How is the exposure rate generally expressed?
a. in roentgens per hour
b. in gray
c. in radiation absorbed dose
d. in microcurie
Answer:
a. in roentgens per hour
Explanation:
Exposure rate is the ratio of radiation exposure per unit of time. It is often used to measure radiation fields in the environment of a radioactive facility for exposure prevention and control. Exposure rate is generally expressed as per hour roentgens (R / h) used for X-ray or Gamma in air.
The röntgen or roentgen (R) is a unit of exposure to ionizing radiation. The name was given as a tribute to the German physicist Wilhelm Conrad Röntgen (or Roentgen) (1845-1923) who discovered X-rays.
Every year, new records in track and field events are recorded. Let's take a historic look back at some exciting races.
In 1989, Carl Lewis established a world record when he ran the 100. meter dash in 9.92 seconds. What was his average speed (in m/s) for the race? Remember to include your data, equation, and work when solving this problem.
Answer: His average speed (in m/s) for the race was 10.08 m/s
Explanation:
Given data
Total distance traveled , D= 100 meter
Total time taken , T= 9.92 seconds
>The average speed([tex]V_{avg}[/tex] ) of an object is the total distance traveled by the object divided by the total time taken to cover that distance .i.e.,
[tex]V_{avg}=\frac{D}{T}=\frac{100}{9.92}\, \frac{m}{s}=10.08\: \frac{m}{s}[/tex]
Thus his average speed (in m/s) for the race was 10.08 m/s
Object A attracts object B with a gravitational force of 10 newtons from a given distance. If the distance between the two objects is doubled, what is the changed force of attraction between them?
A. 2.5 newtons
B. 5 newtons
C. 20 newtons
D. 100 newtons
By definition, the gravitational force is given by:
[tex] F = G(\frac{m1m2}{r^2}) [/tex]
Where,
G: gravitational constant
m1: mass of object 1
m2: mass of object 2
r: distance between objects:
We know that the force is equal to 10N:
[tex] G(\frac{m1m2}{r^2}) = 10 [/tex]
If the distance is double we have:
[tex] F = G(\frac{m1m2}{(2r)^2}) = G(\frac{m1m2}{4r^2}) = \frac{1}{4}G(\frac{m1m2}{r^2}) [/tex]
[tex] \frac{1}{4}(10) = 2.5 [/tex]
Therefore, the new force is:
2.5 newtons
Answer:
the changed force of attraction between them is:
A. 2.5 newtons
13. Abrasion erodes the desert surface by *
a. Creating blowouts
b. Cutting and polishing exposed rock surfaces
c. Depositing loess across the landscape
d. Creating a stony surface layer
Sophie says that geologic maps do not matter because she gets no benefits from them. Why is Sophie wrong? a. She can see the ranges of mountains near her house. B. She needs to learn how to read geologic maps in school. C.She benefits from products that use minerals found using geologic maps. D.She can see the weather and dress appropriately.
The Chinese Exclusion Act of 1882
1barred employers in U.S. cities from hiring Chinese workers.
2prohibited Chinese laborers from entering the country.
3stripped Chinese Americans of their U.S. citizenship.
4forced Chinese children to attend segregated schools. ...?
Answer: The answer is 2. Prohibited the Chinese laborers from entering the country.
Explanation: The Chinese Exclusion Act of 1882 was a federal law in the United States signed by President Chester. It effectively halted Chinese immigration. I hope your answer is very helpful, please mark me as Brainliest and have a wonderful day! :D
The distance formula can be used to prove a quadrilateral has select one:
a. a right angle
b. congruent angles
c. parallel sides
d. congruent sides
Answer: d. congruent sides
Explanation:
The distance formula is a formula in geometry to calculate the length of a line segment having two distinct point on a Cartesian plane
The distance formula to calculate the distance between two distinct points A(a,b) and B(p,q) is given by :-
[tex]\text{d}=\sqrt{(p-a)^2+(q-b)^2}[/tex]
Since it is used to calculate the distance between two points therefore, it is used to check whether a quadrilateral has congruent sides.
Hence, the distance formula can be used to prove a quadrilateral has congruent sides.
For the cart without a washer,how does the potential energy at the top of the ramp compare to the kinetic energy at the bottom of the ramp?
A 200. N wagon is to be pulled up a 30 degree incline at constant speed. How large a force parallel to the incline force is needed? Assume no friction. ...?
Answer:
F = 100 N
Explanation:
Since the wagon is pulled along the inclined plane upwards so here the component of the weight of the wagon will act down the plane.
There is no friction force on the wagon so here in order to move the wagon upwards along the plane we require a force along the plane upwards which must be of same magnitude as that the magnitude of weight along the plane downwards.
now the component of weight along the inclined is given as
[tex]F = Wsin\theta[/tex]
[tex]F = 200 sin30[/tex]
[tex]F = 200(0.5) [/tex]
[tex]F = 100 N[/tex]
To pull a 200 N wagon up a 30-degree incline at constant speed, a parallel force of 100 N is needed. This calculation assumes no friction. It is derived using the component of the gravitational force parallel to the incline.
To determine the force needed to pull a 200 N wagon up a 30-degree incline at a constant speed, we need to analyze the components of the gravitational force acting on the wagon.
The gravitational force acting down the incline is given by: F_parallel = F_gravity * sin(theta)Given that the gravitational force (weight) is 200 N and the incline angle (theta) is 30°, we use the sine function:F_parallel = 200 N * sin(30°)Since sin(30°) = 0.5F_parallel = 200 N * 0.5 = 100 NTherefore, a force of 100 N parallel to the incline is needed to pull the wagon up at a constant speed, assuming no friction.
A 3.5-inch (diameter) floppy disk in a computer rotates with a period of 2.0*10^-1s. If the angular speed is 31.4 rad/s. Whats is the liner speed? ...?
Final answer:
The linear speed of a point on a 3.5-inch floppy disk rotating at 31.4 rad/s is calculated using the formula v = r⋅ω, resulting in a linear speed of 1.396 m/s.
Explanation:
The question is about determining the linear speed of a point on a 3.5-inch floppy disk that rotates with an angular speed. The linear speed v can be calculated using the formula v = r⋅ω, where r is the radius of the disk and ω is the angular speed. Given the diameter of the disk is 3.5 inches, we must first convert it to the radius in meters which is 0.04445 meters (since 1 inch = 0.0254 meters). Therefore, the linear speed is v = 0.04445 m × 31.4 rad/s = 1.396 m/s.
If gas in a sealed container has a pressure of 50 kPa at 300 K, what will the pressure be if the temperature rises to 360 K?
If the gas in a sealed container has a pressure of 50 kPa at 300 K, so the pressure if the temperature rises will be 60 kPa.
What is pressure?The physical force applied to an object is referred to as pressure. A perpendicular force is applied to the surfaces of the objects per unit area. The basic formula for pressure is F/A. (Force per unit area). Pressure is measured in Pascals (Pa).
There are several types pressure of them are Atmospheric Pressure, Gauge pressure, Differential Pressure, and Absolute pressure.
According to the question,
PV=nRT
P/T=nR/V
P/T= constant
Therefore,
(P/T)1=(P/T)2
50/100=P2/360
P2=50×(360/300)
P2= 60 kPa.
Hence, the pressure P2 is 60 kPa.
To get more information about pressure :
https://brainly.com/question/12977546
#SPJ2
How many complete revolutions are needed to draw the angle 725°?
a. 3
b. 1
c. 2
d. 4
Answer:
[tex]725\ degree=2\ revolution[/tex]
Explanation:
We know that 1 complete revolution is equal to 360 degrees. We need to find the number of complete revolution needed to draw the angle of 725 degrees.
Since, 1 revolution = 360 degrees
or
[tex]1\ revolution=2\pi \ radian[/tex]
[tex]1\ degree=\dfrac{1}{360}\ revolution[/tex]
[tex]725\ degree=\dfrac{725}{360}\ revolution[/tex]
[tex]725\ degree=2.01\ revolution[/tex]
or
[tex]725\ degree=2\ revolution[/tex]
So, to draw an angle of 725 degrees, there are 2 revolutions. Hence, this is the required solution.
if samples of silver and lead each had volumes to 1 cm^3 which sample would have the greater mass and what would the difference in the mass be
A layer of material that helps block the transfer of heat between the air inside and outside a building is called
a. an active solar system.
b. a solar cell.
c. a heat exchanger.
d. insulation.
If you do 200 joules of work using a force of 5 newtons,over what distance will the force applied
How many dwarf planets are there in our solar system?
Our Sun and Earth are part of what we call our solar system. There are eight big planets and five small, dwarf planets in the solar system. Each planet orbits the Sun.
which radiation has a higher frequency than visible light
Answer:
Ultraviolet radiation
Explanation:
Apex
I solid iron ball of mass 770kg is used on a building site. The ball is suspended by a rope from a crane. The distance from the point of suspension to the centre of the mass of the ball is 12 m.The ball is pulled back from the vertical and then realeased, it falls through a vertical height of 1.6m and strikes the wall: What is the speed of the ball just before impact? ...?
The speed of the ball just before impact is calculated using the conservation of energy principle, translating the potential energy into kinetic energy and solving for velocity to obtain 5.60 m/s.
The speed of the ball just before impact on the building site, we can make use of the principle of conservation of energy. Initially, when the ball is held at a height, it possesses potential energy. When released, this potential energy is converted into kinetic energy just before impact. Given the height it falls through, we can calculate its final speed using the equation for potential energy (PE) and kinetic energy (KE):
PE = KE at the point of release and just before impact,
mgh = ½ mv²,
where m is the mass of the ball, g is the acceleration due to gravity (approximately 9.81 m/s²), h is the height, and v is the final speed. After rearranging and solving for v, we get v = √(2gh).
Inserting the values: v = √(2 * 9.81 m/s² * 1.6 m) = √(31.392) = 5.60 m/s. Therefore, the speed of the ball just before impact is approximately 5.60 meters per second.
during nuclear fission and fusion matter that seems to disappear is actually converted into
During nuclear fission and fusion matter that seems to disappear but is actually converted into energy.
What is nuclear fission and fusion?When the slow moving neutrons are bombarded with the heavy radioactive nuclei, the product is the more number of neutrons are produced with the large amount of energy. This multiplying process is called nuclear fusion.
The amount of energy produced in such a reaction can be calculated using the equivalence of mass and energy relationship.
E = mc²
The same happens in nuclear fusion where large amount of energy is needed to make more heavy nuclei.
Thus, during nuclear fission and fusion matter that seems to disappear but is actually converted into energy.
Learn more about nuclear fusion and fission.
https://brainly.com/question/22991718
#SPJ5
During nuclear fusion and fission, the matter that seems to disappear is converted into energy.
This is explained by Einstein's famous equation which shows that energy and mass are interchangeable:
E = mc²Here:
E = Energym = mass of the objectc = speed of lightThis equation explains that:
In nuclear fission, the nucleus of an atom splits into smaller nuclei, releasing a significant amount of energy. In nuclear fusion, smaller atomic nuclei combine to form a larger nucleus, also releasing substantial energy. The small mass lost in these reactions is converted into energy.That is why during nuclear fusion and fission reactions, the matter that seems to disappear is actually converted into energy.
A metal sphere with a mass of 80.0g rolls along frictionless surface at 20.0m/s and strikes a stationary sphere having a mass of 200.0g. The First sphere stops completely. At what speed does the second sphere move away from the point of impact
...?
Answer:
8.0 m/s
Explanation:
By the law of conservation of momentum, the total momentum before the collision must be equal to the total momentum after the collision:
[tex]p_i=p_f[/tex]
The total momentum before the collision is given only by the momentum of the first sphere, since the second sphere is stationary (so its speed is zero and its momentum is zero as well):
[tex]p_i = m_1 u_1 =(80.0 g)(20.0 m/s)=1600 g m/s[/tex]
The total momentum after the collision is given only by the momentum of the second sphere, since the first sphere completely stops, so:
[tex]p_f = m_2 v_2[/tex]
Using conservation of momentum, we find
[tex]p_i=m_2 v_2\\1600 g m/s = (200.0 g) v_2 \\v_2 = \frac{1600 g m/s}{200.0 g}=8.0 m/s[/tex]
The second sphere moves away with a speed of 8 m/s after the collision, derived using the principle of conservation of momentum
To determine the speed of the second sphere after the collision, we need to use the principle of conservation of momentum. According to this principle, the total momentum before the collision is equal to the total momentum after the collision.
Given:
Mass of the first sphere (m1) = 80.0 g = 0.080 kgVelocity of the first sphere before collision (v1) = 20.0 m/sMass of the second sphere (m2) = 200.0 g = 0.200 kgVelocity of the second sphere before collision (v2) = 0 m/sAfter the collision, the first sphere stops completely. Therefore, its final velocity (v'1) is 0 m/s.
The total momentum before the collision:
pinitial = m1 * v1 + m2 * v2 pinitial = 0.080 kg * 20.0 m/s + 0.200 kg * 0 m/s pinitial = 1.6 kg·m/sAfter the collision, let the velocity of the second sphere be v'2.
The total momentum after the collision:
pfinal = m1 * v'1 + m2 * v'2 pfinal = 0.080 kg * 0 m/s + 0.200 kg * v'2 pfinal = 0.200 kg * v'2Since momentum is conserved, pinitial = pfinal:
1.6 kg·m/s = 0.200 kg * v'2Solving for v'2:v'2 = 1.6 kg·m/s / 0.200 kg = 8 m/sThus, after the collision, the second sphere moves away with a speed of 8 m/s.
A star is a luminous ball of hot ______ held together by its own gravity.
A. dark matter
B. energy
C. plasma
Answer:
C) plasma
A star is a luminous ball of hot plasma held together by its own gravity.
Explanation:
Stars are formed from molecular clouds. When a cloud receives an impact wave from a near supernova or another astronomical event, as a consequence, it will start to collapse under its gravity, until it breaks in small pieces (each of this pieces will become a star).
Stars are submitted to a hydrostatic equilibrium (its gravitational force pulls inward and its nuclear pressure pulls outward), that gave rise to higher pressures and higher temperatures, those temperatures allow atoms being completely ionized¹. Stars are compounded with a gas mixture of atoms, free protons and free electrons (plasma).
¹Ionized: When an atom loses electrons.
a metal sphere with a mass of 90 kg rolls along at 16m/s and strikes a stationary sphere having a mass of 140kg. the first sphere stops completely. at what speed does the second sphere move away at?
when light waves passes straight through an object, it is called?
Transmission
Explanation;Light waves are types of waves that are electromagnetic waves, meaning they do not require material medium for transmission. Light is transmitted as a transverse wave such that the vibration of particles is perpendicular to the direction of wave motion.A material medium enables the transmission of a wave by the vibration of particles, atoms or molecules. The vibration of particles in a medium helps in the transmission of a wave such that energy is transferred from one point to another due to the disturbance caused by the wave.Consider the following geometric solids.
A sphere with a ratio of surface area to volume equal to 0.08 m-1.
A right circular cylinder with a ratio of surface area to volume equal to 2.1 m-1.
What results would you expect if these two models were compared in a diffusion test?
A. The rate of diffusion would be the same for the two models.
B. The rate of diffusion would be faster for the right cylinder.
C. The rate of diffusion would be slower for the right cylinder.
D. The rate of diffusion would be faster for the sphere.
Before answering this question, first we have to understand the effect of ratio of surface area to volume on the rate of diffusion.
The rate of diffusion for a body having larger surface area as compared to the ratio of surface area to volume will be more than a body having less surface area. Mathematically it can written as-
V∝ R [ where v is the rate of diffusion and r is the ratio of surface area to volume]
As per the question,the ratio of surface area to volume for a sphere is given [tex]0.08m^{-1}[/tex]
The surface area to volume ratio for right circular cylinder is given [tex]2.1m^{-1}[/tex]
Hence, it is obvious that the ratio is more for right circular cylinder.As the rate diffusion is directly proportional to the surface area to volume ratio,hence rate of diffusion will be more for right circular cylinder.
Hence the correct option is B. The rate of diffusion would be faster for the right cylinder.
2 Resistors of resistance, R = (100 +- 3) Ohm, R2 = (200+-4)Ohm are connected in Parallel and Series.
Find the absolute error and % error in the measurement of equivalent resistance are in each combinations I.e Series and Parallel.. ??
The absolute error and % error in the measurement of equivalent resistance are :
Series → 7 Ohm and 2%Parallel → 5 Ohm and 7%Further explanationElectrical circuits can generally be divided into two types , i.e :
1. Series CircuitIn series circuit, the electric current flowing on each resistor is always the same as the total current.
To find the total resistances you can use the following formula:
[tex]\large {\boxed {R_s = R_1 + R_2 + R_3 + ...} }[/tex]
2. Parallel CircuitIn parallel circuits, the electrical voltage at each resistor is always the same as the source voltage.
To find the total resistances you can use the following formula:
[tex]\large {\boxed {\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + ...} }[/tex]
Let's tackle the problem now !
Given:
[tex]R_1 = 100 \pm 3 ~ Ohm[/tex]
[tex]R_2 = 200 \pm 4 ~ Ohm[/tex]
Unknown:
Absolute Error = ?
% Error = ?
Solution:
In Series Circuit :[tex]R_s = R_1 + R_2[/tex]
[tex]R_s = ( 100 \pm 3 ) + ( 200 \pm 4 )[/tex]
[tex]\large {\boxed {R_s = 300 \pm 7 ~ Ohm} }[/tex]
Absolute Error = 7 Ohm% Error = (7/300) x 100% ≈ 2%In Parallel Circuit :[tex]\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}[/tex]
[tex]\frac{1}{R_p} = \frac{R_2}{R_1 ~ R_2} + \frac{R_1}{R_2 ~ R_1}[/tex]
[tex]\frac{1}{R_p} = \frac{R_1 + R_2}{R_1 ~ R_2}[/tex]
[tex]R_p = \frac{R_1 ~ R_2}{R_1 + R_2}[/tex]
[tex]R_p = \frac{100 \times 200}{100 + 200}[/tex]
[tex]R_p = \frac{20000}{300}[/tex]
[tex]R_p = \frac{200}{3} ~ Ohm[/tex]
[tex]R_p \approx 67 ~ Ohm[/tex]
To find the % Error , we will use this following formula :
[tex]\frac{\Delta R_p}{R_p} = \frac{\Delta R_1}{R_1} + \frac{\Delta R_2}{R_2} + \frac{\Delta (R_1 +R_2)}{R_1 + R_2}[/tex]
[tex]\frac{\Delta R_p}{R_p} = \frac{3}{100} + \frac{4}{200} + \frac{7}{300}[/tex]
[tex]\frac{\Delta R_p}{R_p} = \frac{11}{150}[/tex]
[tex]\frac{\Delta R_p}{R_p} = \frac{11}{150} \times 100{\%}[/tex]
[tex]\frac{\Delta R_p}{R_p} \approx 7{\%}[/tex]
[tex]Absolute ~ Error = \Delta R_p[/tex]
[tex]Absolute ~ Error = \frac{11}{150} \times \frac{200}{3}[/tex]
[tex]Absolute ~ Error = \frac{44}{9}[/tex]
[tex]Absolute ~ Error \approx 5 ~ Ohm[/tex]
[tex]\large {\boxed {R_p = 67 \pm 5 ~ Ohm} }[/tex]
Learn moreThe three resistors : https://brainly.com/question/9503202A series circuit : https://brainly.com/question/1518810Compare and contrast a series and parallel circuit : https://brainly.com/question/539204Answer detailsGrade: High School
Subject: Physics
Chapter: Current of Electricity
Keywords: Series , Parallel , Measurement , Absolute , Error , Combination , Resistor , Resistance , Ohm
Which is not a physical property?
A. Hardness
B. Boiling Point
C. Ability to conduct electricity
D. Ability to combine with oxygen
The correct answer to the question is D). Ability to combine with oxygen.
EXPLANATION:
Before going to answer this question, first we have to understand physical and chemical change.
The change or reaction is said to be physical if there will be no change in the chemical configuration of the substance. The property corresponding to this change is called physical property which won't change the configuration of the substance. It is measurable and simply denotes the physical states of a system.
A chemical change is a change in which a new substance is formed due to the chemical reaction. Here, both the reactants and products have different chemical configuration. The property corresponding to it is called chemical property.
As per our questions, hardness, boiling and ability to conduct electricity are the physical properties of a substance.
The ability to combine with oxygen is not a physical property. It is so because it will result into the formation of a new compound.
Hence, the correct answer to the question is the ability to combine with oxygen.
Select the sentence that best describes why copper and some other metals are good conductors.
A) Copper atoms have loosely held electrons; this means they can freely move in and out of the nucleus of the atom.
B) Copper atoms have a loosely held free electron in their outer shell that is able to move freely to other atoms.
C) Copper and some other metals have highly active inner shells. This means that electrons can be freely exchanged between shells.
D)Copper has a small number of electrons; this means it can easily shed these electrons and take electrons from other atoms.
Answer:
B) Copper atoms have loosely held free electrons in their outer shell that is able to move freely in other atoms.
Explanation:
A material which has loosely held free electrons in its outermost shell is always a good conductor. These loosely held free electrons move from atoms to atoms and cause conductivity. It is known that copper and other metals are good conductors. Therefore, option (B) supports the argument and is a right answer.
what phenomenon naturally warms earth's lower atmosphere and surface
If the speed of a ball increased from 1m/s to 4m/s, by how much would kinetic energy increase
Can centripetal force ever do work on an object? ...?