Answer:
-1/5
Step-by-step explanation:
Perpendicular lines are lines which have a specific relationship. The slopes of the two lines are negative reciprocals of each other. We can find the slope easily in slope-intercept form, y=mx+b.
Since our equation is already in slope intercept form then y=5x-2 has a slope of 5.
The slope of the perpendicular line will be -1/5. This is the negative reciprocal of 5.
Answer:
The answer is A, -1/5!
What is the approximate solution to the equation 3t=29 ? 0.3263 3.0650 3.3672 9.6667
ASAP
Answer:
9.6667
Step-by-step explanation:
3t=29
Divide each side by 3
3t/3 = 29/3
t = 29/3
Three goes into 29 nine times (3*9 = 27 ) with 2 left over
t = 9 2/3
We know 1/3 = .3 repeating
so 2/3 = .6 repeating
t = 9 .6 repeating
Answer: 3.0650
Step-by-step explanation:
K-12
A car travels 6 kilometers in 3.75 miles. How many miles will it travel in 40 kilometers?
Answer:
25 miles
Step-by-step explanation:
[tex]\frac{6}{40} :\frac{3.75}{y} \\y=25[/tex]
Answer: In the question, 3.75 miles is equal to 6 kilometers (that's rounding in a real life situation. It would actually be about 3.72... but who cares?! :)). So, if you divide 3.75/6... you get 0.625. Now, you multiply 40 by 0.625. After so, you get 25. 40 kilometers is equal to 25 miles!
Please answer this question! 20 points and brainliest!
Answer:
[tex]x>-3[/tex]
Step-by-step explanation:
To solve equations, we use inverse operations. Normally, we use PEMDAS to simplify an equation. To solve it, we use the inverse of each in this order SADMEP. Solving an inequality is the same except for step. When dividing by a negative, the sign of the inequality changes.
We have [tex]5x+7>2(x-1)\\5x+7>2x-2[/tex] in simplified form. We begin by subtracting or adding constants across the equal sign. Then doing the same with the variable terms. We finish by dividing by the coefficient of the variable term.
[tex]5x+7>2x-2\\5x+7-7>2x-2-7\\5x>2x-9\\5x-2x>2x-2x-9\\3x>-9\\x>-3[/tex]
To graph, we draw a number line, draw an open circle at -3.
Since it is not equal to, we do not fill it in. We leave it open. We also draw an arrow to the right of -3
Ava is saving for A new computer that cost 1218 she has already saved half of the money Ava earns $14 per hour how many hours must a work in order to save the rest of the money
Ava must work 43.5 more hours in order to save the rest of the money
Further explanationMoney is any item that generally accepted as payment for goods and services and repayment of debts, such as taxes, in a particular country or socio-economic context. In math, it can be defined as the medium of exchange such as notes, coins, and demand deposits, to pay for commodities and services.
If you're self-employed, it's unwise to work more than 40 hours a week on a regular basis because, you'll get a burst of productivity, the extra hours have diminished returns over time and within any time period.
Ava is saving for A new computer that cost 1218 she has already saved half of the money
[tex]\frac{1218 }{2} = 609[/tex] $, hence she has already saved half of the money ($609), so she needs $609
Ava earns $14 per hour
Hence [tex]\frac{609}{14} = 43.5[/tex] hours
Ava must work 43.5 more hours in order to save the rest of the money
Hope it helps!
Learn moreLearn more about hours https://brainly.com/question/2645145Learn more about work https://brainly.com/question/10711591Learn more about computer https://brainly.com/question/2901657Answer details
Grade: 5
Subject: math
Chapter: hours
Keywords: hours, money, saved, order, Ava
you and a friend are starting a computer repair business. you estimate that your expenses are $500 per week
Final answer:
To set up a profitable computer repair business, assuming $50 for parts per repair and a service fee of $150, the weekly expenses equation is y = 50x + 500, and income equation is y = 150x, where x is the number of repairs.
Explanation:
When starting a computer repair business with estimated expenses of $500 per week, it's crucial to set average costs for replacement parts and fees for services to ensure profitability. Let's assume an average cost of $50 for parts per computer repaired and a service fee of $150 per repair. If x represents the number of computers you repair each week, your total weekly expenses for parts would be 50x plus the fixed expenses of $500, resulting in a total expense equation of y = 50x + 500. Your total weekly income can be modeled by the equation y = 150x, with each repair contributing $150 to the income.
To break even or make a profit, the total income must exceed total expenses, leading to an analysis based on the number of repairs done weekly. This practical application of linear equations in a business setting helps in budgeting, pricing strategies, and understanding economic principles behind running a service-based business. Monitoring these variables is key to achieving sustainability.
A tree casts a shadow that is 150 feet long. If the angle of elevation from the tip of the shadow to the top of the tree is 30°, how tall is the tree to the nearest foot?
A) 75 feet
B) 87 feet
C) 106 feet
D) 212 feet
B) 87 feet
Step-by-step explanation:The mnemonic SOH CAH TOA reminds you the relationship between angle, adjacent, and opposite sides is ...
... Tan = Opposite/Adjacent
In this geometry, the side adjacent to the angle is marked 150 ft, and the side opposite the angle is the height we want to find. This means ...
... tan(30°) = height/(150 ft)
Multiplying by 150 ft, we get ...
... height = (150 ft)·tan(30°) ≈ 87 ft
Select the true statement plzzzz need help ASAPPPPP
Answer:
Correct choice is B
Step-by-step explanation:
All three functions are increasing when x is increasing. You can find values of each function when x is "enough large". For example, at x=100,
1. linear function: [tex]y=10\cdot 100=1,000.[/tex]
2. exponential function: [tex]y=5^{100}\approx 0.8\cdot 10^{70}.[/tex]
3. quadratic function: [tex]y=4\cdot 100^2+5\cdot 100=40,500.[/tex]
As you can see, when x approaches positive infinity, the exponential function will exceed both the linear and the quadratic functions.
Also you can use graphical method to get from the attached diagrams result. When x approaches positive infinity, the exponential function will exceed both the linear and the quadratic functions.
Correct choice is B.
Find the coordinates of the midpoint of the segment whose endpoints are H(5, 13) and K(7, 5). (12, 18) (9, 7) (2, 8) (6, 9)
Answer: D. (6, 9)
Step-by-step explanation:
Midpoint is the "average" of the x's and y's:
Given: (5, 13) and (7, 5)
Midpoint: [tex](\dfrac{5+7}{2},\dfrac{13+5}{2})[/tex]
= [tex](\dfrac{12}{2},\dfrac{18}{2})[/tex]
= (6, 9)
Answer: (6, 9)
Step-by-step explanation:
Write the equation in standard form. Identify the important features of the graph:
x^2+y^2-9x+10y+15=0
Answer:
Standard form: [tex]\left(x-\dfrac{9}{2}\right)^2+(y+5)^2=\dfrac{121}{4}.[/tex]
This equation represents the circle with the center at the point [tex]\left(\dfrac{9}{2},-5\right)[/tex] and the radius [tex]r=\dfrac{11}{2}.[/tex]
Step-by-step explanation:
Consider expression [tex]x^2+y^2-9x+10y+15=0.[/tex]
First, form perfect squares:
[tex](x^2-9x)+(y^2+10y)+15=0,\\ \\\left(x^2-9x+\dfrac{81}{4}\right)-\dfrac{81}{4}+(y^2+10y+25)-25+15=0,\\ \\\left(x-\dfrac{9}{2}\right)^2+(y+5)^2=10+\dfrac{81}{4},\\ \\\left(x-\dfrac{9}{2}\right)^2+(y+5)^2=\dfrac{121}{4}.[/tex]
This equation represents the circle with the center at the point [tex]\left(\dfrac{9}{2},-5\right)[/tex] and the radius [tex]r=\dfrac{11}{2}.[/tex]
In the coordinate plane shown, how far apart are points B and D? Explain how you can use the Pythagorean theorem to determine this.
Answer:
10.3 units
Step-by-step explanation:
From the given graph, we can see the coordinates of the points B (-2, 4) and D (3, -5).
To use the Pythagorean Theorem, we must have a right angled triangle. So we can select a point X (3, 4) to calculate the distance between B and D using the Pythagoras Theorem.
BX = 5, XD = 9
BD = [tex]\sqrt{BX^2+XD^2}[/tex]
BD = [tex]\sqrt{(5)^2+(9)^2} =\sqrt{106} =10.29[/tex]
Therefore, the points B and D are 10.3 units apart.
Adelia had 4 dollars. She found 50 cents and then bought a snack. She ended up with 6 quarters. Which expression equals the number of dollars Adelia spent on the snack?
Answer:
3 Dollars
Step-by-step explanation:
$4+.50cents=4.50
6 quarters is $1.50
4.50-1.50=3 dollars
So, I got this question for my Imagine Math, and here is what I got;
4+0.50−1.50.
Why; I got this because 4+0.50 is 4.50 and then 4.50-1.50 is 3.
Hopes this helps.
The population of Henderson City was 3,381,000 in 1994, and is growing at an annual rate of 1.8%. If this growth rate continues, what will the approximate population of Henderson City be in the year 2000?
Answer:
3746148
Step-by-step explanation:
i know you probably just want the answer but hear me out it is just simple math and can be resolved with a quick search. Find or search 1.8% of 3,381,000 and multiply it times the years progressed.
60858 x 6 = 3746148
Final answer:
Using the exponential growth formula, the approximate population of Henderson City in the year 2000 is calculated to be around 3,769,706 if the annual growth rate remains constant at 1.8%.
Explanation:
To calculate the approximate population of Henderson City in the year 2000, we can use the formula for exponential growth. The formula is
[tex]A = P(1 + r)^t[/tex]
where A is the amount of the final population, P is the initial population, r is the growth rate expressed as a decimal, and t is the time in years. In this case:
P (initial population) = 3,381,000r (annual growth rate) = 1.8% or 0.018t (time from 1994 to 2000) = 6 yearsSo the equation becomes:
A =[tex]3,381,000(1 + 0.018)^6[/tex]
Calculating this gives us the approximate population, A:
A ≈[tex]3,381,000(1.018)^6[/tex]
A ≈ 3,381,000(1.1155)
A ≈ 3,769,706
Therefore, the approximate population of Henderson City in the year 2000 would be 3,769,706 residents if the growth rate remains constant at 1.8%.
Jerry is a judge. He hears 5 cases every 2\dfrac382 8 3 ? hours. Jerry hears cases at a constant rate. How many cases does he hear per hour?
Answer:
[tex]\frac{40}{19}\text{ or }2\frac{2}{19}[/tex] cases per hour.
Step-by-step explanation:
We are told that Jerry hears 5 cases every [tex]2\frac{3}{8}[/tex] hours.
To find the number of cases that Jerry hears per hour let us divide 5 by [tex]2\frac{3}{8}[/tex].
[tex]\text{Jerry hears cases per hour}=5\div 2\frac{3}{8}[/tex]
Let us convert our mixed fraction into improper fraction.
[tex]\text{Jerry hears cases per hour}=5\div \frac{19}{8}[/tex]
Since dividing a number by a fraction is same as multiplying the number by the reciprocal of the fraction.
[tex]\text{Jerry hears cases per hour}=5\times \frac{8}{19}[/tex]
[tex]\text{Jerry hears cases per hour}=\frac{40}{19}[/tex]
[tex]\text{Jerry hears cases per hour}=2\frac{2}{19}[/tex]
Therefore, Jerry hears [tex]\frac{40}{19}\text{ or }2\frac{2}{19}[/tex] cases per hour.
2. A savings account is started with an initial deposit of $500. The account earns 1.5% interest compounded annually.
(a) Write an equation to represent the amount of money in the account as a function of time in years.
(b) Find the amount of time it takes for the account balance to reach $800. Show your work.
Select the points that lie on the function h( x ) = 3 x 2 .
(1, 3)
(1, 9)
(-1, -3)
(-1, 3)
How would i solve this? *15 ponits
Answer:
(1, 3)
(-1, 3)
Step-by-step explanation:
h(x) = 3x^2
Let x =1
h(1) = 3 * (1)^2
= 3(1)
= 3
So if the input is 1 the output is 3
h(-1) = 3 * (-1)^2
= 3 *1
If the input is -1 the output is 3
Answer:(1,3) and (-1,3)
Step-by-step explanation:
Carlos can type 228 words in 4 minutes. Which equation represents the number of words Carlos types per minute?
Answer:
see explanation
Step-by-step explanation:
For words per minute divide 228 by 4
words per minute = [tex]\frac{228}{4}[/tex] ( = 57 )
Final answer:
To find the number of words Carlos types per minute, set up an equation and solve for 'x'.
Explanation:
To find the number of words Carlos types per minute, we can set up an equation using the given information. Let's assume that the number of words Carlos types in 1 minute is 'x.' We know that Carlos can type 228 words in 4 minutes. So, the equation would be:
228 words in 4 minutes = x words in 1 minute
To solve this equation, we can cross-multiply and divide:
(228 words) x (1 minute) = (4 minutes) x (x words)
Simplifying further:
x = (228 words) / (4 minutes)
Therefore, the equation that represents the number of words Carlos types per minute is:
x = 228 / 4
A famer had 612 tomatoes. He put them in baskets of 100. How many baskets did he fill completely. How many tomatoes where left over.
Answer:
6 baskets were filled and 12 tomatoes were left
Step-by-step explanation:
Just do 612/100= 6
Given that f(x) = 1-x x . What is the domain of f-1(x)? A) R B) R, x ≠ 0 C) R, x ≠ 1 D) R, x ≠ -1
Answer:
The required domain is [tex]x\ne -1[/tex]
Step-by-step explanation:
The given function is
[tex]f(x)=\frac{1-x}{x}[/tex]
We need the inverse of this function.
We first of all have to let [tex]y=f(x)[/tex].
This implies that,
[tex]y=\frac{1-x}{x}[/tex]
Next, we interchange [tex]x[/tex] and [tex]y[/tex] to obtain,
[tex]x=\frac{1-y}{y}[/tex]
We make y the subject to get,
[tex]xy=1-y[/tex]
[tex]xy+y=1[/tex]
[tex](x+1)y=1[/tex]
[tex]y=\frac{1}{1+x}[/tex]
The inverse function is
[tex]f^{-1}(x)=\frac{1}{1+x}[/tex]
The domain of this function is
[tex]x+1\ne 0[/tex]
[tex]\Rightarrow x\ne -1[/tex]
The correct answer is D
PLEASE SHOW ALL STEPS!!!!
find the center and radius of the circle.
x2 −2x + y2 − 6y = 26
Answer:
Center (1,3) and radius 6
Step-by-step explanation:
We must complete the square to find the center and radius of the circle.
First make sure the x and y squared terms have 1 as their coefficients. We also make sure x and y terms together.
[tex]x^2-2x+y^2-6y=26[/tex]
We now create space between the x and y terms with parenthesis.
[tex](x^2-2x)+(y^2-6y)=26[/tex]
We complete the square by taking the middle terms -2x and the -6y - divide each and square them.
[tex]\frac{-2}{2} =(-1)^{2} =1[/tex]
[tex]\frac{-6}{2} =(-3)^{2} =9[/tex]
We add the squares to both sides.
[tex](x^2-2x+1)+(y^2-6y+9)=26+1+9[/tex]
Simplify.
[tex](x^2-2x+1)+(y^2-6y+9)=36[/tex]
And write the quadratics in factored form.
[tex](x-1)^{2} +(y-3)^{2} =36[/tex]
The center is (h,k) or (1,3). The radius is the square root of 36 which is 6.
The pressure of a gas p(v) varies inversely with the volume of the gas v. The pressure of a gas measures 25 kg/cm^2 when its volume is 200cm^2. Which equation can be used to find the pressure of the gas when the volume is changed?
A.p(v)=8/v
B.p(v)=8v
C.p(v)=5000/v
D.p(v)=5000v
Answer:
C.p(v)=5000/v
Step-by-step explanation:
Got it right on the test.
The equation that can be used to find the pressure of the gas when the volume is changed is P(v) = 500/v
Given:
p(v) = pressure of a gas
v = volume of the gas
P(v) varies inversely with v
let
k = constant of proportionality
The equation:
P(v) = k/v
If P(v) = 25 kg/cm² and v = 200cm²
Therefore,
P(v) = k/v
25 = k / 200
25 × 200 = k
k = 5,000
substitute the value of k into the equation
So,
P(v) = 500/v
Read more:
https://brainly.com/question/2798700
please help ill give brainliest
Answer: Second, third, fifth and sixth options are correct.
Step-by-step explanation:
Since we have given that
[tex]\frac{3}{4}+m=\frac{-7}{4}[/tex]
Now, we will solve it for the value of m :
[tex]\frac{3}{4}+m=\frac{-7}{4}\\\\m=\frac{-7}{4}-\frac{3}{4}\\\\m=\frac{-7-3}{4}\\\\m=\frac{-10}{4}[/tex]
Hence, the value of m is
[tex]\frac{-10}{4}[/tex]
and we can also apply m=[tex]\frac{-5}{2}[/tex]
if [tex]\frac{-5}{4}+m=\frac{-15}{4}\\\\m=\frac{-15}{4}+\frac{5}{4}\\\\m=\frac{-10}{4}\\\\m=\frac{-5}{2}[/tex]
And
[tex]m+2=-0.5\\\\m=-0.5-2\\\\m=-2.5\\\\m=\frac{-5}{2}[/tex]
Therefore, Second, third, fifth and sixth options are correct.
These are just like the last ones please help.
8.
Statement Reason
1. A'F is perpendicular bisector of JK 1. Given
2. JA ≅ KA 2. Dfinition of perp bisector
3. ∠JAF and ∠KAF are right angles 3. Dfinition of perp bisector
4. A'F ≅ A'F 4. Reflexive Property
5. ΔJFA ≅ ΔKFA 5. SAS Theorem
6.
(ANGLE): It is given that ∠AMD ≅ ∠EDM
(SIDE): MD ≅ MD by the Reflexive Property
Which angle would satisfy AAS? ∠MAD ≅ ∠ DEM
NOTE: If you chose the other angle, it would satisfy ASA
Davila can job 2000 feet in 4 mins. If she jobs at the same, rate how many feet can she job in 8 mins?
Answer:
4000
Step-by-step explanation:
Davila can job 400 feet in 8 min
Camilla borrows a book from the library for d days. The library charges a late fee 0.10 dollars per day that the book is late. If Camilla returns the book more than 21 days after she borrowed it, the expression 0.10(d?21) represents the total late fee Camilla owes. What does (d?21) represent in this context?
Answer: (d-21) represent in this context
The number of days the book is late
Step-by-step explanation:
The expression represents the amount of total money. Then the total late fee Camilla owes will be $2.1.
What is Algebra?Algebra is the study of graphic formulas, while logic is the interpretation among those signs.
Camilla borrows a book from the library for d days.
The library charges a late fee 0.10 dollars per day that the book is late.
If Camilla returns the book more than 21 days after she borrowed it.
Then the expression will be 0.10d.
The total amount is given as
Total amount = 0.10 d
Total amount = 0.10 x 21
Total amount = $2.1
More about the Algebra link is given below.
https://brainly.com/question/953809
#SPJ2
m∥n, m∠1 = 65°, m∠2 = 60°, and m∠6 = 85°. What is m∠DBC?
Answer:
∠DBC = 40°
Step-by-step explanation:
We are given a figure where we know that the angle m∠1 = 65°, m∠2 = 60° and m∠6 = 85°. With the help of these given measures of the angles, we are to find the measure of the angle m∠DBC.
Since the sum of angles in a triangle is equal to 180 degrees, so:
∠1 + ∠2 + ∠3 = 180
∠3 = 180 - (65 + 60)
∠3 = 55°
Also ∠6 and ∠B are alternate interior angles so if ∠6 = 85° then ∠B is also = 85°.
Now that we know ∠3 and ∠B, we can find ∠DBC:
∠DBC = 180 - (85 + 55)
∠DBC = 40°
Answer:40
Step-by-step explanation:
See angle 1 = 65°
Angle 2 = 60°
We know in a triangle all angle count 180°
So angle 3 = 55°
Now in a straight line all angle count 180°
So angle DBC + angle 3 + remaining angle along the line m will count 180°
Now angle 6 and remaining angle along the line m will be equal as 'm' ?and 'b' are parallel lines and t is intersecting them so it subtend equal angles.
Angle 6 = 85° so remaining angle along the line m is also 85°
We know angle DBC + angle 3 + rem. angle = 180°
Or 55° + 85° + angle DBC = 180°
Therefore, angle DBC = 40°
Hope it helps!!!
Which functions are even? Select all that apply
Answer:
The even functions are options 2, 3, and 5
Step-by-step explanation:
Please, see the attached file.
Thanks.
Answer:
Options B, C and E are even functions.
Step-by-step explanation:
If f(x) = f(-x) then function is called to be even.
A). f(x) = ∛8x
f(-x) = ∛8(-x) = (∛8)(∛(-x) = 2∛(-x)
Therefore f(x) ≠ f(-x)
So function is not an even function.
B). [tex]f(x)=log_{9}x^{6}[/tex]
[tex]f(-x)=log_{9}(-x)^{6}[/tex]
[tex]=log_{9}(x)^{6}[/tex]
f(x) = f(-x)
So this function is even.
C). [tex]f(x)=\frac{1}{x^{8}+7x^{7}}[/tex]
[tex]f(-x)=\frac{1}{(-x)^{8}+7(-x)^{6}}[/tex]
= [tex]\frac{1}{x^{8}+7x^{6}}[/tex]
f(x) = f(-x)
Therefore given function is even.
D). f(x) = [tex]e^{x^{8}-x }[/tex]
[tex]f(-x)=e^{(-x)^{8}-(-x)}=e^{x^{8}+x}[/tex]
Therefore f(x) ≠ f(-x)
So the given function is not even.
E). f(x) = |8x| - 3
f(-x) = |8(-x)| - 3
= |8x| - 3
f(x) = f(-x)
Therefore, function is even.
F). [tex]f(-x)= -9(-x)^{10}+5(-x)^{4}-12(-x)[/tex]
[tex]f(-x)= -9(x)^{10}+5(x)^{4}+12(x)[/tex]
f(x) ≠ f(-x)
Therefore the given function is not an even function.
Options B, C and E are even functions.
20 POINTS!!!Which ray is a bisector of angle ABC? BC BD BA BF
Answer:
The answer is BD is the bisector angle
A card is chosen at random from a deck of 52 cards. It is replaced, and a second card is chosen. What is the probability that both cards chosen are jacks?
A.) 1/26
B.) 1/13
C.) 1/169
D.) 2/13
Answer:
C.) 1/169
Step-by-step explanation:
There are 4 jacks in a deck of 52 cards
The probability the first card is a jack
4/52 = 1/ 13
Since we replace the card
The probability the second card is a jack
4/52 = 1/ 13
To get the probability that we get a jack then a jack, we multiply the probabilities
1/13 * 1/13 = 1/169
What is the value of the remainder if 10x^4 – 6x^3 + 5x^2 – x + 1 is divided by x – 3?
Answer: 691
Step-by-step explanation:
There are 3 different ways to find the remainder. I am not sure which method you are supposed to use, so I will solve using all 3 methods.
Long Division:
10x³ + 24x² + 77x + 230
x - 3 ) 10x⁴ - 6x³ + 5x² - x + 1
- (10x⁴ - 30x³) ↓ ↓ ↓
24x³ + 5x² ↓ ↓
- (24x³ - 72x²) ↓ ↓
77x² - x ↓
- (77x² - 231x) ↓
230x + 1
- (230x - 690)
691 ← remainder
Synthetic Division:
x - 3 = 0 ⇒ x = 3
3 | 10 -6 5 -1 1
| ↓ 30 72 231 690
10 24 77 230 691 ← remainder
Remainder Theorem:
f(x) = 10x⁴ - 6x³ + 5x² - x + 1
f(3) = 10(3)⁴ - 6(3)³ + 5(3)² - (3) + 1
= 810 - 162 + 45 - 3 + 1
= 691
Find the 20th term of the arithmetic sequence
Answer:
-99
Step-by-step explanation:
Given :
Arithmetic sequence : 15 , 9 ,3 , -3 , ........
To Find : 20th term .
Solution :
Formula of nth term in Arithmetic mean : [tex]a_{n} = a+(n-1)*d[/tex] ---(A)
where
a = first term of sequence
n = term position
d = common difference
[tex]a_{n}[/tex] = the term you want to find
Thus in the given sequence:
a = 15 ( first term )
n = 20 th term ( given )
d = 9-15 = 3-9 = -6(common difference)
Putting values in (A)
⇒[tex]a_{20} = 15+(20-1)*(-6)[/tex]
[tex]a_{20} = 15-114[/tex]
[tex]a_{20} = -99[/tex]
Hence the 20th term is -99 i.e. option 1