Answer:
Zero (the ellipse is a circle)
Explanation:
The eccentricity of an ellipse is defined as the ratio between the distance of each focus from the centre of the ellipse (c) and the length of the semimajor axis (a):
[tex]e = \frac{c}{a}[/tex]
For a perfect circle, the focii correspond to the centre of the circle, so
c = 0
which means that for a circle,
e = 0
Therefore, the minimum value of the eccentricity of an ellipse is zero, and it occurs when the ellipse coincides with a circle.
Is the distance traveled during a specific unit of time.
Answer:
Speed
Explanation:
Speed is a scalar quantity, defined as the ratio between the distance covered and the time taken:
[tex]v=\frac{d}{t}[/tex]
where
d is the distance covered
t is the time taken
Speed is measured in meters/second (m/s).
It should be noted that speed is different from velocity: in fact, velocity is a vector quantity, whose magnitude is defined as
[tex]v=\frac{d}{t}[/tex]
where d is the displacement (not the distance), and it also has a direction, while speed does not have it.
Answer:
Speed
Explanation:
did it on edge 2020
how is the speed of particles related to the different states of matter
Answer:
the speed of particles decreases as the states of matter change. to support: in a solid, the speed of particles is slow. in a liquid, the speed of particles is mediocre. and in a gas, the speed of particles is fast since they are spread out.
:) have a nice day love ❤
Explanation:
How many times did john glenn orbit the earth
Answer:
2 times
Explanation:
1st time on Feb. 20, 1962 at age 41
2nd time on Oct. 29, 1998 at age 77
Which type of plate boundary is most closely associated with the formation of new ocean floor?
Answer:
Divergent plate margins
Explanation:
Divergent plate margins are constructive zones on the surface of the earth. They are constructive in the sense that new materials are brought to the surface from within the crust.
An example of such is the mid-altlantic ridge. Here as two plates pull apart, new melts up-wells and finds a way to get to the surface where they cool and solidify.
Where do estuaries form?
Answer:
An estuary is the area where a river meets the sea or ocean, where fresh water from the river meets salt water from the sea.
Answer:
during the last interglacial period, the retreating of glaciers created massive valleys. When these glaciers melted the water filled up the valleys and thus created the first estuaries
Explanation:
For high resoltuion in optical instruments why does the angle need to be as small as possible between resolved objects?
Answer:
Because they are small and they shrink when they have microwaves hit towards them
Explanation:
The angle is preferred to be small in high resolution optical instruments to make it more noticeable.
Explanation:
The capability of any device that form image can be an optical or radio telescope, camera, microscope or eye that can distinguish small details in the object is called angular resolution.
This is the main component for image resolution. The accuracy in the measurement with accordance of space is spatial resolution. It is associated with the angular resolution.
The ability of viewing an object in a distinct manner requires smaller angular distance and this is known as resolving power. When we need to view an object in an accurate and in a distinct manner, it is required to be in smaller angle between the viewing objects.
(a) Calculate the force needed to bring a 950-kg car to rest from a speed of 90.0 km/h in a distance of 120 m (a fairly typical distance for a non-panic stop). (b) Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a)
Answer:
Explanation: the answer is 1,425
Why do astronomers hypothesize that a massive black hole lies at the center of M87? Historical records show that a supermassive star at the center of M87 exploded as a supernova, leaving behind a black hole. Time-lapse images from space telescopes show stars falling to the center of M87 and then disappearing from view. Images of M87 made with powerful telescopes show a well-defined black region devoid of any stars. A very small region at the center of M87 releases an enormous amount of energy.
According to Einstein's theory of relativity, a black hole is a "singularity" that consists of a region of the space in which the density of matter tends to infinity. In consequence, this huge massive body has a gravitational pull so strong that not even light can escape from it.
In addition, "the surface" of a black hole is called the event horizon, which is the border of space-time in which the events on one side of it can not affect an observer on the other side.
In other words, at this border also called "point of no return", nothing can escape (not even light) and no event that occurs within it can be seen from outside.
In this sense, and according to the relativity, it is possible to determine where a black hole is if it is "observed" an enormous amount of energy released. So, in accordance to this, galaxies like ours must have a black hole in its center.
On the other hand, the elliptical galaxy Mesier 87 (also called Virgo A, but from now on M87) was showing the above described behaviour, with enormous jets of high-energy particles shooting away from its vicinity . This was imaged by the Hubble Space Telescope years ago; that is why astronemers were hypothesizing about the existence of a massive black hole there.
Well now, on April, 10th 2019 this was demonstrated with the publication of the image, for the first time, of the event horizon of the black hole in M87. This is the first time in human history a picture of a black hole is taken.
This was done by the huge effort of diverse scientist and by the syncronization of eight radio telescopes scattered across the Earth (located at: Hawaii, Spain, Chile, Mexico, Arizona and the South Pole), which took the same point of the sky at the same time.
calculate the speed for wavelenghth = 0.2 m, frequency = 5 wavelength/s
Answer:
1 ms⁻¹ .
Explanation:
Speed is defined as the product of the wavelength times the frequency.
If v is the speed , λ is the given wavelength 0.2 m and frequency f is equal to 5 Hertz or wavelengths per second ,
v = λ f = 0.2 x 5 = 1 m/s
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
Match the key term to it's definition, example, and picture.
1. Reflection
2. Refraction
3. Diffraction
Answer:
first is Diffraction and is when waves spread out because of going through a narrow gap
second is Refraction literally stole that image off the internet when waves deflect traveling through different density
third reflection when waves bounce off a surface without them being absorbed
Answer:
1.when a light ray bends around corners it's called (3.)Diffraction
2.when a light bounces off a surface it is called a (1.) reflection
3.when a light ray changes direction as it enters a new medium this is called (2.)refraction
An electron has a de broglie wavelength equal to the diameter of a hydrogen atom in its groung state.
(a) What is the kinetic energy of the electron?
(b) How does the energy compare to the ground-state energy of the hydrogen atom?
(a) [tex]2.4\cdot 10^{-17} J[/tex]
The De Broglie wavelength of a particle is given by
[tex]\lambda=\frac{h}{p}[/tex] (1)
where
h is the Planck constant
p is the momentum of the particle
We also know that the kinetic energy of a particle (K) is related to the momentum by the formula
[tex]K=\frac{p^2}{2m}[/tex]
where m is the mass of the particle. Re-arranging this equation,
[tex]p=\sqrt{2mK}[/tex] (2)
And substituting (2) into (1),
[tex]\lambda = \frac{h}{\sqrt{2mK}}[/tex] (3)
For an electron,
[tex]m=9.11\cdot 10^{-31}kg[/tex]
In the problem, the electron has a de broglie wavelength equal to the diameter of a hydrogen atom in the ground state:
[tex]\lambda = d = 1\cdot 10^{-10} m[/tex]
So re-arranging eq.(3) we can find the kinetic energy of the electron:
[tex]K=\frac{h^2}{2m\lambda^2}=\frac{(6.63\cdot 10^{-34}Js)^2}{2(9.11\cdot 10^{-31} kg)(1\cdot 10^{-10} m)^2}=2.4\cdot 10^{-17} J[/tex]
(b) Approximately 10 times larger
The ground state energy of the hydrogen atom is
[tex]E_0 = 13.6 eV[/tex]
Converting into Joules,
[tex]E_0 =(13.6 eV)(1.6\cdot 10^{-19} J/eV)=2.2\cdot 10^{-18}J[/tex]
The kinetic energy of the electron in the previous part of the problem was
[tex]E=2.4\cdot 10^{-17} J[/tex]
So, we see it is approximately 10 times larger.
Final answer:
To determine the kinetic energy of an electron with a de Broglie wavelength equal to the diameter of a hydrogen atom, we use the de Broglie relation to first calculate the momentum and then find the kinetic energy. Subsequently, this energy can be compared to the ground-state energy of a hydrogen atom.
Explanation:
The student is asking about the properties of an electron with a de Broglie wavelength equal to the diameter of a hydrogen atom in its ground state. This problem can be solved using the de Broglie wavelength formula and the known size of the hydrogen atom. We relate the wavelength (λ) to the momentum (p) of the electron using the de Broglie relation λ = h/p, where h is Planck's constant. The diameter of a hydrogen atom in its ground state is approximately the size of the first Bohr orbit, which is about 0.053 nm or 5.3 x 10-11 m.
To find the kinetic energy (KE), we can first calculate the momentum using p = h/λ. Then, KE can be found using the expression KE = p2/2m, where m is the mass of the electron. We thus find the kinetic energy associated with an electron having a wavelength of 5.3 x 10-11 m.
Once the electron's kinetic energy is calculated, we can compare it to the ground-state energy of a hydrogen atom. The ground-state energy of a hydrogen atom is approximately -13.6 eV, where the negative sign indicates that the electron is bound to the nucleus. The kinetic energy of the electron, in this case, will be positive since it represents the energy associated with its motion.
Fatima is watching her pet cat, Winter, napping in the sun. Fatima is curious about the heart rate of Winter when she is napping, so she develops this scientific question: Does a cat's heart rate change while it is napping? She decides to develop a hypothesis to test this scientific question. What could Fatima's hypothesis be?
The hypothesis is; A cat's heart rate changes while it is napping.
A hypothesis is a tentative statement which could be proved or disproved by subjecting it to rigorous experimentation.
A hypothesis is coined in line with the question that the experiment seeks to answer.
In this case, Fatima's question is; Does a cat's heart rate changes while it is napping?
So the hypothesis must be; A cat's heart rate changes while it is napping.
Learn more; https://brainly.com/question/13043831
How is human activity impacting biodiversity?
Answer
Human activity is impacting biodiversity.
Explanation:
Human activity is impacting because due to overpopulation and poverty we are changing our life style which have negative impact on climate.
Answer:
Explanation:
Biodiversity can be define as the variability of life on planet earth. It typically measures the variations in terms of types of species, ecosystem levels and genetic variations. The terrestrial biodiversity is typically greater near the equator which is because of high primary productivity and warm climatic conditions.
The human activities impact the biodiversity by occupying the area where the natural biodiversity sustains like forests, grasslands and others. Other activities like hunting, poaching and wildlife trafficking can lead to the extinction of many wildlife species. The plants and trees are removed for their wood, medicine and for other needs this has lead to the decrease in abundance of valuable floral species.
A small block slides without friction along a track toward a circular loop. The block has more than enough speed to remain firmly in contact with the track as it goes around the loop. The magnitude of the blocks acceleration at the top of the loop is
The magnitude of the block's acceleration at the top of a frictionless circular loop consists of the centripetal acceleration required to maintain its circular path and the acceleration due to gravity. At the top of the loop, the total acceleration is thus equal to the acceleration due to gravity, approximately 9.8 m/s² downwards.
Explanation:You are asking about the magnitude of the block's acceleration at the top of a frictionless circular loop. In physics, acceleration of an object moving in a circle can be described by the centripetal acceleration formula a = v^2/r, where v is the velocity of the object and r is the radius of the circle. At the top of the loop, besides the centripetal acceleration, the block is also experiencing acceleration due to gravity, acting downwards. So, the total acceleration is a combination of the centripetal acceleration needed to stay in a circular path, and the acceleration due to gravity.
To understand this concept, we can use Newton's second law in the context of circular motion. When the small block is at the top of the loop, the only force acting towards the center of the circle, which provides the centripetal force, is the weight of the block (mg, where 'm' is the mass of the block and 'g' is the acceleration due to gravity). Therefore, at the top of the loop, the centripetal force equals the gravitational force (Fc = mg), and thus the centripetal acceleration is equal to the acceleration due to gravity (ac = g). This results in the block's total acceleration at the top of the loop being g, or approximately 9.8 m/s² downwards.
A 600 kg car is at test and then accelerated to 5m/s , what is its original kinetic energy
Answer:
0 J
Explanation:
Kinetic energy is defined as:
KE = 1/2 m v²
where m is mass and v is velocity.
The car starts at rest, so it has zero velocity. Therefore, its initial kinetic energy is 0 J.
Does the volume of a fixed quantity of gas decrease to half its original value when the temperature is lowered from 100 ∘c to 50 ∘c ?
Answer:
No
Explanation:
Let's assume the gas pressure is constant. Then we can use Charle's law, which states that the volume of the gas is proportional to the absolute temperature (in Kelvin):
[tex]\frac{V}{T}=const.[/tex]
This can be rewritten as
[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]
where we have
[tex]T_1 = 100^{\circ}+273 =373 K[/tex] is the initial temperature of the gas
[tex]T_2 = 50^{\circ}+273 =323 K[/tex] is the final temperature of the gas
Re-arranging the previous equation, we find
[tex]V_2=V_1 \frac{T_2}{T_1}=V_1 \frac{323 K}{373 K}=0.87 V_1[/tex]
so, the volume of the gas decreases by a factor 0.87.
Suppose two children push horizontally, but in exactly opposite directions, on a third child in a wagon. The first child exerts a force of 75.0 N, the second a force of 90.0 N, friction is 12.0 N, and the mass of the third child plus wagon is 23.0 kg. (a) What is the system of interest if the acceleration of the child in the wagon is to be calculated? (b) Draw a free-body diagram, including all forces acting on the system. (c) Calculate the acceleration. (d) What would the acceleration be if friction were 15.0 N?
(a) The child + the wagon
Explanation:
Newton's second law states that the net force applied on a system is equal to the mass of the system times its acceleration:
[tex]\sum F = ma[/tex] (1)
Here we are interested in calculating the acceleration of the child, a. However, the child moves together with the wagon - this means that we can consider the child+wagon as a single system, moving with an acceleration of a, under a net force of F, which is the result of all the forces applied to the child+wagon.
(b) See attachment
There are 5 forces in total acting on the child+wagon system:
- The force exerted by the first child, 75.0 N, here to the left
- The force exerted by the second child, 90.0 N, here to the right
- The frictional force of 12.0 N, to the left (the direction of the frictional force is opposite to the direction of motion; since the larger force is the one exerted to the right, the system would move to the right, so the frictional force acts to the left)
- The weight of the child+wagon system, downward, which is equal to
W = mg
where m=23.0 kg is the total mass and g=9.8 m/s^2 is the acceleration due to gravity
- The normal reaction of the surface, upward, equal in magnitude to the weight
(c) 0.13 m/s^2
We are only interested in the forces acting along the horizontal direction, since the two forces in the vertical direction are in equilibrium.
The resultant force along the horizontal direction is
[tex]\sum F = 90.0 N - 75.0 N - 12.0 N =3.0 N[/tex]
By using Newton's second law (eq. 1), we can find the acceleration:
[tex]a=\frac{\sum F}{m}[/tex]
where
m = 23.0 kg is the mass of the child+wagon
Substituting,
[tex]a=\frac{3.0 N}{23.0 kg}=0.13 m/s^2[/tex]
(d) 0
In this case, the magnitude of the friction is 15.0 N. This means that the net force acting on the system is
[tex]\sum F = 90.0 N -75.0 N -15.0 N =0[/tex]
So, the forces along the horizontal direction are balanced as well. According to eq.(1), this also means that the acceleration along the horizontal axis will also be zero:
[tex]a=\frac{0}{23.0 kg}=0[/tex]
a) Child plus wagon
b) Refer the attached diagram.
c) [tex]\rm a = 0.13 \; m/sec^2[/tex]
d) a = 0
Given :
The first child exerts a force of 75 N, the second a force of 90 N.
Friction = 12N
Mass of the third child plus wagon is 23 kg.
Solution :
a) According to Newton's second law,
F = ma
Here we are interested in calculating the acceleration (a) of the child. However, the child moves together with the wagon - this means that we can consider the child plus wagon as a single system, moving with an acceleration of a, under a net force of F, which is the result of all the forces applied to the child plus wagon.
b) Refer the attached Diagram.
c) F = ma
90 - 75 - 12 = 23a
[tex]\rm a = \dfrac{3}{23}= 0.13\;m/sec^2[/tex]
d) F = ma
90 - 75 - 15 = 23a
a = 0
For more information, refer the link given below
https://brainly.com/question/18754956?referrer=searchResults
A book rests on a table. The earth pulls down on the book through the weight force. Which force is the reaction force to the weight force?
1. the force of the Earth on the book
2. the force on the table on the book
3. the force of the Earth on the table
4. the force of the book on the Earth
5. the inertia of the book
Newton's 3rd law: The force that A exerts on B is equal and opposite (in direction) to the force that B exerts on A.
Substitute the words "the earth" for A and "the book" for B.
A book rests on a table. The earth pulls down on the book through the weight force then the force is the reaction force to the weight force would be the force of the table on the book. Therefore the correct answer is option 2.
What is Newton's third law of motion?Newton's third law of motion explains that forces exist in pairs. It states that for every action force there exist equal and opposite reaction forces, these pairs of forces are equal in magnitude but opposite in direction.
Reactive force is a kind of force that acts in the opposite direction from the force that is applied. For instance, when active force is applied to a stationary wall, the wall will exert reactive force in the opposite direction.
Active and reactive forces always act in pairs and are equal in their magnitude but opposite in direction.
As per the given problem, on a table, there is a book. The weight of the earth pulls down on the book, and then the force of the table on the book acts as a reaction to the weight force. Therefore the correct answer is option 2.
Learn more about Newton's third law of motion from here
brainly.com/question/23772134
#SPJ6
1. Which of the following statements best describes the relationship between science and ethics?
A. There is no relationship between science and ethics
B. Every scientific questions raises serious ethical concerns
C. Scientists should try and avoid ethical questions because they limit research
D. Science provides facts and ethics determines how to best use the information
2. Before Christopher Columbus's voyage, most people believed that the world was flat?
True or False
3. Polynesian societies were among the first to start navigating the oceans?
True or False
4.
Captain cook's obligations to the British government prevented him from entirely focusing on aquatic life during his voyage's?
True or False
5. Why did Dr. Sylvia Earle win the TED prize?
A. She had a Ph.D
B. She donated the most money to the event
C. She had the bet plan for saving the earth
D. She submitted ground breaking scientific research
6. The professional ethics of marine science require all of the following EXCEPT?
A. Using the scientific method when approaching questions
B. Shaping the results to please the person who is paying for the study
C. Following the standards in the field when conducting experiments
D. appropriately sharing information and conclusions with the scientific community
7. Why doesn't simply limiting fishing solve all the problems created by over-fishing?
A. Only small scale fish operations can be regulated
B. There have never been regulations for fishing before
C. Fishing supports many people and other industries that depend on it
D. The population of most fish is higher than what they environment can sustain
8. The career of Jacques Cousteau illustrates that
A. Values can shift over the course of a career
B. Focusing on a single task s the best strategy for change
C. Only highly educated people can raise environmental awareness
D. Publicity plays an insignificant role in advancing a scientists causes
9. Before oceanography was recognized as its own branch of science, it was part of?
A. Physics
B. Chemistry
C. Geometry
D. Natural science
10. The best results are achieved when countries work along to address environmental problems in the ocean.
True or False
11. What element do all ancient seafaring societies have in common?
A. They used all the stars for navigation
B. They were all located near the pacific ocean
C. They conquered every new location they found
D. They developed their own version of the compass
12. Jacques Cousteau was all of the following EXCEPT a\an?
A. Inventor
B. Musician
C. Filmmaker
D. Naval Officer
13. The Chinese contributed which of the following to medieval marine science?
A. The compass
B. Improved Snails
C. Motorized Engines
D. The first maps of the Atlantic
Answer:
1.D
2. False
3.True
4.True
5.C
6.B
7.C
8.B
9.A
10.True
11.D
12.B
13.A
If you have any questions more,you can ask me later
Answer:
These are all correct and verified
1.D
2. False
3.True
4.True
5.C
6.B
7.C
8.B
9.A
10.True
11.D
12.B
13.A
Explanation:
I did the exam for Marine Science!
Plz click the Thanks button :)
<Jayla>
A nuclear weapon in which enormous energy is released is called
An atomic bomb is a device that has been used as a nuclear weapon by means of nuclear fission (separation of a heavy nucleus into lighter nuclei). It should be noted that there are also devices that work with nuclear fusion (the union of two nuclei) but until now there are no records of their use for war purposes.
This type of fission bombs release a large amount of energy (in the form of heat and radiation of all wavelengths, including dangerous ionizing radiation) by provocating a sustained chain reaction, after which convective processes (transmission of heat through the air) are produced, causing its characteristic mushroom shape with the expansive wave and destroying everything in its path.
Answer:
The answer would be an Atomic Bomb.
an atomic bomb is a nuclear weapon in which enormous energy is released by nuclear fission.
Explanation:
A tennis ball is hit into the wall with a speed of 26 m/s.
If it rebounds with a speed of 24 m/s, how much energy was lost in the collision?
mass of tennis ball = 0.059 kg
A) 6 joules
B) 1 joule
C) 3.0 joules
Answer:
C) 3.0 joules
Explanation:
The kinetic energy of the ball is given by:
[tex]K=\frac{1}{2}mv^2[/tex]
where
m = 0.059 kg is the mass of the ball
v is its speed
At the beginning, v = 26 m/s, so the initial kinetic energy is
[tex]K=\frac{1}{2}(0.059 kg)(26 m/s)^2=20 J[/tex]
after the rebound, v = 24 m/s, so the final kinetic energy is
[tex]K=\frac{1}{2}(0.059 kg)(24 m/s)^2=17 J[/tex]
So, the energy that was lost is
[tex]E=20 J-17 J=3 J[/tex]
If the work function of a material is such that red light of wavelength 700 nm just barely initiates the photoelectric effect, what must the maximum kinetic energy of ejected electrons be when violet light of wavelength 400 nm illuminates the material?Express your answer with the appropriate units.Kmax = J
Answer: [tex]2.13(10)^{-19} J[/tex]
Explanation:
The photoelectric effect consists of the emission of electrons (electric current) that occurs when light falls on a metal surface under certain conditions.
If the light is a stream of photons and each of them has energy, this energy is able to pull an electron out of the crystalline lattice of the metal and communicate, in addition, a kinetic energy.
This is what Einstein proposed:
Light behaves like a stream of particles called photons with an energy [tex]E[/tex]
[tex]E=h.f[/tex] (1)
Where:
[tex]h=6.63(10)^{-34}J.s[/tex] is the Planck constant
[tex]f[/tex] is the frequency
Now, the frequency has an inverse relation with the wavelength [tex]\lambda[/tex]:
[tex]f=\frac{c}{\lambda}[/tex] (2)
Where [tex]c=3(10)^{8}m/s[/tex] is the speed of light in vacuum and [tex]\lambda=400nm=400(10)^{-9}m[/tex] is the wavelength of the absorbed photons in the photoelectric effect.
Substituting (2) in (1):
[tex]E=\frac{h.c}{\lambda}[/tex] (3)
So, the energy [tex]E[/tex] of the incident photon must be equal to the sum of the Work function [tex]\Phi[/tex] of the metal and the maximum kinetic energy [tex]K_{max}[/tex] of the photoelectron:
[tex]E=\Phi+K_{max}[/tex] (4)
Rewriting to find [tex]K_{max}[/tex]:
[tex]K_{max}=E-\Phi[/tex] (5)
Where [tex]\Phi[/tex] is the minimum amount of energy required to induce the photoemission of electrons from the surface of a metal, and its value depends on the metal:
[tex]\Phi=h.f_{o}=\frac{h.c}{\lambda_{o}}[/tex] (6)
Being [tex]\lambda_{o}=700nm=700(10)^{-9}m[/tex] the threshold wavelength (the minimum wavelength needed to initiate the photoelectric effect)
Substituting (3) and (6) in (5):
[tex]K_{max}=\frac{h.c}{\lambda}-\frac{h.c}{\lambda_{o}}[/tex]
[tex]K_{max}=h.c(\frac{1}{\lambda}-\frac{1}{\lambda_{o}})[/tex] (7)
Substituting the known values:
[tex]K_{max}=(6.63(10)^{-34}J.s)(3(10)^{8}m/s)(\frac{1}{400(10)^{-9}m}-\frac{1}{700(10)^{-9}m})[/tex]
[tex]K_{max}=2.13(10)^{-19} J[/tex] >>>>>This is the maximum kinetic energy that ejected electrons must have when violet light illuminates the material
The energy transferred between objects with different temperatures is
The energy transferred between objects with different temperatures is
Thermal energy
What is Thermal energy ?
Thermal energy refers to the energy contained within a system that is responsible for its temperature. Heat is the flow of thermal energy.
Thermal energy get transfer from higher to lower temperature object in order to maintain equilibrium .
Thermal energy transfers occur in three ways: through conduction, convection, and radiation
The energy transferred between objects with different temperatures is
Thermal energy
learn more about Thermal energy
https://brainly.com/question/11278589?referrer=searchResults
#SPJ2
Heat is the energy transferred between two objects at different temperatures until they reach the same temperature. This spontaneous energy transfer is driven by the temperature difference and does not involve work, as there is no force acting through a distance.
Explanation:The energy transferred between objects with different temperatures is known as heat. When two objects at different temperatures are in contact, energy flows from the hotter object to the colder one until they reach thermal equilibrium—that is, they are at the same temperature. This transfer of energy is a spontaneous process and occurs due to the difference in temperature.
Internal energy plays a role in this process; an object with a higher temperature has higher internal energy. When energy transfers, there is no work done because no force is acting through a distance. The presence of a temperature difference is what drives the energy transfer, and once the temperatures equalize, this energy transfer ceases.
Heat is one of the ways through which a system's total energy can change, as per Enduring Understanding 4.C of interactions with systems. This is a fundamental concept in the study of thermodynamics and an essential part of understanding how energy moves within the universe.
What happens to an atom if the electrons in the outer shell are altered?
Answer:
NUCLEAR BOMB
Explanation:
About 0.1 eV is required to break a "hydrogen bond" in a protein molecule. Calculate the minimum frequency and maximum wavelength of a photon that can accomplish this.
minimum frequency
Hz
maximum wavelength
m
Answer:
[tex]2.41\cdot 10^{13}Hz, 1.24\cdot 10^{-5}m[/tex]
Explanation:
The energy of the photon must be equal to 0.1 eV, so let's convert this value into Joules first:
[tex]E=0.1 eV \cdot 1.6\cdot 10^{-19} J=1.6\cdot 10^{-20}J[/tex]
The energy of the photon is related to its frequency by
[tex]E=hf[/tex]
where h is the Planck constant and f is the frequency. Substituting,
[tex]f=\frac{E}{h}=\frac{1.6\cdot 10^{-20}J}{6.63\cdot 10^{-34}Js}=2.41\cdot 10^{13}Hz[/tex]
And now we can find the wavelength of the photon, which is given by
[tex]\lambda=\frac{c}{f}[/tex]
where c is the speed of light. Substituting,
[tex]\lambda=\frac{3\cdot 10^8 m/s}{2.41\cdot 10^{13} Hz}=1.24\cdot 10^{-5}m[/tex]
Calculating ph how is ph related to the concentration of hydronium ions. True or False
I think this is TRUE. Ph is calculating the acidic acids in water. And you need to know the concentration of hydronium ions. Hope this helped !
Planet that is one astronomical unit from the sun
That would be Earth, because astronomical unit is defined as distance between Earth and sun.
Hope this helps.
r3t40
The electrons involved in the formation of a chemical bond are called
Answer: Valence electrons
Valence electrons are those that are in the outermost or superficial layer of the atom, which means they have the highest energy compared to those of the inner layers.
Because of their position, it is easier for these electrons to interact with other atoms of their own element as well as different elements. This is done through the process of forming bonds when being attracted by other atoms.
Usually the force of gravity on electrons is neglected. To see why, we can compare the force of the Earth’s gravity on an electron with the force exerted on the electron by an electric field of magnitude of 40000 V/m (a relatively small field). What is the force exerted on the electron by an electric field of magnitude of 40000 V/m? The acceleration of gravity is 9.8 m/s 2 , the mass of an electron is 9.10939 × 10−31 kg, and the elementary charge 1.602 × 10−19 C. Answer in units of N.
Answer:
[tex]6.4\cdot 10^{-15} N[/tex]
Explanation:
The electric force exerted on the electron is given by:
[tex]F=qE[/tex]
where
[tex]q=1.6\cdot 10^{-19}C[/tex] is the magnitude of the electron charge
E = 40000 V/m is the electric field
Substituting,
[tex]F=(1.6\cdot 10^{-19} C)(40000 V/m)=6.4\cdot 10^{-15} N[/tex]
By comparison, the gravitational force exerted on the electron is:
[tex]F=mg[/tex]
where
[tex]m=9.10939\cdot 10^{-31} kg[/tex] is the mass of the electron
g = 9.8 m/s^2 is the acceleration due to gravity
Substituting,
[tex]F=(9.10939\cdot 10^{-31} kg)(9.8 m/s^2)=8.93\cdot 10^{-30}N[/tex]
Final answer:
The force exerted on an electron by a 40000 V/m electric field is 6.408 × 10−15 N, which is significantly greater than the gravitational force on the electron (8.927 × 10−30 N). Therefore, gravitational forces on electrons are commonly neglected in physics.
Explanation:
The force exerted on an electron by an electric field can be calculated using the equation F = qE, where q is the charge of the electron and E is the electric field strength. Given the charge of the electron q = 1.602 × 10−19 C and the electric field strength E = 40000 V/m, we can calculate the force as:
F = (1.602 × 10−19 C) × (40000 V/m) = 6.408 × 10−15 N.
This force is much larger compared to the gravitational force on an electron, which is calculated by F = mg, where m is the mass of the electron and g is the acceleration due to gravity (9.8 m/s2). The mass of the electron m = 9.10939 × 10−31 kg, hence the gravitational force is:
F_gravity = (9.10939 × 10−31 kg) × (9.8 m/s2) ≈ 8.927 × 10−30 N.
The comparison between the electric force and gravitational force on an electron clearly shows that the electric force is significantly stronger, which is why gravitational forces on electrons are often neglected in physics calculations involving electric fields.
Calculate the speed in m/s at which the moon revolves around the Earth. Note: the orbit is nearly circular.
Answer:
1020 m/s
Explanation:
The moon is in the earth's orbit, meaning it is in free fall. Its centripetal acceleration is equal to the acceleration due to gravity.
v² / r = GM / r²
v² = GM / r
v = √(GM / r)
G is the universal gravitational constant, M is the mass of the earth, and r is the distance from the earth's center to the moon's center.
G = 6.67×10⁻¹¹ m³/kg/s²
M = 5.97×10²⁴ kg
r = 3.84×10⁸ m
v = √( (6.67×10⁻¹¹) (5.97×10²⁴) / (3.84×10⁸) )
v = 1020 m/s