What is true for all exergonic reactions?

Answers

Answer 1

Answer:

The reaction proceeds with a net release of free energy.

Explanation:

Exergonic reactions: It is known as the chemical reaction where the change in the free energy is occur negative or there is a net release of free energy, and indicating a spontaneous reaction. For the processes this takes place under constant temperature, and pressure conditions.

The Gibbs free energy is used whereas the processes which takes place under constant volume, and temperature conditions, and their Helmholtz energy is used. Cellular respiration is the example of an exergonic reaction.


Related Questions

Consider the voltaic cellZn(s) + Cu{2+}(aq)--> Zn{2+}(aq)+Cu(s){}=chargeUnder standard conditions, what is the maximum electrical work, in Joules that can accomplish if 60 g of copper is plated out?

Answers

Answer:

Max. work done in 60 g of copper plated out is 200472.14 J

Explanation:

Given cell reaction is:

[tex]Zn(s)+Cu^{2+} \rightarrow Zn^{2+}+Cu(s)[/tex]

Standard reduction potential of Zn electrode ([tex]E_{Zn^{2+}/Zn}[/tex]) is 0.763 V.

Standard reduction potential of Cu electrode ([tex]E_{Cu^{2+}/Cu}[/tex]) is -0.337 V.

Copper acts as cathode and Zinc acts as anode.

Cell potential (E) = E° cathode - E° anode

                           = 0.763 - (-0.337)

                           = 1.10 V

formula for the work done is as follows:

[tex]W_{max}=-nFE[/tex]

Here, n is no. of electron involved in the reaction.

F(Faraday's constant) = 96500

In the given reaction, n = 2

[tex]W_{max}=-nFE\\=-2 \times\ 96500 \times 1.10\\=-212300\ J/mol[/tex]

Therefore, 212300 J work is done by reducting 1 mol of copper.

Copper given is 60 g.

Molecular mass of copper is 63.54 g/mol.

[tex]No.\ of\ mol = \frac{60\ g}{63.54\ g/mol}[/tex]

Max. work done in 60 g of copper plated out is:

[tex]W_{max}=212300\ J/mol \times \frac{60\ g}{63.54\ g/mol} \\=200472.14\ J[/tex]

Miles mixed two unlabeled solutions together. This caused a bad reaction, and a noxious gas was emitted. Which describes what Miles should do?

A. He should use a fire blanket to cover his solutions.
B. He should report the accident and leave the area.
C. He should neutralize the reaction by adding water.
D. He should pour the solution down the sink to stop the gas.

Answers

Answer:

B. He should report the accident and leave the area.

Explanation:

Noxious gases are harmful and might cause hallucination or even death. Examples of such gases carbon monoxide (CO) and Ammonia gas (NH3).  

Let's look at all the options

All the solutions except for B is increasing his time of contact with the gas.  This will increase his exposure and might cause death. The fire blanked in option A is used to cover the fire and NOT the gas. It’s simply not made for it. Also, the blanket material might react with the gas to create additional fumes.  He should not neutralize it with water as the solution might contain a group 1 metal e.g. Na (sodium). In that case the container will explode and hydrogen gas will release. Pouring the solution down the sink won’t stop the gas as the reaction has occurred already. It will only make the situation worse as after pouring the mixture, the gas will get more space to spread across the room.  

Therefore,  He should report the accident and leave the area.

Answer:

b

Explanation:

A chemist observes that a large molecule reacts as if it were much smaller. The chemist proposes that the molecule is folded in a way that causes it to react differently than expected and develops a series of experiments to test that proposition. How would the chemist's proposition be classified?

Answers

Answer:

Hypothesis

Explanation:

The following steps are applicable when we wish to prove a specific fact:

a hypothesis is made; this is a statement that we provide after some observations and we wish to either prove or deny it;multiple experiments are carried out in order to gather significantly substantial amount of data that can be then further analyzed and any tendencies can be noticed;based on the data gathered, conclusions are made: we either prove or deny the hypothesis. If hypothesis is proved, it may become a theory over long time.

In the context of this problem, we're at the first step where we make a hypothesis.

Answer:

whats expert verified????

Explanation:

How could you describe an acid based on Arrhenius's theory? A. produces OH⁻ in solution. B. produces H⁺ in solution. C. a proton acceptor. D. a proton donor. E. none of the above

Answers

Answer:

B. produces H⁺ in solution.

Explanation:

Arrhenius theory:-

The Arrhenius theory was introduced introduced by Swedish scientist named Svante Arrhenius in 1887.

According to the theory, acids are the substances which dissociate in the aqueous medium to produce electrically charged atoms ( may be molecule). Out of these species furnished, one must be a proton or the hydrogen ion, [tex]H^+[/tex].

Base are the substances which dissociate in the aqueous medium to produce electrically charged atoms ( may be molecule). Out of these species furnished, one must be a hydroxide ion, [tex]OH^-[/tex].

Hence, the correct option is:- B. produces H⁺ in solution.

According to Arrhenius's theory, an acid is described as B. produces H⁺ in solution.

Arrhenius defined acids as substances that, when dissolved in water, increase the concentration of hydrogen ions (H⁺) in the solution. This definition is based on the idea that acids dissociate in water to release H⁺ ions, which then combine with water molecules to form hydronium ions (H₃O⁺).

For example, when hydrochloric acid (HCl) is dissolved in water, it dissociates into H⁺ and Cl⁻ ions. The H⁺ ions increase the acidity of the solution. This characteristic is central to the Arrhenius definition of acids, distinguishing them from bases, which are defined by their ability to produce OH⁻ ions in solution.

While other definitions of acids, such as Brønsted-Lowry, describe acids as proton donors, Arrhenius specifically focuses on the increase of H⁺ ions in aqueous solutions.

Potassium-40 decays to argon-40 with a half-life of 1.27×109 yr. What is the age of a rock in which the mass ratio of 40Ar to 40K is 4.2?

Answers

Final answer:

The age of a rock with a mass ratio of argon-40 to potassium-40 of 4.2, and a half-life of potassium-40 of 1.27×109 years, is calculated to be approximately 1.7 billion years old using the potassium-argon dating method.

Explanation:

Calculating Rock Age Using Potassium-Argon Dating

The question asks for the age of a rock, given that the mass ratio of argon-40 (40Ar) to potassium-40 (40K) is 4.2. To find the age of the rock using the potassium-argon dating method, we can apply the concept that 40K decays into 40Ar with a known half-life. This half-life is given as 1.27×109 years.

Using the given mass ratio of 40Ar to 40K, which is 4.2, we can estimate the number of half-lives that have passed. Each half-life passed will result in the remaining 40K being half of what it was before and an increase in 40Ar. We can express the ratio in terms of the decay equation:

NAr / NK = (e−0.693t/T) / (1 − e−0.693t/T)

Where NAr is the amount of 40Ar, NK is the amount of remaining 40K, t is the age of the rock, and T is the half-life of 40K. Solving for t using the given ratio and half-life, we find that the rock is approximately 1.7 billion years old.

What mass of Compound 1 (MW = 800 g/mol) is contained in the solution used to prepare liposomes that elute at 20 mL by size-exclusion chromatography?

Answers

Answer:

Mass of compound 1 is 0.7144g

Explanation:

1 mole of liposomes =22.4L

20mL (0.02L) of liposomes = 0.02/22.4 = 0.000893mole

Number of moles = Mass/Molecular Weight (MW)

Mass = Number of moles × MW = 0.000893 × 800 = 0.7144g

A cylinder with a movable piston contains a fixed amount of gas at a constant pressure. Initially, the cylinder contains 0.25 liters of air at 0 degrees Celsius. When the temperature is increased to 35 degrees Celsius, the air will occupy what volume?
a. 0.28 L

b. 0.88 L

c. 8.75 L

d. 35.25 L

Answers

Answer:

a. 0.28 L

Explanation:

At constant pressure and number of moles, Using Charle's law  

[tex]\frac {V_1}{T_1}=\frac {V_2}{T_2}[/tex]

Given ,  

V₁ = 0.25 L

V₂ = ?

T₁ = 0 °C

T₂ = 35 °C  

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T₁ = (0 + 273.15) K = 273.15 K  

T₂ = (35 + 273.15) K = 308.15 K  

Using above equation as:

[tex]\frac{0.25}{273.15}=\frac{V_2}{308.15}[/tex]

[tex]V_2=\frac{0.25\cdot \:308.15}{273.15}[/tex]

New volume = 0.28 L

Compared to the physical and chemical properties of the compound NO2, the compound N2O has

A. the same physical properties and the same chemical properties
B. different physical properties and different chemical properties
C. different physical properties and the same chemical properties
D. the same physical properties and different chemical properties

Answers

Answer:

B

Explanation:

The two compounds have different physical properties and different chemical properties despite the fact that they are formed from nitrogen and oxygen.

Final answer:

The compounds NO2 and N2O have different physical and chemical properties due to their varied molecular structures and resulting behaviors in both physical states and chemical reactions.

Explanation:

Compared to the physical and chemical properties of the compound NO2, the compound N2O has different physical properties and different chemical properties. This is because even though both compounds consist of nitrogen and oxygen, they have different molecular structures, which results in differences in their physical properties such as color, phase at room temperature, and boiling points. Similarly, their chemical properties also differ, such as their reactivity with other chemicals and their role in various chemical reactions.

For instance, NO2 is a reddish-brown gas that is a significant air pollutant, whereas N2O, commonly known as laughing gas, is a colorless gas and used as an anesthetic in dentistry. The correct answer to the student's question is therefore option B: different physical properties and different chemical properties.

in example 5.11 of the text the molar volume of n2 at STP is given as 22.42 L/mol how is this number calculatd how does the molar volume of h2 at stp compare th te molar volume of n2

Answers

Answer:

V = 22.42 L/mol

N₂ and H₂ Same molar Volume at STP

Explanation:

Data Given:

molar volume of N₂ at STP = 22.42 L/mol

Calculation of molar volume of N₂ at STP  = ?

Comparison of molar volume of H₂ and N₂ = ?

Solution:

Molar Volume of Gas:

The volume occupied by 1 mole of any gas at standard temperature and pressure and it is always equal to 22.42 L/ mol

Molar volume can be calculated by using ideal gas formula  

                               PV = nRT

Rearrange the equation for Volume

                            V = nRT / P . . . . . . . . . (1)

where

P = pressure

V = Volume

T= Temperature

n = Number of moles

R = ideal gas constant

Standard values

P = 1 atm

T = 273 K

n = 1 mole

R = 0.08206 L.atm / mol. K

Now put the value in formula (1) to calculate volume for 1 mole of N₂

                   V = 1 x 273 K x 0.08206 L.atm / mol. K / 1 atm

                   V = 22.42 L/mol

Now if we look for the above calculation it will be the same for H₂ or any gas. so if we compare the molar volume of 1 mole N₂ and H₂ it will be the same at STP.

How many grams of sucrose would you add to water to make a total of 2.1 L of 9 % solution (mass per volume)? Make your answer's precision to one decimal place.

Answers

Answer : The mass of sucrose added to water will be, 189.0 grams.

Explanation :

As we are given that 9 % solution (mass per volume) that means 9 grams of sucrose present in 100 mL volume of solution.

Total given volume of solution = 2.1 L = 2100 mL    (1 L = 1000 mL)

Now we have to determine the mass of sucrose in solution.

As, 100 mL of solution contains 9 grams of sucrose

So, 2100 mL of solution contains [tex]\frac{2100mL}{100mL}\times 9g=189.0[/tex] grams of sucrose

Therefore, the mass of sucrose added to water will be, 189.0 grams.

Consider a hypothetical experiment in which the left beaker contains 4 mM NaCl, 9 mM glucose and 10 mM albumin. The right beaker contains 10 mM NaCl, 10 mM glucose and 40 mM albumin. The dialysis membrane is permeable to all substances except albumin. In which direction will glucose move?

Answers

Answer:

to the left beaker

Explanation:

In the system above, we have two beakers containing different concentrations of glucose. In addition, the two beakers are separated by a permeable membrane which can allow the movement of glucose from one beaker to another. In order to attain equilibrium conditions, there will be a movement of glucose from the beaker with high glucose concentration (right beaker) to the beaker with low glucose concentration (left beaker).

Here are some questions about the elements, their properties, and periodicity. In each case. the correct answer is the name of an element (one of the two given). Write the answer in the appropriate space at right, placing the first letter in the first blank. There are more than enough blanks to fit either element name, so the number of letters in the name cannot be used as a clue. When the puzzle is complete, the Periodic Law will be displayed in the shaded column. Record the Periodic Law at the bottom of the page.

Answers

Answer: Please provide more details of the elements to help answer the question

Explanation:

how many grams of CO are needed to react with an excess of fe2o3 to produce 209.7 g fe

Answers

Answer:

Amount of CO required is 157.5 g

Explanation:

Molecular mass of Fe = 55.845 g/mol

Amount of Fe = 209.7 g

[tex]Mol\ of\ Fe=\frac{209.7}{55.845} \\=3.75\ mol[/tex]

Balanced reaction of reduction of Fe2O3 is as follows:

[tex]Fe_2O_3(s) + 3CO (g)\rightarrow 2Fe(s)+3CO_2(g)[/tex]

From the balanced reaction, 2 mol of Fe is produced by 3 mol of CO.

Therefore, 3.75 mol of Fe will be produced by,

                                                     [tex]\frac{3}{2} \times 3.75 = 5.625\ mol\ CO[/tex]

Relation between mass and mol is as follows:

Mass = Mol × Molecular formula

Molecular mass of CO = 28 g/mol

Grams of CO required = 5.625 mol × 28 g/mol

                                      = 157.5 g

Amount of CO required is 157.5 g.

Answer:

There are 157.8 grams of CO needed.

Explanation:

Step 1: Data given

Mass of Fe produced = 209.7 grams

Molar mass of Fe2O3 = 159.69 g/mol

Molar mass of Fe = 55.845 g/mol

Step 2: The balanced equation

3CO + Fe2O3 → 2Fe + 3CO2

Step 3: Calculate Moles of Fe

Moles Fe = mass Fe / molar mass Fe

Moles Fe = 209.7 grams / 55.845 g/mol

Moles Fe = 3.755 moles

Step 4: Calculate moles of CO

For 3 moles of CO we need 1 mol of Fe2O3 to produce 2 moles Fe and 3 moles of CO2

For 3.755 moles of Fe we need  3.755 *3/2 = 5.6325 moles of CO

Step 5: Calculate mass of CO

Mass CO = moles CO * molar mass CO

Mass CO = 5.6325 * 28.01 g/mol

Mass CO = 157.8 grams

There are 157.8 grams of CO needed.

Which molecule would you expect to be more soluble in water, CH3CH2CH2OH or HOCH2CH2CH2OH? Explain.

Answers

Answer:

HOCH2CH2CH2OH.

Explanation:

HOCH2CH2CH2OH is more soluble in water than CH3CH2CH2OH because propandiol  have two alcoholic group attached to it hence, it can form more efficient hydrogen bonding with water whereas the hydrogen bonding in CH3CH2CH2OH  would be less prominent as it has only one alcoholic group.

Answer:

HOCH2CH2CH2OH

Based on the graph, how would you BEST describe the speed of the racehorse?
A) constantly decreasing speed
B) both increasing and decreasing speed
C) stopped, starting, and then stopped again
D) starting to move and then increasing speed

Answers

Answer:

The correct option is:

D) starting to move and then increasing speed

Explanation:

The speed of the racehorse is given by the slope of the given Distance-time graph.

Speed = Distance/time = Slope of the graph

The slope of the graph keeps increasing.

Hence, the speed of the racehore is increasing.

The distance moved is zero at t=0. Hence, the racehorse has started to move from rest.

Answer:

D

Explanation:

I TOOK IT ON USA TEST PREP

A generic gas, X , is placed in a sealed glass jar and decomposes to form gaseous Y and solid Z . 2 X ( g ) − ⇀ ↽ − Y ( g ) + Z ( s ) How are these equilibrium quantities affected by the initial amount of X ( g ) placed in the container? Assume constant temperature.

Answers

Final answer:

The initial amount of gas X does not affect the equilibrium composition of gaseous products at a constant temperature, but more of solid Z will be formed until equilibrium is reached again.

Explanation:

The question concerns how the initial amount of a gas, X, affects the equilibrium quantities when it decomposes to form another gas, Y, and a solid, Z, according to the reaction 2X(g) ⇌ Y(g) + Z(s).

In an equilibrium involving a heterogeneous mixture of gases and solids at a constant temperature, the presence of a solid does not affect the equilibrium composition of the gaseous phase. Whether a small or large amount of the solid is present, the equilibrium composition of the gas remains unchanged.

This is because solids and liquids are pure substances with fixed densities and their concentrations are not included in the equilibrium constant expression. Hence, adding more X(g) would not change the equilibrium concentrations of Y(g), but it would lead to more Z(s) being formed until the equilibrium is re-established.

2. Beta Particles
a. What is the mass number of the particle emitted from the nucleus during beta minus (β–) decay?


b. What kind of charge does the particle emitted from the nucleus during beta minus (β–) decay have?


c. What is another name for a beta minus (β–) particle?


d. Write the balanced equation for the alpha decay that is below the “Show Equation.” Label the parent, daughter, and beta particle.



3. Nuclear Decay

a. What happens in the nucleus of an atom when an alpha particle is emitted?



b. What happens in the nucleus of an atom when a beta particle is emitted?

Answers

Answer:

Explanation:

a. What is the mass number of the particle emitted from the nucleus during beta minus (β–) decay?

zero

The beta radiations are emitted in this reaction. The one electron is ejected and neutron is converted into proton.

⁴₆C → ¹⁴₇N + ⁰₋₁e

b. What kind of charge does the particle emitted from the nucleus during beta minus (β–) decay have?

Negative charge

Electron is emitted during beta decay and it carry negative charge.

c. What is another name for a beta minus (β–) particle?

Electron

During beta minus decay electron is emitted and neutron is converted into proton.

d. Write the balanced equation for the alpha decay that is below the “Show Equation.” Label the parent, daughter, and beta particle.

Equation is missing

a. What happens in the nucleus of an atom when an alpha particle is emitted?

When atom undergoes the alpha emission the original atom convert into the atom having mass number less than 4  and atomic number less than 2 as compared to the starting atom.

b. b. What happens in the nucleus of an atom when a beta particle is emitted?

When nucleus emit the beta particle neutron is converted into proton and this proton stay into the nucleus while at the same time electron is emitted. Thus atomic number is increased by one.

⁴₆C → ¹⁴₇N + ⁰₋₁e

A certain amount of H2S was added to a 2.0 L flask and allowed to come to equilibrium. At equilibrium, 0.072 mol of H2 was found. How many moles of H2S were originally added to the flask?

Answers

Answer:

0.098 moles H₂S

Explanation:

The reaction that takes place is

2H₂(g) + S₂(g) ⇄ 2H₂S(g)  keq = 7.5

We can express the equilibrium constant as:

keq = [H₂S]² / [S₂] [H₂]² = 7.5

With the volume we can calculate the equilibrium concentration of H₂:

[H₂] = 0.072 mol / 2.0 L = 0.036 M

The stoichiometric ratio tells us that the concentration of S₂ is half of the concentration of H₂:

[S₂] = [H₂] / 2 = 0.036 M / 2 = 0.018 M

Now we can calculate [H₂S]:

7.5 = [H₂S]² / (0.018*0.036²)[H₂S] = 0.013 M

So 0.013 M is the concentration of H₂S at equilibrium.

This would amount to (0.013 M * 2.0 L) 0.026 moles of H₂SThe moles of H₂ at equilibrium are equal to the moles of H₂S that reacted.

Initial moles of H₂S - Moles of H₂S that reacted into H₂ = Moles of H₂S at equilibrium

Initial moles of H₂S - 0.072 mol = 0.026 mol

Initial moles of H₂S = 0.098 moles H₂S

Final answer:

The number of moles of H2S initially added to the flask is 0.036 mol, calculated based on the number of moles of H2 gas (0.072 mol) obtained at equilibrium by assuming that each mole of H2S gives two moles of H2.

Explanation:

This question deals with the concept of chemical equilibrium in the reaction of hydrogen sulfide gas (H2S). It's assumed in the question that H2S gas dissociates into H2 and S2 according to the equation: H2S(g) ⇌ 2H2(g) + S2(g). When 0.072 mol of H2 is obtained at equilibrium, it implies that each mole of H2S gives two moles of H2. Therefore, the number of moles of H2S that were originally added to the flask would be half of the moles of H2 obtained at the equilibrium. Hence, the moles of H2S originally added to the flask are 0.072 / 2 = 0.036 mol.

Learn more about Chemical Equilibrium here:

https://brainly.com/question/3920294

#SPJ3

IF an Axonal Membrane transiently becomes very permeable to Na+ ions then the membrane potential of the cell wall will approach:a. (+)132 mVb. (+)50 mVc. (-)60 mVd. (+)70 mVe. (-)94 mV

Answers

Answer:

The correct option is D ((+)70 mV)

Explanation:

IF an Axonal Membrane transiently becomes very permeable to Na+ ions then the membrane potential of the cell wall will approach (+)70 mV.

When one atom losses an electron and another atom simultaneously gains one, what has taken place is called _____.

Answers

Answer:

Ionic bond

Explanation:

Ionic bonding:-

This type of bonding is formed when there is a complete transfer of electrons from one element to another element. In this bonding one element is always a metal and another is a non-metal.

Thus, the atom which loses the electron which is gained by the another, there is a electrostatic attraction between two which which results in the formation of ionic bond.

For example:-

Calcium is the element of second group and forth period. The electronic configuration of Calcium is - 2, 8, 8, 2 or [tex]1s^22s^22p^63s^23p^64s^2[/tex]

There are 2 valence electrons of Calcium.

Sulfur is the element of sixteenth group and third period. The electronic configuration of sulfur is - 2, 8, 6 or [tex]1s^22s^22p^63s^23p^4[/tex]

There are 6 valence electrons of sulfur.

Thus, calcium loses two electrons to sulfur and sulfur accepts these electrons to form ionic bond.

Calcium sulfide, [tex]CaS[/tex] is formed when 2 valence electrons of calcium are loosed and they are gained by sulfur atom.

Drag the correct symbol to the equation. Not all symbols will be used. A plutonium atom undergoes nuclear fission. Identify the missing element in the nuclear equation. 239Pu + 1n ---> ____ + 134Xe + 3 1n 94 0 54 0 Options: 101Zr 40 134Xe 54 105Zr 40 103Zr 40 102Xe 54

Answers

Answer:

[tex]_{40}^{103}Zr[/tex]

Explanation:

For any nuclear equation, we should utilize the law of mass conservation and the law of charge conservation. The sum of the masses on the left-hand side of the arrow should be equal to the sum of the masses on the right-hand side of the arrow (those are the superscripts for each nucleus). Similarly, the sums of charges should be equal (this is the law of charge conservation).

Let's say that the missing species is X with a mass of 'M' and charge of 'Z':

[tex]_{94}^{239}Pu+_0^1n\rightarrow _Z^MX+_{54}^{134}Xe+3_0^1n[/tex]

Find mass applying the mass balance law:

[tex]239+1=M+134+3\cdot1\\240 = M+137\\M=240 -137\\M=103[/tex]

This means our particle X has a mass of 103. Let's find the atomic number (the charge) same way:

[tex]94+0=Z+54+3\cdot0\\94=Z+54\\Z=94-54=40[/tex]

The atomic number of our nucleus is 40. That said, we have:

[tex]_{40}^{103}X[/tex]

Find the element in the periodic table with Z = 40. This is Zr. Meaning we can now identify it fully:

[tex]_{40}^{103}Zr[/tex]

How many seconds are required to produce 4.00 g of aluminum metal from the electrolysis of molten alcl3 with an electrical current of 12.0 a?

Answers

Answer: 3618 seconds

Explanation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}=\frac{4g}{27g/mol}=0.15moles[/tex]

According to mole concept:

1 mole of an atom contains [tex]6.022\times 10^{23}[/tex] number of particles.

We know that:

Charge on 1 electron = [tex]1.6\times 10^{-19}C[/tex]

Charge on 1 mole of electrons = [tex]1.6\times 10^{-19}\times 6.022\times 10^{23}=96500C[/tex]

[tex]AlCl_3\rightarrow Al^{3+}+3Cl^-[/tex]

At cathode: [tex] Al^{3+}+3e^-\rightarrow Al[/tex]

1 mole of aluminium is deposited by = [tex]3\times 96500=289500C[/tex]

Thus 0.15 moles of aluminium is deposited by = [tex]\frac{289500C}{1}\times 0.15=43425C[/tex]

To calculate the time required, we use the equation:

[tex]I=\frac{q}{t}[/tex]

where,

I = current passed =12.0 A

q = total charge = [tex]43425C[/tex]

t = time required in seconds = ?

Putting values in above equation, we get:

[tex]12.0A=\frac{43425C}{t}\\\\t=\frac{43425C}{12.0A}=3618s[/tex]

Hence, the amount of time required to produce 4.00 g of aluminum metal from the electrolysis of molten [tex]AlCl_3[/tex] with an electrical current of 12.0 A is 3618 seconds

The National Weather Service routinely supplies atmospheric pressure data to help pilots set their altimeters. The units the NWS uses for atmospheric pressure are inches of mercury. A barometric pressure of 30.51 inches of mercury corresponds to __________ kPa.
a. 77.50
b. 775.0
c. 1.020
d. 103.3
e. 16.01

Answers

Answer:

d. 103.3

Explanation:

In the given question, the National Weather Service routinely supplies atmospheric pressure data to help pilots set their altimeters. And the units of atmospheric pressure used for reporting the atmospheric pressure data are inches of mercury. For a barometric pressure of 30.51 inches of mercury, we can calculate the pressure in kPa as follow:

In principle, 3.386 kPa is equivalent to the atmospheric pressure of 1 inch of mercury. Thus, 30.51 inches of mercury is equivalent to 30.51 in *(3.386 kPa/1 in) = 103.307 kPa.

Therefore, a barometric pressure of 30.51 inches of mercury corresponds to _____103.3_____ kPa.

discuss the origin of the line citing the bohr theory of the atom specify any energy transitions that are applicable

Answers

Answer:

Niels Bohr states that the line spectrum of the hydrogen atom by assuming that the electron revolve in circular paths and that the paths  have an allowable radii. ...

Explanation:

discuss the origin of the line citing the bohr theory of the atom specify any energy transitions that are applicable

Niels Bohr states that the line spectrum of the hydrogen atom by assuming that the electron revolve in circular orbits and that orbits have an allowable radii. ... an absorption spectrum is produced, dark lines in the same position as the bright lines in the emission spectrum of an element are produced.

Bohr Atomic Model. Bohr Atomic Model : In 1913 Bohr proposed his quantized shell model of the atom to explain how electrons can have stable orbits around the nucleus. ... The atom will be stable in the state with the smallest orbit

Bohr explains to us that electron revolve round the nuclues of an atom and possess energy levels. they can change energy levels

Which type of drum is used for the storage of corrosives such as acids, bases, or oxidizers?

Answers

Answer:

Polyethylene Drums

Explanation:

Drums are recognisable barrel-like containers. they are  used to store a wide variety of substances, including food-grade materials, corrosive flammable liquids and grease

Drums may be constructed of low-carbon steel, polyethylene and cardboard.

Generally the nature of the chemical dictates the construction of the drum

Polyethylene drums are use for storage of corrosive chemicals such as acid bases, or oxidizers and other materials that cannot be stored  in steel containers, because of their chemical structure .

What substances that are formed by the chemical combination of two or more elements in definite proportions

Answers

Answer:

This are called compounds

Explanation:

Compounds are substances formed when two or more elements are combined, and by definite proportions they should always be in fixed ratios. The elements can be bonded together either through covalent or ionic bonding.

In a covalent bond the atoms in the compound are sharing their outermost electrons to achieve stability, for example, CF4, CH4, CH3COOH among others. Most of the organic compounds are made of covalent bonds.  

In an Ionic bond atoms in the compound are losing and gaining each others' valence electron (transfer of electrons) to form and achieve stability. For example, NaCl, KOH, CaBr2, among others. Inorganic compounds are in their majorities, ionic compounds.

We also can have metallic bonds.

Final answer:

Compounds are formed by the chemical combination of two or more elements in fixed proportions and have unique properties. There can be millions of compounds formed from combinations of elements, each with distinct properties. Compounds differ from mixtures, which can vary in composition.

Explanation:

Substances that are formed by the chemical combination of two or more elements in definite proportions are known as compounds. These compounds are formed when elements are chemically bonded together. For example, water is a compound that is made up of hydrogen and oxygen in a 2:1 ratio.

An interesting point here is that even though there are just over 100 known elements, there are tens of millions of chemical compounds resulting from various combinations of these elements. Each of these compounds has a unique composition and distinct chemical and physical properties that set it apart from all other compounds.

It's also essential to distinguish compounds from mixtures. Unlike compounds, mixtures contain two or more substances that are not chemically bonded together and can be separated by physical means. The composition of a mixture can vary, while the composition of a compound is always fixed.

Learn more about Compounds here:

https://brainly.com/question/34151797

#SPJ11

40 POINTS What are chemical formulas? Give an example of a chemical formula. (4 points)

Answers

Answer:

A chemical formula tells us the number of atoms of each element in a compound. It contains the symbols of the atoms of the elements present in the compound as well as how many there are for each element in the form of subscripts.

Explanation:

EXAMPLES:

H2SO4 : Sulfuric Acid. CH4 : Methane.

C12H22O11 : Sucrose. C3H8 : Propane.

NaHCO3 : Baking Soda. F : Fluoride. F2 : Fluoride.

H2O2 : Peroxide.

C8H10N4O2 : Caffeine.

C9H8O4 : Aspirin.

Zn(NO3)2 : Zinc. CO : Carbon Monoxide. NaOH : Sodium Hydroxide. ...

CnH2nOn : Sugar.

Tyrel is learning about a certain kind of metal used to make satellites. He learns that infrared light is absorbed by the metal, X-ray light is transmitted through the metal, and visible light is reflected off the metal. Tyrel wonders if the metal will get warm if he shines the lights on it. Can light cause the metal to get warm? Why or why not? Does it matter what type of light shines on the metal?

Answers

Answer:

Below.

Explanation:

Light will make the metal warmer because it isn't a perfect reflector. Some of the photons from the light are absorbed by the metal.

I think infrared light will make it warmer than visible light.

Light has been the form of energy that has been emitted in the form of photons. The shining of the light onto the metal body will warm up the metal as the part of incident radiation has been absorbed by the metal.

A black body is one that reflects all the radiation that is incident onto it. The metal is not a perfect black body. Since the metal has not been emitting all the radiations, the radiations have been absorbed by the metal.

The absorption of the radiations by the metal will provide energy that results in the metal turning warm.

The varying type of light will have varying intensity and energy. Thus the varying light will result in the difference in the warming of the metal.

For more information about the metal to get warm, refer to the link:

https://brainly.com/question/11278333

how many pairs of electrons do two atoms of oxygen need to share to produce one molecule of O2?

Answers

Answer:

2 pairs or 4

Explanation:

Oxygen atom belongs to the group 16 of the periodic table also known as the chalcogen group. Oxygen has atomic number of 8. This means it has 8 protons. Hence, for an electrically neutral oxygen atoms, there are 8 electrons.

These electrons are present in the first two shells. There are two electrons in the first shell also known as the K shell. There are 6 electrons in the valence shell of the oxygen atom which is also the L shell. These six valence electrons are the ones responsible for the chemical bonding with other elements.

As said earlier, oxygen atom has six electrons in its valence shell. This means to complete an octet configuration, there are two more electrons needed for it to achieve the needed stability. These two electrons can be obtained ionically or covalently. This depends on the other atom with which it is entering chemical combination with.

In the case of this question, we know it is another oxygen atom. This means each of these atoms will contribute 2 each to make up 2 pairs or 4 electrons which are then controlled by the nuclei of both atoms

In the process of ionic bonding:__________ a. outer energy level electrons are shared b. the resulting molecule is always charged c. outer energy level electrons are gained and lost d. the resulting ions repel each other

Answers

A. Outer energy level electrons are shared.

In electrovalent combination, after donating their valence electrons, metallic particles become positively charged; non metallic particles become negatively charged after acquiring extra electrons.

The electrons involved reside in the outermost shells of the atoms.

PeAcE.

There are two types of chemical compound one is covalent compound and other is ionic compound in chemistry, covalent compound formed by sharing of electron and ionic compound formed by complete transfer of electron. The correct option is option A

What is chemical Compound?

Chemical Compound is a combination of molecule, Molecule forms by combination of element and element forms by combination of atoms in fixed proportion. Ionic compound are very hard, they have very high melting and boiling point.

There is complete transfer of electron from one element to another from from the outer energy levels of element. Only the electrons that are present in the outermost shell are ready to react, only these electrons  participte in the reaction

Therefore the correct option is option A

more about chemical compound, here:

https://brainly.com/question/26487468

#SPJ6

Other Questions
Classify the following differential equation: dy dx = y(y 2)e x i. ORDER: ii. LINEAR/NONLINEAR: iii. SEPARABLE/NOT SEPARABLE: Technician A says that the tinnerman nuts are used to hold the brake drum on and should be reinstalled when the drum is replaced. Technician B says that a drum should be removed inside a sealed vacuum enclosure or washed with water or solvent to prevent possible asbestos dust from being released into the air. Which technician is correct?A. Technician A onlyB. Technician B onlyC. Both Technicians A and BD. Neither A nor B Which of the following were likely factors that prompted Swift to write "A Modest Proposal?" Select all that apply.An overpopulation problem in IrelandSevere poverty in Ireland brought about by heavy English taxationEngland's refusal to allow Ireland self-governmentPro-Catholic sentiment in England An investment of $100,000 is worth $105,000 after 3 months. If the investment keeps growing at the current rate, at the end of one year, the annualized rate of return will be:A. 5.00%B. 20.00%C. 21.55%D. 25.00% Use the Divergence Theorem to compute the net outward flux of the following field across the given surface S.F = < 8y^2 - 3x, -9x+4y, -2y^3 +z >S is the sphere {(x,y,z): x^2 + y^2 + z^2 = 9}Find net outward flux across the surface. A fluid-filled sac that decreases friction where a tendon rubs against a bone near a synovial joint is called a/an Which of the following foods is likely to keep a person satiated for the longest period of time?a. a bean and cheese burritob. a serving of full-fat ice creamc. a bowl of rice cereal in whole milkd. a tossed salad with oil and vinegar dressing Between 1990 and 2000 the global economy grew more than it did during the 10,000 years from the beginning of agriculture to 1950. I Need Help With This Question Please Help Me Of the students who eat in a certain cafeteria, each student either likes or dislikes lima beans and each student either likes or dislikes brussels sprouts. Of these students, \small \frac{2}{3} dislike lima beans; and of those who dislike lima beans, \small \frac{3}{5} also dislike brussels sprouts. How many of the students like brussels sprouts but dislike lima beans? Alan is conducting a survey to find out the type of art preferred by students at the towns high school. Identify the population of his survey and describe a possible sample of the population. So I need the question answer to what (5x)^2 equals Who was first modern theorist to openly point to the terrible damage done by society to women? In recent years, the Federal governments top three uses of funds were approximately _____ % for income security and pensions, ______ % for health, and _____ % for national defense. ABC common stock has been moving up recently and one of your clients purchased several hundred share of the stock this morning. Since the investor purchased the stock, the price went up by one point and then returned to the price that the customer paid this morning. The client decides to buy a call option on ABC common stock. The most likely reason for the purchase of the call would be:________. What is Christmas carol plot diagram falling action of Cratchet,Fred,Bob,scrooge BSU Inc. wants to purchase a new machine for $35,500, excluding $1,400 of installation costs. The old machine was bought five years ago and had an expected economic life of 10 years without salvage value. This old machine now has a book value of $2,200, and BSU Inc. expects to sell it for that amount. The new machine would decrease operating costs by $7,500 each year of its economic life. The straight-line depreciation method would be used for the new machine, for a six-year period with no salvage value.(a) Determine the cash payback period. (Round cash payback period to 1 decimal place, e.g. 10.5.)(b) Determine the approximate internal rate of return. (Round answer to 0 decimal places, e.g. 10. For calculation purposes, use 5 decimal places as displayed in the factor table provided.)(c) Assuming the company has a required rate of return of 6%, determine whether the new machine should be purchased. The values of m and n are whole numbers greater than 1. Which is true about the quotient m/n1/n? The expression will always equal n. The expression will always equal m. The expression will equal n only when m > n. The expression will equal m only when m > n. Sales revenue $900,000 Cost of goods sold 625,000 Sales discounts 30,000 Sales returns and allowances 15,000 Operating expenses 99,000 Interest revenue 6,500 What is the gross profit? A. $130,000 B. $120,000 C. $230,000 D. $300,000 Simplify -15(5x - 3)