What is the half-life of a 0.5 g sample of radioisotope that decayed to 0.125 g in 9.6 min?

Answers

Answer 1
25% remaining = 2 half-lives have passed,
9.6 / 2 = 4.8 minutes
Answer 2

The half-life of a radioisotope that decayed from 0.5 g to 0.125 g in 9.6 min is 4.8 minutes, calculated by recognizing that two half-lives have occurred within the given timeframe.

The question concerns the calculation of the half-life of a radioisotope based on the amount of material that remains after a certain period of time. The half-life is the time taken for half of the radioactive nuclei in a sample to decay. To determine the half-life, we can apply the formula for exponential decay:

N(t) = N(0) * (1/2)^(t/T)

Where:

N(t) is the remaining quantity of the substance after time t,

N(0) is the initial quantity of the substance,

t is the time that has passed,

T is the half-life of the substance.

In this case, we start with 0.5 g and end with 0.125 g after 9.6 minutes. Since two half-lives have passed to get from 0.5 g to 0.125 g (0.5 g -> 0.25 g -> 0.125 g), we can calculate the half-life as:

9.6 minutes / 2 = 4.8 minutes

Therefore, the half-life of the radioisotope is 4.8 minutes.


Related Questions

Calculate the total pressure (in atm) of a mixture of .0200 mol of helium and .0100 mol of hydrogen in a 2.5 l flask at 10c

Answers

To determine the total pressure of the gas mixture, we need to assume that the gases are ideal so we use the equation PV = nRT where P is the pressure, V is the volume, n is the number of moles, T is the temperature of the system and R is the universal gas constant. We assume that the temperature of the system would be at 25 degrees Celsius. The pressure is calculated as follows:

PV = nRT
P = nRT / V
P = (0.02 + 0.01) (0.08205) (25 + 273.15) / 2.5
P = 0.2936 atm

Therefore, the pressure in the gas system would be 0.2936 atm

explain the idea that the greek philosopher democritus proposed

Answers

Democritus was a Greek philosopher who studied natural phenomena and concluded together with his mentor, that all matter is made up of tiny particles he called atoms. The basic tenets of this theory are that atoms are invisible, indestructible, are homogeneous, are solid and differ in shape, mass, size arrangement and postion.

Final answer:

Democritus, a Greek philosopher, proposed the idea of atomos or atomon - tiny, indivisible, solid objects - as the building blocks of all matter in the universe. His atomic theory challenged the prevailing belief of the time and laid the foundation for modern understanding of matter.

Explanation:

About 2,500 years ago, Democritus, a Greek philosopher, proposed the idea that all matter in the universe is made up of tiny, indivisible, solid units called atomos or atomon. He believed that these atoms were the building blocks of all substances and that they cannot be further divided. This theory challenged the prevailing belief of the time that the universe was a single, unchangeable entity. Democritus' atomic theory laid the foundation for modern understanding of matter and influenced later scientists such as John Dalton and Albert Einstein.

A patient requires 36 mmol of phosphate and 90 meq of potassium in their pn. the pharmacy has stock solutions of potassium phosphate (3 mmol of phosphate and 4.4 meq potassium per ml) and potassium chloride (2 meq potassium/ml). how many milliliters of potassium chloride are required?

Answers

First, we need to calculate for the volume of potassium phosphate required to meet the desired phosphate level of 36 mmol.

V potassium phosphate = 36 mmol / (3 mmol / mL)

V potassium phosphate = 12 mL

This also contains potassium in the amounts of:

V potassium in potassium phosphate = (4.4 meq / mL) * 12 mL

V potassium in potassium phosphate = 52.8 meq

Therefore the lacking amount of potassium is 90 – 52.8 = 37.2 meq

This lacking potassium must be supplied by the potassium chloride. Calculating for volume of potassium chloride:

V potassium chloride = 37.2 meq / (2 meq / mL)

V potassium chloride = 18.6 mL             (ANSWER)

To meet the patient's potassium requirement, 18.6 ml of potassium chloride solution is needed after considering potassium provided by the potassium phosphate solution. The total potassium needs are 90 meq, with 52.8 meq provided by 12 ml of potassium phosphate. The remaining 37.2 meq is met by administering 18.6 ml of potassium chloride.

To determine how many milliliters of potassium chloride (KCl) are needed, we first need to calculate the total potassium (K) requirement not met by the potassium phosphate (K₃PO₄) solution.

Step-by-Step Solution:

The patient needs 90 meq of potassium (K) in total.The potassium phosphate solution provides both potassium and phosphate, with 3 mmol of phosphate and 4.4 meq of potassium per ml.We need 36 mmol of phosphate, so we calculate the required volume of potassium phosphate solution:
(36 mmol PO₄ / 3 mmol PO₄ per ml) = 12 ml of K₃PO₄ solution.This 12 ml of potassium phosphate solution provides:
(12 ml x 4.4 meq K per ml) = 52.8 meq of K.Subtract the potassium provided by the phosphate solution from the total potassium requirement:
(90 meq K - 52.8 meq K) = 37.2 meq of K required from potassium chloride.The potassium chloride solution concentration is 2 meq K per ml. Therefore, we calculate the required volume of potassium chloride solution:
(37.2 meq K / 2 meq K per ml) = 18.6 ml of KCl solution.

Thus, 18.6 ml of potassium chloride are required to meet the patient’s potassium needs.

According to the law of conservation of mass, when sodium, hydrogen, and oxygen react to form a compound, the mass of the compound is ____ the sum of the masses of the individual elements. select one:

Answers

I think the correct term to fill in the blank would be equal. According to the law of conservation of mass, when sodium, hydrogen, and oxygen react to form a compound, the mass of the compound is equal the sum of the masses of the individual elements. This particular states that the mass cannot be created nor destroyed. So, for every process, the total inflow of mass should be the same total mass for the outflow since mass should be constant all through out. So, for a reaction, the total mass of the reactants should be equal to the total mass of the products.

The Law of conservation states that the mass of the chemical reactants and products cannot be formed or removed. Mass of compound is equal to the sum of individual mass.

What is the mass of conservation?

The conservational mass is the law that expresses that the total mass of the compound containing the various elements will always be equal to the addition of the atomic mass of the individual elements.

This suggests that the mass of the reaction is not created by the addition of any other mass or destroyed by the elimination of any mass. So, the mass of the reactants will be like that of the mass of products.

Therefore, equal to the is correct blank.

Learn more about conservational mass here:

https://brainly.com/question/13383562

When an aqueous solution of lead(ii) nitrate is mixed with an aqueous solution of sodium iodide, an aqueous solution of sodium nitrate and a yellow solid, lead iodide, are formed?

Answers

When an aqueous solution of lead(ii) nitrate (Pb(NO₃)₂) is mixed with an aqueous solution of sodium iodide (NaI), an aqueous solution of sodium nitrate (NaNO₃) and a yellow solid, lead iodide (PbI₂), are formed.

The balanced equation for the reaction is:

 Pb(NO₃)₂(aq)+2NaI(aq)→2NaNO₃(aq)+PbI₂(s)

Potassium forms an oxide containing 1 oxygen atom for every 2 atoms of potassium. what is the coefficient of oxygen in the balanced equation for the reaction of potassium with oxygen to form this oxide?

Answers

Final answer:

The balanced equation for the reaction of potassium with oxygen to form potassium oxide is 4 K(s) + O2(g) → 2 K2O(s), so the coefficient of oxygen (O2) is 1.

Explanation:

The student is asking about the reaction of potassium with oxygen to form potassium oxide, which contains 1 oxygen atom for every 2 atoms of potassium. To balance the chemical equation for this reaction, it is important to recognize that oxygen is diatomic (O2) and potassium forms an oxide where potassium has a 1+ charge, and oxide has a 2- charge. The formula for potassium oxide using the crisscross method becomes K2O.

The balanced equation for the reaction will be:

4 K(s) + O2(g) → 2 K2O(s)

Thus, the coefficient of oxygen (O2) in the balanced equation is 1.

How much heat is released when 75 g of octane is burned completely if the enthalpy of combustion is -5,500 kJ/mol C8H18

Answers

Answer : The heat released during the reaction is [tex]-8.4\times 10^3kJ[/tex]

Explanation :

First we have to calculate the number of moles of octane [tex](C_8H_{18})[/tex].

[tex]\text{Moles of }C_8H_{18}=\frac{\text{Mass of }C_8H_{18}}{\text{Molar mass of }C_8H_{18}}[/tex]

Molar mass of [tex]C_8H_{18}[/tex] = 114 g/mole

[tex]\text{Moles of }C_8H_{18}=\frac{75g}{114g/mole}=0.658mole[/tex]

Now we have to calculate the heat released during the reaction.

[tex]\Delta H=\frac{q}{n}[/tex]

or,

[tex]q=\Delta H\times n[/tex]

where,

[tex]\Delta H[/tex] = enthalpy change = -5500 kJ/mol

q = heat released = ?

n = number of moles of [tex]C_8H_{18}[/tex] = 0.658 mol

Now put all the given values in the above formula, we get:

[tex]q=(-5500kJ/mol)\times (0.658mol)=-8358.66kJ=-8.4\times 10^3kJ[/tex]

Therefore, the heat released during the reaction is [tex]-8.4\times 10^3kJ[/tex]

The quantity of heat released when the octane is burned completely is -3,613.5 Joules.

Given the following data:

Mass of octane = 75 gramsEnthalpy of combustion = -5,500 kJ/mol

To find the quantity of heat released when the octane is burned completely:

First of all, we would determine the number of moles of octane in this chemical reaction.

[tex]Number\;of\;moles \;(C_8H_{18})= \frac{Mass\; of\;octane}{Molar\;mass\;of\;octane}[/tex]

Substituting the values into the formula, we have;

[tex]Number\;of\;moles \;(C_8H_{18})= \frac{75}{114.23}[/tex]

Number of moles ([tex]C_8H_{18}[/tex]) = 0.657 moles.

Now, we can find the quantity of heat released when the octane is burned completely:

1 mole of octane = -5,500 kJ/mol

0.657 mole of octane = X kJ/mol

Cross-multiplying, we have:

[tex]X = -5500[/tex] × [tex]0.657[/tex]

X = -3,613.5 Joules.

Read more: https://brainly.com/question/13197037?referrer=searchResults

A 10% glucose solution is placed in a dialysis tubing bag. the dialysis tubing bag is placed in a beaker that contains a 5% glucose solution. where is the highest concentration of water found?

Answers

The highest concentration of water would be found in the 5% solution. The concentration given above is percent of glucose, so the solution contain 5% of glucose and 95% of water. Comparing it to 10% of glucose solution which will have 10% glucose and 90% water, clearly, it is the 5% solution that has the highest amount of water in the solution. Percentage by a certain unit is the amount of that unit of a component in a mixture per 100 units of the total mixture. 

Final answer:

Water moves from high to low concentration in osmosis; in this setup, the highest water concentration is in the beaker with 5% glucose solution.

Explanation:

Water moves from areas of high concentration to low concentration in osmosis, seeking equilibrium.

In the scenario provided, the highest concentration of water would be in the beaker containing the 5% glucose solution.

This movement occurs because the 10% glucose solution inside the dialysis tubing bag has a lower water concentration compared to the 5% glucose solution outside the bag.

Magnesium (mg) forms an oxide with one magnesium atom and one oxygen atom as its formula. which element below is likely to form an oxide with a similar 1:1 formula? silicon, si sodium, na aluminum, al calcium, ca

Answers

2Mg + O₂ → 2MgO

2Ca + O₂ → 2CaO
calcium

Answer:

Calcium will form similar kind of oxide.

Explanation:

Magnesium is an alkaline earth metal. It has two electrons in its valence shell and thus it can easily give these electrons to form dipositive ion.

Mg: 1s² 2s² 2p⁶ 3s²

Mg⁺²: 1s² 2s² 2p⁶ [full filled].

Now it will form monoxide with oxygen as: MgO

The calcium also belongs to same group and have two valence electrons in its outer shell and thus it can easily give these electrons to form dipositive ion.

Ca: [Ne] 3s² 3p⁶ 4s²

Ca⁺²: [Ne] 3s² 3p⁶ [full filled].

hence it will also form CaO.

For other elements

a) Silicon can form SiO₂

b) Sodium can form Na₂O

c) Aluminium can form Al₂O₃

A salt sample is placed into some water and nearly all of it dissolve without stirring and heating. the resulting solution is

Answers

In the concept of dissolving a soluble compound in water to form an aqueous solution, there are three types of solution: unsaturated, saturated and supersaturated/

Saturated solution is the limiting boundary among the three. This solution is made when the maximum amount of salt is added to the water. This can be manifested when you add another pinch of salt but does not dissolve even if you dissolve it. This is because it has reached its limit. Below this is the unsaturated solution where it dissolves all of the solute. Supersaturated solution is when you force the solution to dissolve the additional salt even if it saturated already. This can be possible if you heat the solution.

Therefore, since the solution still dissolves the salt without heating and even without stirring, the resulting solution is still an unsaturated solution.

When this reaction is coupled to the conversion of graphite to carbon dioxide, it becomes spontaneous. what is the chemical equation of this coupled process? show that the reaction is in equilibrium, include physical states, and represent graphite as c(s)?

Answers

The reaction of a graphite which is basically a carbon with oxygen which is a gas forms a carbon dioxide which is also a gas. 

The balance chemical reaction is shown below,
C + O2 --> CO2

This is already a balanced chemical equation because the number of elements in the left side of the equation is same that of the number on the right side.
C = 1 
O = 2

If we are to incorporate the physical states of the elements and compounds which are already given above, the equation would become,
C(s) + O2(g) --> CO2(g)

Rotting waste in landfills produces a gas that can be captured and used to generate electricity. what is this gas called?

Answers

Methane!
Hopefully this helps you

Answer: The gas produced will be methane gas.

Explanation:

When waste is filled in the landfills, it gets rotten and it undergoes an aerobic decomposition (In the presence of oxygen), little methane gas is produced.

When the waste remains there, i less than a year, anaerobic conditions begin to generate (in the absence of oxygen) and methane-producing bacteria begin to decompose the waste and produces methane in a large amount.

This gas is also known as marsh gas and is considered as a greenhouse gas. This gas increases the temperature of the Earth's surface.

Hence, the gas produced will be methane gas.

Why does ice float in liquid water? the high surface tension of liquid water keeps the ice on top. stable hydrogen bonds keep water molecules of ice farther apart than water molecules of liquid water. the crystalline lattice of ice causes it to be denser than liquid water. the ionic bonds between the molecules in ice prevent the ice from sinking?

Answers

Stable hydrogen bonds keep water molecules of ice farther apart than water molecules of liquid water.

Since the molecules can move wider apart due to the hydrogen bonds created when water freezes into ice, the ice floats in the water because it has a lower density overall.

What is surface tension of liquid?

The attractive force that the molecules below a liquid's surface exert on its surface molecules tends to drag those molecules into the bulk of the liquid, giving the liquid the shape with the least amount of surface area.

When water turns to ice, the ice loses a lot of its water-like density and continues to float on the lake's surface.

Water loses density when it grows colder below 4° Celsius, forcing water that is about to freeze to float to the top.

Therefore, This occurs as a result of the water molecules losing energy and moving less than the temperature drops.

Learn more about surface tension here:

https://brainly.com/question/571207

#SPJ2

1. Which processes are taking place in the system represented by the following equation?
2CO(g) + O2(g) →← 2CO2(g)

2. Consider the reaction represented by the equation 2HI(g) →← H2(g) + I2(g). At a temperature of 520 °C, the equilibrium concentration of HI is 0.80 M, of H2 is 0.010 M, and of I2 is 0.010 M. What is the K for the reaction?

Answers

Final answer:

The equilibrium constant indicates the ratio of product and reactant concentrations at equilibrium. The processes in the first equation involve the formation and decomposition of gases. The K value for the second equation is calculated using given equilibrium concentrations.

Explanation:

The equilibrium constant (K) for a chemical reaction indicates the ratio of the concentrations of the products to the concentrations of the reactants at equilibrium. In the first equation, 2CO(g) + O2(g) → 2CO2(g), the forward reaction is the formation of CO2 from CO(g) and O2(g), while the reverse reaction is the decomposition of CO2(g) into CO(g) and O2(g).

To find the value of K for the reaction 2HI(g) → H2(g) + I2(g), we need to use the given equilibrium concentrations. Using the equation K = [H2][I2]/[HI]^2, we plug in the values to get K = (0.010)(0.010)/(0.80)^2 = 0.00015625.

Final answer:

The reaction represented by the equation 2CO(g) + O2(g) ↔ 2CO2(g) involves the formation and decomposition of carbon dioxide. The equilibrium constant (K) for the reaction 2HI(g) ↔ H2(g) + I2(g) at 520°C is 0.00015625.

Explanation:

The reaction represented by the equation 2CO(g) + O2(g) ↔ 2CO2(g) is an equilibrium reaction. It involves two processes: the formation of carbon dioxide from carbon monoxide and oxygen, and the reverse process where carbon dioxide decomposes to form carbon monoxide and oxygen.

At a temperature of 520°C, we are given the equilibrium concentrations of HI (0.80 M), H2 (0.010 M), and I2 (0.010 M). To find the equilibrium constant (K) for the reaction, we can use the formula:

K = [H2][I2]/[tex][HI]^2[/tex]

Substituting the given concentrations into the formula:

K = (0.010)(0.010)/[tex](0.80)^2[/tex] = 0.00015625

A 92.0 ml volume of 0.25 m hbr is titrated with 0.50 m koh. calculate the ph after addition of 46.0 ml of koh at 25 ∘c.

Answers

In neutralization reactions, a base and an acid react to form an ionic salt and water. There is a rule that when a strong base and a strong acid react, the pH of their salt is always neutral which is at pH 7. However, this is only true if equal amounts of acid and base are consumed and that there is no excess. Otherwise, the excess acidity or basicity will adjust the total pH.

Strong acids are the following: HCl, HBr, HI, HClO4, HClO3, HNO3 and H2SO4. Strong bases are KOH, LiOH, NaOH, Ca(OH)2, Sr(OH)2 and Ba(OH)2. Therefore, we can already establish that both of the reactants are strong. The complete reaction is

HBr + KOH ⇒ KBr + H₂O

So, 1 mole of HBr would require 1 mol of KOH, and vice versa. Let'scompute the amount of the initial reactants:

mol HBr: (0.25 mol/L)*(0.92 L) = 0.23 mol HBr
mol KOH: (0.5 mol/L)*(0.46 L) = 0.23 mol KOH

There are equal amounts of acid and base. Thus, pH of the KBr solution is neutral at pH 7.

After adding 46.0 mL of 0.50 M KOH to 92.0 mL of 0.25 M HBr, the solution is neutral and has a pH of approximately 7.

To determine the pH of the solution when 46.0 mL of 0.50 M KOH is added to 92.0 mL of 0.25 M HBr at 25°C, follow these steps:

Calculate the moles of HBr and KOH:

Moles of HBr: 0.25 M × 0.092 L = 0.023 moles

Moles of KOH: 0.50 M × 0.046 L = 0.023 moles

Determine the reaction completeness:

KOH completely neutralizes an equivalent amount of HBr (1:1 ratio):

0.023 moles of HBr neutralized by 0.023 moles of KOH.

Calculate the pH:

After the neutralization, there are no excess moles of acid (H+) or base (OH-), resulting in neutral pH.

The pH of the resulting solution is therefore approximately 7.

In summary, after adding 46.0 mL of 0.50 M KOH to 92.0 mL of 0.25 M HBr, the solution is neutral, with a pH of approximately 7

How many equivalents of pyruvate are needed to generate 1 equivalent of glucose?

Answers

Gluconeogenesis is the process by which the body produce glucose from non-carbohydrate substrates such as pyruvate. To produce glucose from pyruvate, two moleucules of pyruvate is needed. The reaction for the gluconeogenesis reaction is as follow:
2 pyruvate + 4 ATP + 2 GTP + 2 NADH = Glucose + 4 ADP + 2 GDP + 2 NAD + 6Pi. 

What are the signs of delta S, delta H and delta G for the formation of dew on a cool night? All the S ,H and G values are delta values, i'm just not going to write delta for each one.
a) +S, +H, +G
b) +S, +H, -G
c) +S, -H, +G
d) +S, -H, -G
e) -S, +H, +G
f) -S, +H, -G
g) -S, -H, +G
h) -S, -H, -G
pls help me, i'm so confused and this question has so many different options its overwhelmingg

Answers

H. all negative
     -H = exothermic
     -S = more orderly
     -G = spontaneous

The signs delta S, delta H and delta G for the formation of dew on a cool night are negative.

What is condensation reaction?

Those reactions in which one product is formed by the combination of two molecules for example water vapors condenses into liquid dropltes is a condensation process.

Dew which is formed on a cool night is an exothermic reaction as in this reaction state changes from gaseous which have high kinetic energy to liquid so some amount of energy is released during this conversion.

For an exothermic reaction values are:

ΔH = -ve (as energy is lost in the form of heat)

ΔS = -ve (randomness decreases from gaseous state to liquid state)

ΔG = -ve (shows the spontaenity of the reaction)

Hence option (H) is correct.

To know more about exothermic reaction, visit the below link:

https://brainly.com/question/6506846

How many moles of NaCl are required to prepare 0.80 L of 6.4 M NaCl

Answers

Hey there! 

Solution :

Volume of solution = 0.80 L

Molarity of solution = 6.4 M

Therefore :

n = M * V

n = 6.4 * 0.80

n = 5.12 moles of NaCl

hope this helps!

Henry's law of partial pressures states that when a gas is in contact with a liquid, that gas will dissolve in the liquid in proportion to its partial pressure. henry's law of partial pressures states that when a gas is in contact with a liquid, that gas will dissolve in the liquid in proportion to its partial pressure.
a. True
b. False

Answers

True! Though simplified:
Henry's law is one of the gas laws and was formulated by the British chemist, William Henry, in 1803. It states that: At a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.

Using the periodic table, how would you find elements with chemical properties similar to helium?

Answers

The state of the helium in its natural form is gaseous and is a chemical element of colorless aspect and belongs to the group of noble gases. The atomic number of helium is 2. The chemical symbol of helium is He. For the following we focus on those elements and relate it with similar chemical properties. Then we find that; Neon, Hydrogen, Boron and Carbon are related to helium, either by proximity in their atomic number or period or by their group.
Final answer:

To find elements with chemical properties similar to helium, we need to look for elements in the same group as helium in the periodic table. Helium belongs to Group 18 or the noble gases. Other elements in Group 18, such as neon, argon, krypton, xenon, and radon, also have similar chemical properties to helium.

Explanation:

The elements in the periodic table are organized into groups (columns) based on similar chemical properties. To find elements with chemical properties similar to helium, we need to look for elements in the same group as helium in the periodic table. Helium belongs to Group 18 or the noble gases. Other elements in Group 18, such as neon, argon, krypton, xenon, and radon, also have similar chemical properties to helium.

One of the most common causes of inaccurate melting points is too rapid heating of the melting point bath. under these circumstances, how ill the observed melting point compare to the true melting point.

Answers

the observed melting point will be higher than the true point

Carbon dioxide is ________. the most abundant greenhouse gas the most potent (per molecule gas. of the greenhouse gases the only greenhouse gas presently decreasing in the atmosphere the main anthropogenic greenhouse gas produced in the united states the only greenhouse gas presently increasing in the atmosphere

Answers

Answer: the main anthropogenic greenhouse gas produced in the united states.

Anthropogenic means that the man is the responsible for its generation.

Fuel consumption for vehicles, factories and houses generates huge amounts of CO2.

Let's review the other options:

a. the most abundant greenhouse gas

FALSE: The most abundant greenhouse gas is water vapor.


b. the most potent (per molecule) gas. of the greenhouse gases

Methane is considered more potent than CO2 as heat-trapping.

c. the only greenhouse gas presently decreasing in the atmosphere

CO2 has not decreased but increased.

d. the main anthropogenic greenhouse gas produced in the united states

TRUE as stated initially

e. the only greenhouse gas presently increasing in the atmosphere

FALSE: Methane (CH4) is also increasing.

How many grams of ko2 are needed to form 6.5 g of o2?

Answers

Decomposition of a potassium superoxide  happens according to the scheme:

4KO₂(s) + 2H₂O(l) → 4KOH(aq) + 3O₂(g)

m(K₂O)=4M(K₂O)m(O₂)/{3M(O₂)}

m(K₂O)=4×71.1×6.5/{3×32.0}≈19.3 g

Answer: The mass of [tex]KO_2[/tex] needed is 19.3 grams.

Explanation:

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]      .....(1)

Given mass of oxygen gas = 6.5 g

Molar mass of oxygen gas = 32 g/mol

Putting values in equation 1, we get:

[tex]\text{Moles of oxygen gas}=\frac{6.5g}{32g/mol}=0.203mol[/tex]

The chemical equation follows:

[tex]4KO_2+2CO_2\rightarrow 2K_2CO_3+3O_2[/tex]

By Stoichiometry of the reaction:

3 moles of oxygen gas is produced by 4 moles of [tex]KO_2[/tex]

So, 0.203 moles of oxygen gas is produced by = [tex]\frac{4}{3}\times 0.203=0.271mol[/tex] of [tex]KO_2[/tex]

Now, calculating the mass of [tex]KO_2[/tex] by using equation 1, we get:

Molar mass of [tex]KO_2[/tex] = 71.1 g/mol

Moles of [tex]KO_2[/tex] = 0.271 moles

Putting values in equation 1, we get:

[tex]0.271mol=\frac{\text{Mass of }KO_2}{71.1g/mol}\\\\\text{Mass of }KO_2=(0.271mol\times 71.1g/mol)=19.3g[/tex]

Hence, the mass of [tex]KO_2[/tex] needed is 19.3 grams.

0 ml of a 6.0 m hno3 stock solution is diluted using water to 100 ml. how many moles of hno3 are present in the dilute solution? 25.0 ml of a 6.0 m stock solution is diluted using water to 100 ml. how many moles of are present in the dilute solution? 6.0 moles 0.6 moles 0.15 moles 1.5 moles

Answers

When you are dealing with mixtures that are non-reactive such as HNO3 or nitric acid and water, you do a process of dilution. All you did was decrease the concentration of the HNO3 solution, but it still contains the same amount of moles for the solute. In the concept of law of conservation of mass, the amount of mass or moles (if non-reactive) are additive, no more no less. The final moles would then be the original moles of solute and the added water. 

You can solve this by multiplying the concentration in molarity with the volume. Molarity is moles of solute per liter solution. Since the volume is 100 mL or 0.1 L, then

6 moles/L * 0.1 L = 0.6 moles nitric acid

[tex]\boxed{{\text{0}}{\text{.15 mol}}}[/tex] of [tex]{\text{HN}}{{\text{O}}_{\text{3}}}[/tex] is present in the dilute solution.

Further Explanation:

The proportion of substance in the mixture is called concentration. The most commonly used concentration terms are as follows:

1. Molarity (M)

2. Molality (m)

3. Mole fraction (X)

4. Parts per million (ppm)

5. Mass percent ((w/w) %)

6. Volume percent ((v/v) %)

Molarity is a concentration term that is defined as the number of moles of solute dissolved in one litre of the solution. It is denoted by M and its unit is mol/L.

The formula to calculate the molarity of [tex]{\text{HN}}{{\text{O}}_{\text{3}}}[/tex] solution is as follows:

[tex]{\text{Molarity of HN}}{{\text{O}}_3}\;{\text{solution}} = \frac{{{\text{Moles}}\;{\text{of}}\;{\text{HN}}{{\text{O}}_3}}}{{{\text{Volume }}\left( {\text{L}} \right){\text{ of}}\;{\text{HN}}{{\text{O}}_3}\;{\text{solution}}}}[/tex]            …… (1)

Rearrange equation (1) to calculate the moles of [tex]{\text{HN}}{{\text{O}}_{\text{3}}}[/tex].

[tex]{\text{Moles}}\;{\text{of}}\;{\text{HN}}{{\text{O}}_3} = \left( {{\text{Molarity of HN}}{{\text{O}}_3}\;{\text{solution}}} \right)\left( {{\text{Volume of}}\;{\text{HN}}{{\text{O}}_3}\;{\text{solution}}} \right)[/tex]    …… (2)

The volume of [tex]{\text{HN}}{{\text{O}}_{\text{3}}}[/tex] solution is to be converted into L. The conversion factor for this is,

[tex]{\text{1 mL}} = {10^{ - 3}}\;{\text{L}}[/tex]  

So the volume of [tex]{\text{HN}}{{\text{O}}_{\text{3}}}[/tex] solution is calculated as follows:

[tex]\begin{aligned}{\text{Volume of HN}}{{\text{O}}_{\text{3}}}\;{\text{solution}}&=\left( {{\text{25 mL}}}\right)\left({\frac{{{{10}^{ - 3}}\;{\text{L}}}}{{{\text{1 mL}}}}} \right)\\&=0.02{\text{5 L}}\\\end{aligned}[/tex]

The molarity of [tex]{\text{HN}}{{\text{O}}_{\text{3}}}[/tex] solution is 6M.

The volume of [tex]{\text{HN}}{{\text{O}}_{\text{3}}}[/tex] solution is 0.025 L.

Substitute these values in equation (2).

[tex]\begin{aligned}{\text{Moles}}\;{\text{of}}\;{\text{HN}}{{\text{O}}_3}&=\left( {{\text{6 M}}} \right)\left( {0.02{\text{5 L}}} \right)\\&=0.1{\text{5 mol}} \\ \end{aligned}[/tex]

The number of moles of [tex]{\text{HN}}{{\text{O}}_{\text{3}}}[/tex] in 25 mL solution is 0.15 mol.

Dilution is the conversion of a concentrated solution into a dilute solution with the addition of extra solvent but the amount of solute is unaltered. The change that arises is an increase in the volume of the solution.

In the given solution, dilution is done and the concentration of solution decreases during the process. But the number of moles of solute remains unaltered. Therefore the number of [tex]{\text{HN}}{{\text{O}}_{\text{3}}}[/tex] in the dilute solution is also 0.15 mol.

Learn more:

1. Calculation of volume of gas: https://brainly.com/question/3636135

2. Determine the moles of water produced: https://brainly.com/question/1405182

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Concentration terms

Keywords: molarity, HNO3, dilution, moles of HNO3, volume, solution, 0.15 mol, concentration, 25 mL, 6 M, concentrated solution, dilute solution.

What is the most appropriate si (metric) unit for measuring the length of an automobile?

Answers

The Answer for this question is Meter

Determine the number of atoms in 1.85 ml of mercury. (the density of mercury is 13.5 g/ml.)

Answers

First step is to get the mass of the mercury:
Pressure = mass/volume
mass = pressure x volume = 13.5 x 1.85 = 24.975 gm

Second step is to calculate the number of moles in 24.975 gm:
From the periodic table, the molar mass of mercury is 200.59
mass = number of moles x molar mass
number of moles = 24.975 / 200.59 = 0.1245 mole

Last step is to get the number of atoms:
Each mole contains 6.02 x 10^23 atoms
number of atoms = 0.1245 x 6.02 x 10^23 = 7.4949 x 10^22 atoms
Final answer:

To determine the number of atoms in 1.85 ml of mercury, convert the volume to mass using the density of mercury. Then, calculate the number of moles of mercury using its atomic mass. Finally, use Avogadro's number to calculate the number of atoms in the given amount of mercury.

Explanation:

To determine the number of atoms in 1.85 ml of mercury, we need to convert the volume to mass using the density of mercury. The density of mercury is 13.5 g/ml. So, the mass of 1.85 ml of mercury is 1.85 ml x 13.5 g/ml = 24.975 g.

Next, we need to calculate the number of moles of mercury using its atomic mass. The atomic mass of mercury is 200.59 g/mol. To find the number of moles, we divide the mass (in grams) by the molar mass: 24.975 g / 200.59 g/mol = 0.1245 mol.

Finally, we can calculate the number of atoms in 0.1245 mol of mercury. Avogadro's number tells us that there are 6.022 x 10^23 atoms in 1 mol of any substance. So, the number of atoms in 0.1245 mol of mercury is 0.1245 mol x 6.022 x 10^23 atoms/mol = 7.49 x 10^22 atoms.

How many different 3d states does the hydrogen atom have?

Answers

An electron in a hydrogen atom would have 10 states for a 3d orbital, like any other element.

n = 3, l = 2, in one of ml = 2, 1, 0, -1, -2 each with ms = -½ or +½ or a total of 10 possible states.

None of these are a ground state of an electron in the hydrogen atom.

Enjoy :)

Different 3d states that does the hydrogen atom have are 10.

What are energy states of atom?

The energy state is also familiarly known as the energy level plays a vital role in explaining the atomic structure. The energy levels or the energy state is any discrete (definite) value from a set of values of total energy for a subatomic particle confined by a force to limited space or for a system of such particles, for example like an atom or a nucleus.

The energy level is an old name used with the electron orbits of the Bohr model before quantum mechanics. In the quantum mechanical treatment and because of the uncertainty principle, thus we can not have orbits and hence the term energy states are used instead, thus technically there is not much of a difference between energy levels and energy states.

An electron in a hydrogen atom would have 10 states for a 3d orbital, like any other element.

n = 3, l = 2, in one of ml = 2, 1, 0, -1, -2 each with ms = -½ or +½ or a total of 10 possible states.

None of these are a ground state of an electron in the hydrogen atom.

Therefore, Different 3d states that does the hydrogen atom have are 10.

Learn more about energy state, here:

https://brainly.com/question/2289096

#SPJ3

In a controlled experiment, the factor tested is called the A. constant. B. independent variable. C. dependent variable. D. control.

Answers

C. Dependent Variable

In a controlled experiment, the factor tested is called the [tex]\boxed{{\text{B}}{\text{. independent variable}}}[/tex].

Further Explanation:

A procedure that is performed in order to support, disprove or validate a hypothesis is known as an experiment. A hypothesis is an idea or thought that needs to be tested with the help of experiments.

Types of experiments:

1. Controlled experiments

The type of experiment that is used for comparing the results of experimental samples with the control samples is called a controlled experiment. Such experiments involve a drug trial. The experimental group will be the one that receives the drug and the other one receiving regular treatment will be the controlled group. The experimental group is also known as the treatment group. Another example of controlled experiments is the protein assay.

2. Natural experiments

These are also called quasi-experiments. These are performed by exposing individuals to the conditions that are governed by nature. Experiments involving weather changes and natural disasters are examples of natural experiments.

3. Field experiments

These are quite different from the experiments performed in the laboratory. Such experiments are usually performed in social studies. These have higher external validity as compared to normal lab experiments. Economic analysis of health and education are some examples of such experiments.

The variable that can be changed by the investigator is called the independent variable while the variable is the one that is affected by the changes in experimental conditions. All the variables in a controlled experiment are kept constant; except for the factor that is to be tested. Such a factor is called the independent variable or the experimental variable.

Learn More:

What is the main purpose of conducting experiments? https://brainly.com/question/5096428 What is the percentage error in the experiment? https://brainly.com/question/11181911

Answer Details:

Grade: Senior School

Chapter: Keys to studying chemistry

Subject: Chemistry

Keywords: experiment, hypothesis, controlled experiment, natural experiment, field experiments, dependent variable, independent variable, quasi-experiments.

The two most reactive families of elements are the halogens and the alkali metals. how do they differ in their reactivities?

Answers

Reactivity of the element is based on the valence electrons of the atoms.

Alkali metals is part of the 1A group in the periodic table. This means that it has a valence electron of 1. It needs to expel one (1) electron to satisfy the octet rule. Also, the valence electron of the halogens which are seven (7). This means that it has to take in one last electron to satisfy the octet rule. 

The reactivity differs in that the alkali metals have to expel one electron while halogens have to take in one electron. 

Write the empirical formula of at least four binary ionic compounds that could be formed from the following ions: ,
V+5
,
Cl−
,
O−2

Answers

Bynari means that the compound is formed by two kind of elements.

You have listed three ions, V 5+, Cl - and O 2-.

Binary ionic compounds are formed by a positive ion and a negative ion, so the possible ionic compound formed by the listed ions are:

1) VCl5, where the number 5 next to Cl is a subscript.

2) V2O5, where the number 2 next to V and the number 5 next to O are subscripts.

Subscripts are used to indicate the number of atoms of each element in the formula.

So, the empirical formula searched are VCl5 and V2O5.

I can give you other examples with more ions.

Ca (2+) and S(2-) => Ca2S2 => CaS

Na(+) and F(-) => NaF

Cs(+) and Br(-) => CsBr


Other Questions
A two pound box of fruit snacks contains 24 packets. Find the unit rate in packets per pound Katie is buying souvenir.gifts for her big family back home. She wants to buy everyone either a key chain or a magnet. The magnets are on sale for 60 cents each and the key chains cost $2 each. She must purchase at least 36.gifts but has to spend less than $40. Let x represent the amount of key chains and y represent the amount of magnets. Model the scenario with a system of inequalities. What event prompted the formation of the 1st continental Congress The regulations strongly suggest but do not require that the informed consent process be delivered in a language that is understandable to the subject a. True b. False This is the period during the cell cycle when the cell is neither preparing for cell division nor dividing; it is growing while carrying on regular cell activities. What is the constant of variation for the quadratic variation? 6y = 4x2 True or False: The only guaranteed way to prevent getting pregnant is by practicing abstinence A driver's ___________ affects how likely it is that he or she will take risks behind the wheel. a. attitude b. location c. vision d. all of the above The type of boundary represented by the two books is a______ boundarya.convergentb.divergentc.transform Which geographic feature exposed the Maurya and Gupta Empires to invasion Abdul is frustrated because his team members come unprepared for meetings. what is the first thing he should do to try to improve the situation What is a hemisphere? A) the line of longitude known as the prime meridian. B) one-fourth of the area on Earth. C) the line of latitude known as the equator. D) a half of the world, split by either the prime meridian or the equator You get lost and need shelter. what should you do first? In the navigation rules what must give-way boats do You are planning a study and are considering taking an srs of either 300 or 700 observations. explain how the sampling distribution would differ for these two scenarios. Which of the following is not a part of kinetic molecular theory? A. Particles are in constant, random motion. B. When particles collide, no energy is lost. C. Small particles make up all matter. D. When temperature is increased, particles move more slowly. The concept of knowing who we are and how we understand ourselves, as well as how others define us, is called __________. A. gender B. ethnicity C. nationality D. identity What is the slope of any parallel line to the line 8x + 9y = 3 in the standard (x,y) coordinate plane? A couple has 2 children. what is the probability that both are girls if the older of the two is a girl? What is the only subatomic particle that is directly involved in the chemical reactions?