What is the value of the expression? 3(6/8−1/2)+0.25
A theater seats 1860 people the last 6 shows have been sold out estimate the total number of people attending the last 6 shows
How many of the first 10,000 positive integers contain the digit pair “43” in that order?
Final answer:
There are 209 numbers among the first 10,000 positive integers that contain the digit pair '43' in that order, when considering the different placements of the digit pair in a four-digit number.
Explanation:
To find out how many of the first 10,000 positive integers contain the digit pair "43" in that order, let's consider the different places this pair can occur. The '43' pair can be in the units and tens place, the tens and hundreds place, or the hundreds and thousands place.
For the units and tens place, we have '43' fixed and two remaining places that can be any digit from 0 to 9, so there are 10 times 10 = 100 possibilities. However, we need to exclude the combination '043' as it is not a four-digit number but rather '43', giving us 100 - 1 = 99 combinations.
For the tens and hundreds place, we again have 10 possibilities for the other two places (thousands and units). We do not need to exclude any numbers here because even '043x' represents a valid four-digit number. Thus, we have 10 imes 10 = 100 combinations.
For the hundreds and thousands place, there are only 10 possibilities for the units place, as '430x' represents a valid four-digit number, which results in 10 combinations.
Adding them up, we have a total of 99 + 100 + 10 = 209 numbers that contain the '43' pair in the first 10,000 positive integers.
The prices of two radios are in the ratio x:y
When the prices are both increased by £20, the ratio becomes 5:2
When the prices are both reduced by £5, the ratio becomes 5:1
Express the ratio x:y in it's lowest terms.
The concept of linear equation and ratios is used to solve for the price of radios. The price of two radios are [tex]x=\pounds 80[/tex] and [tex]y=\pounds 20[/tex].
Given information:
The ratio of prices of two radios is [tex]x:y[/tex].
If the price of both the radios is increased by [tex]\pounds20[/tex], the ratio of price would become 5:2.
The above condition can be written mathematically as,
[tex]\dfrac{x+20}{y+20}=\dfrac{5}{2}\\2x+40=5y+100\\2x-5y=60.........(1)[/tex]
If the prices are both reduced by [tex]\pounds 5[/tex], the ratio will become 5:1.
The above condition can be written mathematically as,
[tex]\dfrac{x-5}{y-5}=\dfrac{5}{1}\\x-5=5y-25\\x-5y=-20\\-x+5y=20.........(2)[/tex]
Add equation (1) and (2), to get the value of [tex]x[/tex] and [tex]y[/tex] as,
[tex]2x-x=60+20\\x=80[/tex]
Solve for [tex]y[/tex] as,
[tex]2x-5y=60\\2\times 80-5y=60\\5y=100\\y=20[/tex]
Therefore, the price of two radios is [tex]x=\pouns 80[/tex] and [tex]y=\pounds 20[/tex].
For more details, refer the link:
https://brainly.com/question/18836574
Which equation is in standard form?
x + 2y = 8
x = -2y + 8
2y = -x + 8
A random number generator is used to select a number from 1 to 100, what is the probability of selecting the number 129?
Which shows the following expression using positive exponents? a^3 b^-2/ ab^-4
a landscape company charges $100 plus $15 per hour. another company charges $75 plus $17 per hour. how long is a job that costs the same no matter which company is used
To find when the job cost is the same for both companies, equate their cost equations. By solving 100 + 15h = 75 + 17h, we find that at 12.5 hours the job would cost the same no matter which company is used.
To determine when a job costs the same for both landscape companies, we need to equate the two cost equations they offer and solve for the number of hours.
Let h be the number of hours the job takes. The first company's cost can be represented as C1 = 100 + 15h, and the second company's cost as C2 = 75 + 17h. To find the number of hours when both companies charge the same amount, we set C1 = C2:
100 + 15h = 75 + 17h.
Rearrange the equation to solve for h:
100 - 75 = 17h - 15h
25 = 2h
h = 12.5 hours.
So, a job that takes 12.5 hours would cost the same amount whether it is done by the first company or the second company.
name three quaderlateral that only sometimes have right angle
The diameter of a spherical basketball is 10in, what is the volume of the basketball?
Answer:
21
Step-by-step explanation:
hard wok
talent
name a segment skew to Wy
Tanya is printing a report. There are 100 sheets of paper in the printer, and the number of sheets of paper p left after t minutes of printing is given by the function p(t) = -8t + 100. How many minutes would it take the printer to use all 100 sheets of paper?
Using the function p(t) = -8t + 100, where t is time and p(t) is the amount of paper left, we set p(t) to 0 and solve for t. This reveals that it will take 12.5 minutes for the printer to use all 100 sheets of paper.
Explanation:In this problem, we're told that the printer uses paper according to the function p(t) = -8t +100, where t is the time it takes to print and p(t) is the amount of paper left in the printer. We want to find how much time it will take for the printer to use all the 100 sheets of paper, meaning we need to set p(t) to 0 and solve for t.
Therefore, we set up and solve the equation as follows: 0 = -8t + 100. If we solve this equation for t, we get t =100/8, which simplifies to t = 12.5 minutes.
This means it will take the printer 12.5 minutes to use all the 100 sheets of paper. The previous suggestions about other solutions and negative time are not applicable in the context of this problem because time cannot be negative in this instance, and this equation yields only one solution.
Learn more about Time to Use All Paper here:https://brainly.com/question/17423328
#SPJ11
Write the algebraic expression representing the length and width of Marliens house. Someone please tell me the process of how to do this
Answer:
Length of Marliens house = [tex](\frac{7}{2}x-4)\text{ or }(\frac{9}{2}x-18)[/tex] .
Width of Marliens house = [tex](2x-2)[/tex].
Step-by-step explanation:
We need to find the length and width of Marlien's home in algebraic expressions.
Add length of living room, hallway and kitchen, to find the length of Marlien's home.
Length of Marlien's home = [tex](2x+2)+(\frac{1}{2}x-4)+(x-2)=\frac{7}{2}x-4[/tex]
Or we can add Master bedroom,guest room, hallway and bathroom, to find the length of Marlien's home.
Length of Marlien's home = [tex](2x-10)+(x-2)+(\frac{1}{2}x-4)+(x-2)=\frac{9}{2}x-18[/tex]
Add width of living room and Master bedroom to find the width of Marlien's home.
Width of Marlien's home = [tex]x+(x-2)=2x-2[/tex]
Hence, the length of Marliens house is either [tex](\frac{7}{2}x-4)\text{ or }(\frac{9}{2}x-18)[/tex] and width of Marliens house is [tex](2x-2)[/tex].
Can yiu help me with number 3
Determine the digits of Y from these clues. The digits of Y add to 16. The first digit is 4 times the third digit. The second digit is 3 times the third digit. Y is a three digit number. 268 826 628 862
Answer: 862
Step-by-step explanation:
Let the third digit of Y be x .
Then , the first digit will be 4x and the second digit will be 3x.
Since , the digits of Y add to 16.
Then we have
[tex]3x+4x+x=16\\\\\Rightarrow\ 8x=16\\\\\Rightarrow\ x=\dfrac{16}{8}=2[/tex]
Thus , the third digit of Y = 2
Then the first of Y digit will be [tex]4(2)=8[/tex]
The second digit of Y will be [tex]3(2)=6[/tex]
Hence, the digits of Y must be 862
Donald is giving his old rare coins to his grandchildren. he has 56 coins and 8 grandchildren, and he gives each grandchildren the same number of coins. each coin has a value of $18. which equation can we use to find the value (v) of each grandchildren's coins?
simplify 50 1/2 + 12.3
How do i do 4/7 divided by 1 3/4
make 1 3/4 an improper fraction:
1 3/4 = 7/4
now you have 4/7 divided by 7/4
now reverse the 7/4 and multiply:
4/7 x 4/7 = 16/49
Someone plz tell me if my answers for the two questions are correct.Also help me with question f without telling the answer.
The amounts that two partners invested in a new business are given below. If the partners share the profits in the same ratio as their investment, what is partner B's share in a $3600 profit?
Partner A $4300 Partner B $7700
A farmer has 212 acres of land for sale.He divides the land into 18 equal sections.About how many acres are in each section?
Use a calculator to find the value of Sin 21°
Round to four decimal places.
A. 0.3839
B. 0.3584
C. 0.9336
D. 2.7904
Answer:
Option B is the correct answer.
Step-by-step explanation:
We need to find the value of Sin 21° using calculator and round to four decimal places.
Using calculator
Sin 21° = 0.358367949
Rounding the value of Sin 21° to four decimal places.
Sin 21° = 0.3584
Option B is the correct answer.
Audrey needs to cut 1 meter of yellow ribbon and 28 centimeters of blue ribbon. In total, how many centimeters of ribbon does she need?
centimeters
Answer: She needed 128 cm of ribbon.
Step-by-step explanation:
Since we have given that
Length of yellow ribbon needed to be cut = 1 meter
Length of blue ribbon needed to be cut = 28 cm
We need to find the number of centimeters she needed to be cut.
First of all, we convert meter into centimeter.
As we know that
1 meter = 100 centimeter
So, Total number of centimeters of ribbon she needed is given by
[tex]100+28\\\\=128\ cm[/tex]
Hence, She needed 128 cm of ribbon.
Help there are 4 screen shots
does 65-(45-20)equal (65-45)-20? how do you know?
Answer:
No, the expression 65-(45-20) is not equal to (65-45)-20.
Step-by-step explanation:
Consider the provided expression.
Consider the expression: 65-(45-20)
Solve the above expression as shown.
65-(45-20)
65-(25)
65-25
40
Now consider the second expression.
(65-45)-20
20-20
0
Now compare both the result.
40≠0
Hence, the expression 65-(45-20) is not equal to (65-45)-20.
Simplify 3(x - 6) - 4(x + 3).
Answer:
B) -x-3
Step-by-step explanation:
If I read and did the math correctly, this should be the answer. :)
Cups often come packaged in one tall stack. A certain cup is 4 inches tall. when one 4-inch cup is stacked in another, the two cups measure 4.5 inches tall. when 3 cups are stacked, they measure 5 inches tall. How many stacked 4-inch cups will fit in a bag that is 12 inches tall? in a bag that is n inches tall?
What is the product? Enter your answer as a fraction, in simplified form, in the box. 3/8⋅(−3/6)
The product of the given expression of a fraction is [tex]\frac{-3}{16}[/tex].
Given:
An expression : [tex]\frac{3}{8}.(\frac{-3}{6})[/tex]
To find:
The product of the given expression of fractions in simplified form.
Solution:
[tex]\frac{3}{8}.(\frac{-3}{6})\\\\= \frac{3}{8}\times (\frac{-3}{6})\\\\=\frac{-9}{48}\\\\=\frac{-3}{16}[/tex]
The product of the given expression of a fraction is [tex]\frac{-3}{16}[/tex].
Learn more about the simplest form of fraction here:
brainly.com/question/838961?referrer=searchResults
brainly.com/question/390010?referrer=searchResults
Which numbers are a distance of 3 units from 12 on a number line?
Select each correct answer.
3
15
0
9
−9
−15
Answer:
15 and 9 are the correct answers.
Step-by-step explanation:
The numbers that are at a distance of 3 units from 12 on a number line are given as:
We will add 3 to 12 and also subtract 3 from 12 to get both numbers on the left side an right side on the number line.
[tex]12+3 = 15[/tex]
[tex]12-3 = 9[/tex]
So, the correct answers are 15 and 9.
Abbey gets paid a flat rate of $10.00 to mow her neighbor's lawn plus an additional $5 per hour to rake the leaves. The money she earns is represented by the equation m = 5h + 10, where m represents the amount of money she earns, in dollars, and h is the number of hours she rakes leaves for. Which of the following equations can be used to find h, the number of hours she rakes leaves for?
The answer choices are:
A. h= m -2
B. h=m -10
C. h= m/5
D. h= m-10/5