:

[tex]K_p=\frac{p_{[COCl_2]}}{p_{[CO]}p_{[Cl_2]}}[/tex]

[tex]K_p=\frac{0.230 atm}{0.820 atm \times 1.27 atm}=0.2208 [/tex]

Given the following information: Mass of proton = 1.00728 amu Mass of neutron = 1.00866 amu Mass of electron = 5.486 × 10^-4 amu Speed of light = 2.9979 × 10^8 m/s Calculate the nuclear binding energy (absolute value) of 3Li^6. which has an atomic mass of 6.015126 amu. J/mol.

Answers

Answer: The nuclear binding energy of the given element is [tex]2.938\times 10^{12}J/mol[/tex]

Explanation:

For the given element [tex]_3^6\textrm{Li}[/tex]

Number of protons = 3

Number of neutrons = (6 - 3) = 3

We are given:

[tex]m_p=1.00728amu\\m_n=1.00866amu\\A=6.015126amu[/tex]

M = mass of nucleus = [tex](n_p\times m_p)+(n_n\times m_n)[/tex]

[tex]M=[(3\times 1.00728)+(3\times 1.00866)]=6.04782amu[/tex]

Calculating mass defect of the nucleus:

[tex]\Delta m=M-A\\\Delta m=[6.04782-6.015126)]=0.032694amu=0.032694g/mol[/tex]

Converting this quantity into kg/mol, we use the conversion factor:

1 kg = 1000 g

So,  [tex]0.032694g/mol=0.032694\times 10^{-3}kg/mol[/tex]

To calculate the nuclear binding energy, we use Einstein equation, which is:

[tex]E=\Delta mc^2[/tex]

where,

E = Nuclear binding energy = ? J/mol

[tex]\Delta m[/tex] = Mass defect = [tex]0.032694\times 10^{-3}kg/mol[/tex]

c = Speed of light = [tex]2.9979\times 10^8m/s[/tex]

Putting values in above equation, we get:

[tex]E=0.032694\times 10^{-3}kg/mol\times (2.9979\times 10^8m/s)^2\\\\E=2.938\times 10^{12}J/mol[/tex]

Hence, the nuclear binding energy of the given element is [tex]2.938\times 10^{12}J/mol[/tex]

The binding energy of the lithium nucleus is 2.94 * 10^14 J/mol.

What is binding energy?

The term binding energy refers to the energy that hold the nucleons in the atom together.

We know that the atomic mass of the Li is 6.015126 amu. Note that there are three protons and three neutrons. Hence;

Mass of protons= 3(1.00728 amu) = 3.02184

Mass of neutrons = 3(1.00866 amu)  = 3.02598

Mass defect = (3.02184 + 3.02598) - 6.015126 amu = 0.032694 amu =  0.032694 g/mol

Now;

E = mc^2 = (0.032694 g/mol * (3 * 10^8)^2) = 2.94 * 10^14 J/mol

Learn more about binding energy: https://brainly.com/question/11334504

Sodium sulfate dissolves as follows: Na2SO4(s) → 2Na+(aq) + SO42- (aq). How many moles of Na2SO4 are required to make 1.0 L of solution in which the Na concentration is 0.10 M?

Answers

Answer: The number of moles of [tex]Na_2SO_4[/tex] is 0.05 moles.

Explanation:

To calculate the molarity of solution, we use the equation:

[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}[/tex]

We are given:

Molarity of solution = 0.10 mol/L

Volume of solution = 1 L

Putting values in above equation, we get:

[tex]0.10mol/L=\frac{\text{Moles of sodium}}{1.0L}\\\\\text{Moles of sodium}=0.10mol[/tex]

The chemical reaction for the ionization of sodium sulfate follows the equation:

[tex]Na_2SO_4(s)\rightarrow 2Na^+(aq.)+SO_4^{2-}(aq.)[/tex]

By Stoichiometry of the reaction:

2 moles of sodium ions are produced by 1 mole of sodium sulfate

So, 0.10 moles of sodium ions will be produced by = [tex]\frac{1}{2}\times 0.1=0.05moles[/tex] of sodium sulfate.

Hence, the number of moles of [tex]Na_2SO_4[/tex] is 0.05 moles.

Given that the density of the saturated solution is found to be 1.16 g/mL. The molar mass of copper sulfate pentahydrate is 249.68 g/mol, calculate grams of copper sulfate pentahydrate that will dissolve in 100 g of water at 0oC (show calculations for full credit)

Answers

Explanation:

Since, it is given that density is 1.16 grams per milliliter and molar mass of copper sulfate pentahydrate is 249.68 g/mol.

Now, as we known that density is the amount of mass present in a unit volume.

Mathematically,         Density = [tex]\frac{\text{molar mass}}{volume}[/tex]

Hence, calculate the volume as follws.

                    Density = [tex]\frac{\text{molar mass}}{volume}[/tex]

                  1.16 g/mL = [tex]\frac{249.68 g/mol}{volume}[/tex]          

                 volume = 215.24 mL

As, 215.24 mL can dissolve in 249.68 g/mol of complex. So, in 100 mL volume amount dissolved will be calculated as follows.

                       [tex]\frac{249.68 g/mol}{215.24 mL} \times 100[/tex]

                    = 116 grams        

Thus, we can conclude that 116 grams of copper sulfate pentahydrate that will dissolve in 100 g of water at 0[tex]^{o}C[/tex].                              

Final answer:

To calculate the grams of copper sulfate pentahydrate that dissolve in 100 g of water at 0°C, solubility data at that temperature is needed, which is not provided in the question.

Explanation:

The student is asking to calculate the grams of copper sulfate pentahydrate that will dissolve in 100 grams of water at 0°C, given that the density of the saturated solution is 1.16 g/mL and the molar mass of copper sulfate pentahydrate is 249.68 g/mol. Since the volume of solution can be derived from the mass of the water and the density of the solution, we can calculate the amount of copper sulfate pentahydrate dissolved in this volume by using dimensional analysis. However, to perform this calculation, we need the solubility data for copper sulfate pentahydrate at 0°C, which is not provided in the question. Without this information, we cannot proceed with the calculation.

Are hydrocarbons approved for retrofit applications

Answers

Yes they are what are your options

Many drugs are sold as their hydrochloric salts (R2NH2 Cl−), formed by reaction of an amine (R2NH) with HCl. a. Draw the major organic product formed from the formation of acebutolol with HCl. Acebutolol is a β blocker used to treat high blood pressure. Omit any inorganic counterions.b. Discuss the solubility of acebutlol and its hydrochloride salt in water.c. Offer a reason as to why the drug is marketed as a hydrochloride salt rather than a neutral amine.

Answers

Answer:

Here's what I find.

Explanation:

a. Structure

Acebutolol is a secondary amine (basic). It forms a substituted ammonium salt when treated with hydrochloric acid.

The structure of the salt is shown below, with a red arrow pointing toward the positive charge on the N atom.

b. Solubility

The formula of acebutolol is C₁₈H₂₈N₂O₄.

The amide, acetyl, and ether groups confer little solubility to the molecule.

The alcohol and secondary amine do confer some solubility, because they can donate and accept hydrogen bonds.

However, they can each overcome the hydrophobic properties of only three to five carbons, and acebutolol has 18 of them.

The free amine would be preferentially soluble in lipid material (fats)

The protonated amine is ionic and therefore much more soluble in aqueous media (e.g., blood).

c. Marketing

The drug must be delivered to the tissues of the heart, where it blocks the effects of adrenalin. The best way to do this is through the blood, so acebutolol is marketed as the hydrochloride salt.

What are the major products produced in the combustion of C10H22 under the following conditions? Write balanced chemical equations for each. a. An excess of oxygen b. A slightly limited oxygen supply c. A very limited supply of oxygen d. The compound is burned in air

Answers

Answer: The chemical reactions are given below.

Explanation:

Combustion reaction is defined as the chemical reaction in which a hydrocarbon reacts with oxygen gas to produce carbon dioxide gas and water molecule.

[tex]\text{hydrocarbon}+O_2\rightarrow CO_2+H_2O[/tex]

If supply of oxygen gas is limited, it is known as incomplete combustion and carbon monoxide gas is also produced as a product.

For a: An excess of oxygen

Here, complete combustion reaction takes place. The chemical equation follows:

[tex]2C_{10}H_{22}+31O_2\rightarrow 20CO_2+22H_2O[/tex]

For b: A slightly limited oxygen supply

Here, incomplete combustion takes place and carbon monoxide is also formed.

[tex]C_{10}H_{22}+13O_2\rightarrow 5CO+5CO_2+11H_2O[/tex]

For c: A very limited supply of oxygen

Here, incomplete combustion takes place and only carbon monoxide with water are formed as the products.

[tex]2C_{10}H_{22}+21O_2\rightarrow 20CO+22H_2O[/tex]

For d: The compound is burned in air

When a compound is burned in air, it means that unlimited supply of oxygen is there. So, complete combustion reaction takes place and carbon dioxide gas is formed as a product.

[tex]2C_{10}H_{22}+31O_2\rightarrow 20CO+22H_2O[/tex]

Hence, the chemical reactions are given below.

Answer:

WAIT SORRY I CANT DECLICK ill try to answer doe a.

Explanation:

What are the resulting coefficients when you balance the chemical equation for the combustion of ethane, C2H6? In this reaction, ethane is burned in the presence of oxygen (O2) to form carbon dioxide (CO2) and water (H2O). ____C2H6(g)+____O2(g)→____CO2(g)+____H2O(g)

Answers

Answer: The coefficients for balancing the given chemical equation are 2, 7, 4 and 6

Explanation:

Every balanced chemical equation follows law of conservation of mass.

This law states that mass can neither be created nor be destroyed, but it can only be transformed from one form to another form. This also means that total number of individual atoms on the reactant side must be equal to the total number of individual atoms on the product side.

The given balanced chemical equation follows:

[tex]2C_2H_6+7O_2\rightarrow 4CO_2+6H_2O[/tex]

On reactant side:

Number of carbon atoms = 4

Number of hydrogen atoms = 12

Number of oxygen atoms = 14

On product side:

Number of carbon atoms = 4

Number of hydrogen atoms = 12

Number of oxygen atoms = 14

Hence, the coefficients for balancing the given chemical equation are 2, 7, 4 and 6

What is the net ionic equation of the reaction of MgSO4 with Pb(NO3)2? Express you answer as a chemical equation including phases. View Available Hint(s)

Answers

Answer : The net ionic equation will be,

[tex]Pb^{2+}(aq)+SO_4^{2-}(aq)\rightarrow PbSO_4(s)[/tex]

Explanation :

In the net ionic equations, we are not include the spectator ions in the equations.

Spectator ions : The same number of ions present on reactant and product side which do not participate in a reactions.

The given balanced ionic equation will be,

[tex]MgSO_4(aq)+Pb(NO_3)_2(aq)\rightarrow Mg(NO_3)_2(aq)+PbSO_4(s)[/tex]

The ionic equation in separated aqueous solution will be,

[tex]Mg^{2+}(aq)+SO_4^{2-}(aq)+Pb^{2+}(aq)+2NO^{3-}(aq)\rightarrow PbSO_4(s)+Mg^{2+}(aq)+2NO^{3-}(aq)[/tex]

In this equation, [tex]Mg^{2+}\text{ and }NO_3^-[/tex] are the spectator ions.

By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.

The net ionic equation will be,

[tex]Pb^{2+}(aq)+SO_4^{2-}(aq)\rightarrow PbSO_4(s)[/tex]

A 47.1 g sample of a metal is heated to 99.0°C and then placed in a calorimeter containing 120.0 g of water (c = 4.18 J/g°C) at 21.4°C. The final temperature of the water is 24.5°C. Which metal was used?

Answers

Answer : The metal used was iron (the specific heat capacity is [tex]0.44J/g^oC[/tex]).

Explanation :

In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.

[tex]q_1=-q_2[/tex]

[tex]m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)[/tex]

where,

[tex]C_1[/tex] = specific heat of metal = ?

[tex]C_1[/tex] = specific heat of water = [tex]4.18J/g^oC[/tex]

[tex]m_1[/tex] = mass of metal = 47.1 g

[tex]m_2[/tex] = mass of water = 120 g

[tex]T_f[/tex] = final temperature of water = [tex]24.5^oC[/tex]

[tex]T_1[/tex] = initial temperature of metal = [tex]99^oC[/tex]

[tex]T_2[/tex] = initial temperature of water = [tex]21.4^oC[/tex]

Now put all the given values in the above formula, we get

[tex]47.1g\times c_1\times (24.5-99)^oC=-120g\times 4.18J/g^oC\times (24.5-21.4)^oC[/tex]

[tex]c_1=0.44J/g^oC[/tex]

Form the value of specific heat of metal, we conclude that the metal used in this was iron.

Therefore, the metal used was iron (the specific heat capacity is [tex]0.44J/g^oC[/tex]).

Studies indicate that the methyl radical is trigonal planar. Based on this, which of the following best describes the methyl radical? The carbon is sp2 hybridized and the unpaired electron occupies an sp2 orbital. The carbon is sp2 hybridized and the unpaired electron occupies a 2p orbital. The carbon is sp3 hybridized and the unpaired electron occupies an sp3 orbital. The carbon is sp3 hybridized and the unpaired electron occupies a 2p orbital.

Answers

Answer:

The carbon is sp² hybridized and the unpaired electron occupies a 2p orbital.  

Explanation:

The central C atom has a trigonal planar geometry, so it is sp² hybridized.

The sp² bonds are formed by the hybridization of the 2s orbital with two 2p orbitals.

The unpaired electron goes into the unhybridized 2p orbital.

The biochemistry that takes place inside cells depends on various elements, such as sodium, potassium, and calcium, that are dissolved in water as ions. These ions enter cells through narrow pores in the cell membrane known as ion channels. Each ion channel, which is formed from a specialized protein molecule, is selective for one type of ion. Measurements with microelectrodes have shown that a 0.30-nm-diameter potassium ion (K+) channel carries a current of 1.8 pA. How many potassium ions pass through if the ion channel opens for 1.0 ms? What is the current density in the ion channel?

Answers

Answer:

Explanation:

The biochemistry that takes place inside cells depends on various elements, such as sodium, potassium, and

calcium, that are dissolved in water as ions. These ions enter cells through narrow pores in the cell membrane

known as ion channels. Each ion channel, which is formed from a specialized protein molecule, is selective

for one type of ion. Measurements with microelectrodes have shown that a 0.30-nm-diameter potassium ion (K+) channel carries a current of 1.8 pA.

Part A. How many potassium ions pass through if the ion channel opens for 1.0 ms?

Part B. What is the current density in the ion channel?

Solution: In 1.0 ms, the charge that passes through is

Q = I ∆t =

( 1.8 × 10−12 A ) (1.0 × 10−3 s )

= 1.8 × 10−15 C

Since each ion has a +1 charge (measured in electron charges), this represents

NK+ = Q e = (1.8 × 10−15 C ) (1.60 × 10−19 C) = 11250

The current density is calculated from the current and the size of the channel.

J = I A = ( 1.8 × 10−12 A ) ( π (0.30 × 10−9 m/2)2 ) = 2.55 × 107 A/m2

A) The number of potassium ions that will pass through the ion channel; 11250

B) The current density in the ion channel = 2.55 × 10⁷ A/m²

Given data;

Measurement with microelectrodes = 0.30-nm- diameter

K⁺ = 1.8 pA

a) calculate the number of potassium ions that passes through the ion channel

given that the channel opens for 1.0 ms

first step ; determine the value of charge ( Q )

Q = I*Δt = ( 1.8 × 10⁻¹² A )*(1.0 × 10⁻³ s ) = 1.8 × 10⁻¹⁵ C

where ; I = 1.8 × 10⁻¹² A

           Δt =  1.0 × 10⁻³ s

next step : determine number of K⁺ ions passing through

NK⁺ = Q*e = ( 1.8 × 10⁻¹⁵ C )*( 1.60 × 10⁻¹⁹ C)  = 11250

∴ number of K⁺ ions passing through = 11250 ions.

B) determine the current density in the ion channel

current density = current  * size of channel

                         = ( 1.8 * 10⁻¹² ) * ( π * ( 0.30 * 10⁻⁹ )²

                         = 2.55 × 10⁻⁷ A/m²

Hence we can conclude that the  number of potassium ions that will pass through the ion channel; 11250 and  The current density in the ion channel = 2.55 × 10⁷ A/m²

Learn more ; https://brainly.com/question/15154043

Calculate the enthalpy of the following reaction: 4 B (s) + 3 O2 (g) → 2 B2O3 (s) given the following pertinent information: (A) B2O3 (s) + 3 H2O (g) → 3 O2 (g) + B2H6 (g), ΔHoA = +2035 kJ (B) 2 B (s) + 3 H2 (g) → B2H6 (g), ΔHoB = +36 kJ (C) H2 (g) + LaTeX: \frac{1}{2} 1 2 O2 (g) → H2O (l), ΔHoC = −285 kJ (D) H2O (l) → H2O (g), ΔHoD = +44 kJ

Answers

Answer:

4B + 3O₂ => 2B₂O₃; ΔH° = -3673Kj

Explanation:

Work these type problems in pairs of rxns… That is, add Rxn-1 & Rxn-2 => Rxn-1,2; then add Rxn-3 to Rxn-1,2 => Rxn- 1,2,3. Rxn-4 is not needed to obtain target rxn.  

Target Rxn => 4B + 3O₂ => 2B₂O₃

Given …

(1) B₂O₃ + 2H₂O => 3O₂ + B₂H₆

       => reverse and double

       => 2B₂H₆ + 6O₂ => 2B₂O₃ + 6H₂O

(2) 2B + 3H₂ => B₂H₆ => double and add to Rxn-1 => 4B + 6H₂ => 2B₂H₆

         2B₂H₆ + 6O₂ => 2B₂O₃ + 6H₂O

              4B + 6H₂ => 2B₂H₆

              ________________________

∑(1,2)    4B + 6O₂ + 6H₂ => 2B₂O₃ + 6H₂O; ΔH°₁₂ = -2035Kj + (+72Kj) = -1963Kj

(3) => H₂ + ½O₂ => H₂O

       => reverse and multiply by 6, then add to (1,2) => 6H₂O => 6H₂ + 3O₂

                           6H₂O => 6H₂ + 3O₂

           4B + 6O₂ + 6H₂ => 2B₂O₃ + 6H₂O  

   ________________________

∑[(1,2,3) 4B + 3O₂ => 2B₂O₃; ΔH°₁₂₃ = -1963Kj + 6(-285Kj) = -3673Kj

The balanced combustion reaction for C6H6 is 2C6H6(l)+15O2(g)⟶12CO2(g)+6H2O(l)+6542 kJ If 8.600 g C6H6 is burned and the heat produced from the burning is added to 5691 g of water at 21 ∘ C, what is the final temperature of the water?

Answers

Final answer:

In this chemistry problem, we first calculate the heat produced by the combustion of C6H6, and then we use the heat equation to find the final temperature of the water which comes out to be 53.14 °C.

Explanation:

The subject of this question pertains to the field of chemistry, specifically physical chemistry dealing with energy changes in chemical reactions, and this seems to be a high school-level problem based on the complexities involved. The principle used here is q=mc∆T, which allows us to calculate how much heat is transferred when the water temperature changes.

First, the amount of heat produced by the combustion of 8.6 g of C6H6 should be calculated based on its enthalpy change (heat produced per mole). Given the heat of combustion, -6542 kJ for 2 moles of C6H6, the heat of combustion for 8.6g of C6H6 can be calculated by (8.6 g / (78.11 g/mol) mol ) * (-6542 kJ / 2 mol) = -227.11 kJ.

The heat absorbed by the water can then be calculated using the heat equation: q=mc∆T. Here, m = mass of water = 5691 g, c = specific heat capacity of water = 4.18 J/g°C. The heat is converted to kilojoules: q = -227.11 kJ * 1000 = -227110 J. Hence, the equation becomes -227110 = 5691*4.18*∆T. After rearranging and solving, the final temperature (T) will be 53.14 °C.

Learn more about Heat Transfer here:

https://brainly.com/question/13433948

#SPJ3

When titrating a strongmonoprotic acid and KOH at 25°C, theA) pH will be less than 7 at the equivalence point.B) pH will be greater than 7 at the equivalence point.C) titration will require more moles of base than acid to reach the equivalence point.D) pH will be equal to 7 at the equivalence point.E) titration will require more moles of acid than base to reach the equivalence

Answers

Answer:

D => pH will be equal to 7 at equivalence point

Explanation:

For Strong Acid + Strong Base titrations, pH = 7 as neither ion of the salt produced will undergo hydrolysis as would weak electrolyte titrations.

BOTH CASES ARE PRESENTED FOR CONTRAST ...

Stong monoprotic acid being titrated with NaOH ...

=> HX + NaOH => NaCl + H₂O

=> NaCl => Na⁺ + Cl⁻

=> Na⁺ + H₂O => No Rxn ( formation of NaOH will not occur as a strong electrolyte prefers to remain 100% ionized)

=> X⁻ + H₂O => No Rxn (formation of HX will not occur as a strong electrolyte prefers to remain 100% ionized)

This leaves only the Auto Ionization of Water as the reaction affecting the pH of the solution at the equivalence point of a strong acid + strong base titration. That is ...

HOH ⇄ H⁺ + OH⁻ & [H⁺] = [OH⁻] = 1 x 10⁻⁷M

pH = -log[H⁺] = -log(1 x 10⁻⁷) = -(-7) = 7  

----------------------------------

Weak Acid + Strong Base titration => pH > 7 at equivalence point

Assume => HA = weak acid

=> HA + NaOH => NaA + H₂O

=> NaA => Na⁺ + A⁻  &  A⁻ is the conjugate base of a weak acid HA

=> Na⁺ + H₂O => No Rxn ( formation of NaOH will not occur as a strong electrolyte prefers to remain 100% ionized)

=> A⁻ +  H₂O => HA + OH⁻  => Excess OH⁻ at equivalence pt => pH > 7

-------------------------------------

Weak Base + Strong Acid titration => pH < 7 at equivalence point

Weak Bases => ammonia (NH₃) or ammonia derivatives (RNH₂)* in water.

(ammonia in water) => :NH₃ + H₂O => NH₄OH ⇄ NH₄⁺ + OH⁻

(ammonia derivative in water) => RN:-H₂ + H₂O => RNH₃OH ⇄ RNH₃⁺ + OH⁻

Titration of weak base with strong acid ...

=> NH₄OH + HX => NH₄X + H₂O

=> NH₄X => NH₄⁺ + X⁻

=> X⁻ + H₂O => No Rxn (formation of HX will not occur as a strong electrolyte prefers to remain 100% ionized)

=> NH₄⁺ + HOH ⇄ NH₄OH + H⁺ => Weak base is in molecular form with excess hydronium ions (H₃O⁺ = H⁺) at equivalence point => pH < 7.

----------------------

*RNH₂ is a primary amine used in the illustration, but the above process will also occur for secondary (R₂N:-H) and tertiary amines (R₃N:) in water also.

Dumbledore decides to gives a surprise demonstration. He starts with a hydrate of Na2CO3 which has a mass of 4.31 g before heating. After he heats it he finds the mass of the anhydrous compound is found to be 3.22 g. He asks everyone in class to determine the integer x in the hydrate: Na2CO3·xH2O; you should do this also. Round your answer to the nearest integ

Answers

Answer:

Na₂CO₃.2H₂O

Explanation:

For the hydrated compound, let us denote is by Na₂CO₃.xH₂O

The unknown is the value of x which is the amount of water of crystallisation.

Given values:

Starting mass of hydrate i.e Na₂CO₃.xH₂O = 4.31g

Mass after heating (Na₂CO₃) = 3.22g

Mass of the water of crystallisation = (4.31-3.22)g = 1.09g

To determine the integer x, we find the number of moles of the anhydrous Na₂CO₃ and that of the water of crystallisation:

        Number of moles  = [tex]\frac{mass }{molar mass }[/tex]

Molar mass of Na₂CO₃ =[(23x2) + 12 + (16x3)]  = 106gmol⁻¹

Molar mass of H₂O = [(1x2) + (16)] = 18gmol⁻¹

Number of moles of Na₂CO₃ = [tex]\frac{3.22}{106}[/tex] = 0.03mole

Number of moles of H₂O =  [tex]\frac{1.09}{18}[/tex] = 0.06mole

From the obtained number of moles:

                          Na₂CO₃                               H₂O

                           0.03                                    0.06

Simplest

Ratio                  0.03/0.03                         0.03/0.06

                                 1                                      2

Therefore, x = 2    

After heating, the mass loss corresponds to 1.09 g of water, which, when compared to the moles of anhydrous [tex]\( \text{Na}_2\text{CO}_3 \)[/tex], gives a mole ratio of approximately 2:1, making [tex]\( x = 2 \)[/tex].

To determine the integer x in the hydrate [tex]\( \text{Na}_2\text{CO}_3 \cdot x \text{H}_2\text{O} \)[/tex], we need to follow these steps:

1. Calculate the mass of the water lost during heating:

[tex]\[\text{Mass of water} = \text{Mass of hydrate} - \text{Mass of anhydrous compound}\][/tex]

Given:

[tex]\[\text{Mass of hydrate} = 4.31 \, \text{g}\][/tex]

[tex]\[\text{Mass of anhydrous compound (Na}_2\text{CO}_3\text{)} = 3.22 \, \text{g}\][/tex]

Thus:

[tex]\[\text{Mass of water} = 4.31 \, \text{g} - 3.22 \, \text{g} = 1.09 \, \text{g}\][/tex]

2. Calculate the moles of anhydrous [tex]\( \text{Na}_2\text{CO}_3 \)[/tex]:

The molar mass of [tex]\( \text{Na}_2\text{CO}_3 \)[/tex] is calculated as follows:

[tex]\[\text{Molar mass of Na}_2\text{CO}_3 = 2 \times 23.0 + 12.0 + 3 \times 16.0 = 46.0 + 12.0 + 48.0 = 106.0 \, \text{g/mol}\][/tex]

[tex]\[\text{Moles of Na}_2\text{CO}_3 = \frac{\text{Mass of Na}_2\text{CO}_3}{\text{Molar mass of Na}_2\text{CO}_3} = \frac{3.22 \, \text{g}}{106.0 \, \text{g/mol}} = 0.0304 \, \text{mol}\][/tex]

3. Calculate the moles of water lost:

The molar mass of water [tex](\( \text{H}_2\text{O} \))[/tex] is:

[tex]\[\text{Molar mass of H}_2\text{O} = 2 \times 1.0 + 16.0 = 18.0 \, \text{g/mol}\][/tex]

[tex]\[\text{Moles of water} = \frac{\text{Mass of water}}{\text{Molar mass of H}_2\text{O}} = \frac{1.09 \, \text{g}}{18.0 \, \text{g/mol}} = 0.0606 \, \text{mol}\][/tex]

4. Determine the mole ratio of water to [tex]\( \text{Na}_2\text{CO}_3 \)[/tex]:

[tex]\[x = \frac{\text{Moles of water}}{\text{Moles of Na}_2\text{CO}_3} = \frac{0.0606 \, \text{mol}}{0.0304 \, \text{mol}} = 1.993 \approx 2\][/tex]

Thus, the integer x in the hydrate[tex]\( \text{Na}_2\text{CO}_3 \cdot x \text{H}_2\text{O} \)[/tex]is 2.

Other Questions
On Venus, which of the following drives geological change? A. Hurricanes B. Volcanoes C. Tsunamis D. Earthquakes Chains of amino acids make which can join together to make a What is the most common blood type in the u.S.? Where does carbon monoxide come from in a house? Read Shakespeare's "sonnet 19." Which is the best paraphrase of the line 9? A-Keep time from passing. B-Time cannot alter my love.C-My love has beautiful brows. D-Do not make my love look older. Pollution from one country can affect another. For example, South Korea is especially affected by pollution and dust storms that come from Which of the binomials below is a factor of this trinomial?4x^2-7x-15O A. 2x-5O B. 4x+5O C. 2x+5O D. 4x-5 In Erik Eriksons developmental stages of life, with which challenge must older people struggle?Overcoming despair to achieve integrityOvercoming role confusion to achieve identityOvercoming isolation to achieve intimacyOvercoming shame to achieve autonomy Need help with a math question PLEASE HELP URGENTWhen shopping for a personal loan, why is it important to limit the amount of loan applications you submit? Does society change individual or individual change society ? What do the piano players and the man pacing the second floor symbolize? Need help with this math question By the 1960s, Japan had become a powerful industrial nation by _____. adopting Western business practices avoiding government regulation of businesses hiring immigrant workers for factories selling poor quality toys and other goods ABCD KLMN PQRS WXYZGiven that information, which figures are reflections of ABCD? The graphs below hace the same shape. What is the equation of the blue graph? What is the definition of slighted as it is used in this sentence?A)approachedB)attackedC)kissedD)snubbed 1.3.2 Quiz: Inspiration for IndependenceQuestion 3 of 102 PointsWhat idea in the Declaration of Independence reflects the influence of JohnLocke? Read this passage from "Everyday Use." What is revealed about the narrator by the dialogue and actions?When I looked at her like that something hit me in the top of my head and ran down to the soles of my feet. Just like when I'm in church and the spiritof God touches me and I get happy and shout. I did something I never done before: hugged Maggie to me, then dragged her on into the room,snatched the quilts out of Miss Wangero's hands and dumped them into Maggie's lap. Maggie just sat there on my bed with her mouth open."Take one or two of the others," I said to Dee.The narrator is angry at Maggie and agrees with Dee.The narrator has always loved Maggie more than she lovedThe narrator will no longer allow Maggie to be treated badly.The narrator doesn't care who takes the quilts as long as the bickering stops. How many moles of sodium chloride can react with 18.3 liters of fluorine gas at 1.2 atmospheres and 299 Kelvin?