Answer:
b. (√15)/4
Step-by-step explanation:
Since Sin Ф = (opposite side)/Hypotenuse, we have 2 sides of a right triangle.
Use Pythagorean theorem to solve for the missing leg (the adjacent side)
1² + b² = 4²
1 + b² = 16
b² = 15
b = √15
So the adjacent side is √15, so Cos Ф = (√15)/4
Answer:
b. [tex]\frac{\sqrt{15}}{4}[/tex]
Step-by-step explanation:
Given that [tex]\sin(\theta)=\frac{1}{4}[/tex] where [tex]0\:<\: \theta \:<\:\frac{\pi}{2}[/tex].
Recall and use the Pythagorean Identity;
[tex]\sin^2(\theta)+\cos^2(\theta)=1[/tex]
This implies that;
[tex](\frac{1}{4})^2+\cos^2(\theta)=1[/tex]
[tex]\frac{1}{16}+\cos^2(\theta)=1[/tex]
[tex]\cos^2(\theta)=1-\frac{1}{16}[/tex]
[tex]\cos^2(\theta)=\frac{15}{16}[/tex]
Take the square root of both sides;
[tex]\cos(\theta)=\pm \sqrt{\frac{15}{16}}[/tex]
[tex]\cos(\theta)=\pm \frac{\sqrt{15}}{4}[/tex]
Since we are in the first quadrant;
[tex]\cos(\theta)=\frac{\sqrt{15}}{4}[/tex]
The cost of having a plumber spend h hr at your house if the plumber charges $30 for coming to the house and $x per hour for labor. The expression for the cost of the plumber coming to the house is how many dollars.
Answer:
[tex]C(h)=\$30+xh[/tex]
Step-by-step explanation:
Let
C-----> the cost of having a plumber spend h hours at your house
h----> the number of hours
x----> the cost per hour of labor
we know that
The linear equation that represent the cost C is equal to
[tex]C(h)=\$30+xh[/tex]
In this linear equation in the slope-intercept form (y=mx+b)
the slope is equal to [tex]m=x\frac{\$}{hour}[/tex]
the y-intercept b is equal to [tex]b=\$30[/tex] ---> charge for coming to the house
-8+(-6)= -14 in words
Answer:
Negative 8 plus negative 6 equals negative fourteen.
Answer:
Negative eight plus negative six equals negative fourteen
A bedroom is 10 ft by 12 how much does it cost to wallpaper this room if the wallpaper costs 1.53 per ft?
If the room is 10 by 12 that means each wall is 10 by 12 (I'm assuming) so the area of each wall is 120 ft and since there are 4 of them the total area of the walls is 480 ft and if wallpaper costs 1.53 per ft, it costs 480 * 1.53 or $734.40
Hope this helps
Please help,ASAP I will give brainliest to the best first answerer, and a thanks; and a vote.
Angle K is bisected which means it is actually twice the shown angle.
Angle K = 22 x 2 = 44 degrees.
Angle H = Angle K = 44 degrees.
The sum of Angle G and J is 360 - 44 - 44 = 272 degrees
Angle G and J are identical, so angle G = 272 / 2 = 136
Angle G is also bisected, so angle 1 = 136 / 2 = 68 degrees.
The answer is C. 68
Which relation is a direct variation that contains the ordered pair (2,7)?
Answer:
D. [tex]y=\frac{7}{2}x[/tex]
Step-by-step explanation:
We are asked to find the equation, which represents the direct variation that contains the ordered pair (2,7).
When two quantities are proportional to each other, they are in form [tex]y=kx[/tex], where, k represents constant of variation.
Upon substituting [tex]y=7[/tex] and [tex]x=2[/tex] in above equation, we will get:
[tex]7=k\cdot 2[/tex]
Let us solve for k by dividing both sides by 2:
[tex]\frac{7}{2}=\frac{k\cdot 2}{2}[/tex]
[tex]\frac{7}{2}=k[/tex]
Therefore, our required equation would be [tex]y=\frac{7}{2}x[/tex] and option D is the correct choice.
For what value of a do the lines 5x–2y=3 and x+y=a intersect at a point on the y-axis?
PLS HELP, THX
Answer:
a = -3/2
Step-by-step explanation:
You can set x=0 and solve for y to find the y-intercept in each case.
first equation: y-intercept = -3/2
second equation: y-intercept = a
To make these equal, we must have ...
a = -3/2
Determine whether the limit exists or not
Answer:
B
Step-by-step explanation:
The limit of quotient of two functions is the quotient of their limits, provided that the limit in the denominator function is not zero:
[tex]\lim_{x\to x_0}\dfrac{g(x)}{h(x)}=\dfrac{ \lim_{x \to x_0} g(x) }{ \lim_{x \to x_0} h(x) }, \text{ where }\lim_{x \to x_0} h(x)\neq 0.[/tex]
In your case,
[tex]\lim_{x \to 4} h(x)=-2\neq 0,[/tex]
then
[tex]\lim_{x\to 4}\dfrac{g(x)}{h(x)}=\dfrac{ \lim_{x \to 4} g(x) }{ \lim_{x \to 4} h(x) } =\dfrac{0}{-2}=0.[/tex]
According to a flight statistics website, in 2009, a certain airline had the highest percentage of on-time flights in the airlines industry, which was 80.8%. Assume this percentage still holds true for that airline. Use the normal approximation to the binomial distribution to complete parts a through c below. a. Determine the probability that, of the next 30 flights from this airline, less than 20 flights will arrive on time. P(xless than20)equals 0.0140 (Round to four decimal places as needed.) b. Determine the probability that, of the next 30 flights from this airline, exactly 24 flights will arrive on time. P(xequals24)equals 0.1822 (Round to four decimal places as needed.) c. Determine the probability that, of the next 30 flights from this airline, 25, 26, 27, or 28 flights will arrive on time. P(25less than or equalsxless than or equals28)equals 0.4279 (Round to four decimal places as needed.)
Answer:
a) 0.0139; b) 0.1809; c) 0.4278
Step-by-step explanation:
We use a normal approximation to a binomial distribution for these problems.
The sample size, n, for each is 30; p, the probability of success, is 0.808. This makes the mean, μ = np = 30(0.808) = 24.24. The standard deviation,
σ = √(npq) = √(30(0.808)(1-0.808)) = √(30(0.808)(0.192)) = √4.65408 = 2.1573
For part a,
We are asked for P(X < 20). Using continuity correction to account for the discrete variable, we find
P(X < 19.5)
z = (19.5-24.24)/(2.1573) = -4.74/2.1573 = -2.20
Using a z table, we see that the area under the curve to the left of this is 0.0139.
For part b,
We are asked for P(X = 24). Using continuity correction, we find
P(23.5 < X < 24.5)
z = (23.5-24.24)/2.1573 = -0.74/2.1573 = -0.34
z = (24.5-24.24)/2.1573 = 0.26/2.1573 = 0.12
Using a z table, we see that the area under the curve to the left of z = -0.34 is 0.3669. The area under the curve to the left of z = 0.12 is 0.5478. The area between them is then
0.5478-0.3669 = 0.1809.
For part c,
We are asked to find P(25 ≤ X ≤ 28). Using continuity correction, we find
P(24.5 < X < 28.5)
z = (24.5-24.24)/2.1573 = 0.26/2.1573 = 0.12
z = (28.5-24.24)/2.1573 = 4.26/2.1573 = 1.97
Using a z table, we see that the area under the curve to the left of z = 0.12 is 0.5478. The area under the curve to the left of z = 1.97 is 0.9756. The area between them is 0.9756 - 0.5478 = 0.4278.
Evaluate the logarithm log 17 square root 17 (Picture provided)
Answer: option a.
Step-by-step explanation:
By definition we know that:
[tex]log_a(a^n)=n[/tex]
Where a is the base of the logarithm.
We also know that:
[tex]\sqrt{x}=x^{\frac{1}{2}}[/tex]
Then you can rewrite the logarithm given in the problem, as you can see below:
[tex]log_{17}(\sqrt{17})[/tex]
And keeping on mind the property, you obtain:
[tex]=log_{17}(17^{\frac{1}{2}})=\frac{1}{2}[/tex]
Therefore, you can conclude that the answer is the option a.
Answer:
The answer is 1/2 ⇒ answer (a)
Step-by-step explanation:
*The logarithm function is the inverse of the exponential function
- Ex: If 2³ = 8 ⇒ then [tex]log_{2}(8) = 3[/tex]
Vice versa : If [tex]log_{5}(125)=3[/tex] ⇒ 5³ = 125
* In logarithm function:
- If [tex]log_{a}a=1[/tex] because [tex]a^{1}=a[/tex]
- If [tex]log_{a}a^{n}=(n)log_{a}a=n[/tex]
∵ [tex]log_{17}\sqrt{17}=log_{17}(17)^{\frac{1}{2}}[/tex]
- √b = [tex]b^{\frac{1}{2}}[/tex]
∴ [tex]log_{17}(17)^{\frac{1}{2}}=\frac{1}{2}log _{17}(17)=\frac{1}{2}(1) = \frac{1}{2}[/tex]
∴ The answer is 1/2 ⇒ answer (a)
Find the following measure for this figure.
Area of circle =
6 square units
12 square units
36 square units
Answer: Last option.
Step-by-step explanation:
The formula for calculate the area of the circle is the shown below:
[tex]A_c=r^2\pi[/tex]
Where r is the radius of the circle.
As you can see in the figure attached, the radius of the circle is 6 units, then:
[tex]r=6units[/tex]
Therefore, when you substitute the value of the radius into the formula shown above, you obtain the following result:
[tex]A_c=(6\ units)^2\pi[/tex]
[tex]A_c=36\pi\ units^2[/tex]
Answer:
The correct answer is 36π square units
Step-by-step explanation:
Points to remember
Area of circle = πr²
Where r - radius of circle
From the figure we can see a circle with radius 5 units
To find the area of circle
Area = πr² = π * 6² = 36π square units
Area of given circle = 36π square units
Therefore the correct answer is 36π square units
The formula for throwing a baseball in the air is represented by h=-16t^2 + 12t + 40 where h is the height of the ball. After how many seconds will the ball hit the ground?
Answer:
The ball will hit the ground in 2 seconds
Step-by-step explanation:
The formula for throwing a baseball in the air is represented by :
h = -16t² + 12t + 40
where h is the height of the ball and t is the time in seconds
Now we need to find after how many seconds will the ball hit the ground
When the ball hits the ground the height of the ball is 0
⇒ -16t² + 12t + 40 = 0
⇒ 4t - 3t - 10 = 0
⇒ 4t² - 8t + 5t - 10 = 0
⇒ 4t(t - 2) + 5(t - 2) = 0
⇒ t cannot be negative so t = 2
Hence, The ball will hit the ground in 2 seconds
The ball will hit the ground after 2 seconds.
The formula for the height of a thrown baseball is given by:
h = -16[tex]t^{2}[/tex] + 12t + 40
where h is the height (in feet) and t is the time (in seconds).
To find the time when the ball hits the ground, we need to determine when the height h is equal to zero:
0 = -16[tex]t^{2}[/tex] + 12t + 40
Solving this quadratic equation using the quadratic formula:
The quadratic formula is: t = (-b ± √(b² - 4ac)) / 2a
For our equation, a = -16, b = 12, and c = 40. Plugging these values in:
b² - 4ac = 12² - 4(-16)(40) = 144 + 2560 = 2704t = ( -12 ± √2704 ) / 2(-16)t = ( -12 ± 52 ) / -32t = ( -12 + 52 ) / -32 = 40 / -32 ≈ -1.25 (negative time, not a valid solution)t = ( -12 - 52 ) / -32 = -64 / -32 = 2Thus, the ball will hit the ground at t = 2 seconds.
Note that we ignore the negative time value as it doesn’t represent a meaningful physical solution.
The expression c - 0.25 can be used to find th ecost of an item on sale for 25% off. Which expression is equaivalent to c - 0.25
The Answer is 0.0636 c
The graph of a quadratic function has a minimum at (0, 2). The graph contains the point (-3, 11). What is another point on the graph?
Answer:
Step-by-step explanation:
Graphs of quadratics are symmetrical about the vertex (minimum or maximum point).
The x value of the point (-3, 11) is 3 units to the left of the vertex (0, 2), the x value that is 3 units to the right of the vertex will have the same y value, so the point
(3, 11) is also on the graph
The quadratic function has a minimum at (0, 2) and includes the point (-3, 11). Solving for the function's equation, we find y = x² + 2, and another point on the graph is (1, 3).
Since the quadratic function has a minimum at (0, 2), it means the vertex form of the quadratic function is y = a(x - 0)² + 2, or simply y = ax² + 2. We know another point on the graph is (-3, 11), so we can use this point to find the value of 'a'.
Substitute the point (-3, 11) into the function: 11 = a(-3)² + 2.Simplify the equation: 11 = 9a + 2.Solving for 'a': 9a = 9 and a = 1.So, the equation of the quadratic function is y = x² + 2. To find another point on the graph, choose any x-value and compute the corresponding y-value. For example, let x = 1:
Thus, another point on the graph is (1, 3).
The questions are in the images pls answer all or your answer will be deleted because this is for a lot of points and im losing expert rank to post
1)
x + 2y = 21
+ -x + 3y = 29
--------------------------
5y = 50
y = 10
x + 2(10) =21
x = 1
2)
6x + 6y = 30
+ 15x - 6y = 12
-------------------------------
21x = 42
x = 2
6(2) + 6y = 30
6y = 18
y = 3
1. The solution to the system of equations is (x, y) = (1, 10)
2. the solution to the system of equations is (x, y) = (-2, 7)
3. the solution to the system of equations is (x, y) = (5, 3)
4. the solution to the system of equations is (x, y) = (6, 4)
5. the solution to the system of equations is (x, y) = (2, -3)
1. To solve the system of equations using elimination, you need to add the two equations to eliminate one of the variables. Here's how you can do it:
x + 2y = 21
-x + 3y = 29
Add the two equations together:
(x + 2y) + (-x + 3y) = 21 + 29
Now, simplify the equation:
(2y + 3y) = 50
Combine like terms:
5y = 50
Now, divide both sides by 5 to solve for y:
5y/5 = 50/5
y = 10
Now that you've found the value of y, substitute it back into either of the original equations to solve for x. Let's use the first equation:
x + 2(10) = 21
x + 20 = 21
Subtract 20 from both sides:
x = 21 - 20
x = 1
So, the solution to the system of equations is (x, y) = (1, 10). The correct answer is (1, 10).
2. 15x + 6y = 12
To solve this system of equations using elimination, you can follow these steps:
Multiply both sides of the second equation by 2 to make the coefficients of y in both equations equal:
2(15x + 6y) = 2(12)
30x + 12y = 24
Now you have the system:
6x + 6y = 30
30x + 12y = 24
Multiply the first equation by -5 to make the coefficients of x in both equations equal:
-5(6x + 6y) = -5(30)
-30x - 30y = -150
Now you have the system:
-30x - 30y = -150
30x + 12y = 24
Add the two equations to eliminate the x variable:
(-30x - 30y) + (30x + 12y) = (-150 + 24)
-18y = -126
Divide both sides by -18 to solve for y:
-18y / -18 = -126 / -18
y = 7
Now that you've found the value of y, substitute it back into the first equation to solve for x:
6x + 6(7) = 30
6x + 42 = 30
6x = 30 - 42
6x = -12
x = -12 / 6
x = -2
So, the solution to the system of equations is (x, y) = (-2, 7). The correct answer is (-2, 7).
3. Subtract the first equation from the second equation to eliminate the x variable:
(2x + 6y) - (2x + 2y) = 28 - 16
This simplifies to:
4y = 12
Divide both sides by 4 to solve for y:
4y / 4 = 12 / 4
y = 3
Now that you've found the value of y, substitute it back into the first equation to solve for x:
2x + 2(3) = 16
2x + 6 = 16
Subtract 6 from both sides:
2x = 16 - 6
2x = 10
Divide both sides by 2 to solve for x:
2x / 2 = 10 / 2
x = 5
So, the solution to the system of equations is (x, y) = (5, 3). The correct answer is (5, 3).
4. Multiply the second equation by -3 to make the coefficients of x in both equations equal:
-3(2x + y) = -3(8)
-6x - 3y = -24
Now you have the system:
2x - 3y = 0
-6x - 3y = -24
Add the two equations to eliminate the y variable:
(2x - 3y) + (-6x - 3y) = 0 - 24
This simplifies to:
-4x = -24
Divide both sides by -4 to solve for x:
-4x / -4 = -24 / -4
x = 6
Now that you've found the value of x, substitute it back into the first equation to solve for y:
2x - 3y = 0
2(6) - 3y = 0
12 - 3y = 0
Subtract 12 from both sides:
-3y = -12
Divide both sides by -3 to solve for y:
-3y / -3 = -12 / -3
y = 4
So, the solution to the system of equations is (x, y) = (6, 4). The correct answer is (6, 4).
5. To solve the system of equations using elimination, you can follow these steps:
Subtract the second equation from the first equation to eliminate the y variable:
(5x + 5y) - (5x - 5y) = -5 - 25
This simplifies to:
10y = -30
Divide both sides by 10 to solve for y:
10y / 10 = -30 / 10
y = -3
Now that you ve found the value of y, substitute it back into either of the original equations to solve for x. Let's use the first equation:
5x + 5(-3) = -5
5x - 15 = -5
Add 15 to both sides:
5x = -5 + 15
5x = 10
Divide both sides by 5 to solve for x:
5x / 5 = 10 / 5
x = 2
So, the solution to the system of equations is (x, y) = (2, -3). The correct answer is (2, -3).
Learn more about Solving systems of equations using elimination here:
https://brainly.com/question/29362376
#SPJ12
Triangle ABC is rotated counterclockwise using the origin as the center of rotation. The preimage and image are shown in the graph below.
Which rotation could have taken place?
a 90° rotation
a 135° rotation
a 225° rotation
a 315° rotation
Answer:
im not 100% sure but to me it looks like it could be 225
Answer:
The correct option is 3.
Step-by-step explanation:
From the given figure it is clear that the vertices of preimage are A(-4,-2), B(-2,1) and C(-2,-2).
Center of rotation is origin, i.e., (0,0).
Triangle ABC is rotated counterclockwise about the origin.
We need to find the angle of rotation.
Draw line segments OC and OC'. From the below figure it is clear that the angle of rotation counterclockwise about origin is
[tex]45^{\circ}+90^{\circ}+90^{\circ}=225^{\circ}[/tex]
Therefore the correct option is 3.
Rachel, Adam, Michelle, Hannah, and James are going to the movies. They have $65 to spend on tickets and snacks. Each movie ticket costs $9.50, and each snack item costs $4.50. How many snacks can they buy to split among them? This problem is modeled by the inequality 5(9.5) + 4.5x ? 65, which is equal to 47.5 + 4.5x ? 65. The first step in solving the inequality is to . The second step is to . The five friends will have to split snacks.
1. subtract 47.5 from both sides
2. divide both sides by 4.5
3. 3
Just did in edg
Answer:
1. By substitution property of inequality
5(9.5)+4.5[tex]\leq[/tex]65
2. By using multiplication in equality then we get
47.5+4.5x[tex]\leq[/tex]65
3. The five friends will have 3 snacks to split.
Step-by-step explanation:
Given
Five friends have total money= $65
Cost of each movie ticket= $9.50
Cost of each snack item= $4.50
Let ,five friends have total snacks = x
Total movie tickets=5
Because total number of friends=5
The inequality expressionis given by
I Step: [tex]5(9.5)+4.5x\leq 65[/tex]
Reason: By using substitution property of inequality
[tex]47.5+4.5x\leq 65[/tex
2. Step :[tex]4.5x[tex]\leq[/tex]65-47.5[/tex]
[tex]4.5x\leq 17.5[/tex] ( by subtarction 47.5 from both sides)
[tex]x\leq \frac{17.5}{4.5}[/tex] ( by dividing 4.5 on both sides )
[tex]x\leq 3.889[/tex] (by simplication)[tex]x=3[/tex]Because they can buy maximum 3 snacks .
Beacause the number of snacks is natural number so we can't take in rational numbers.
Hence, the five friends will have 3 snacks to split.What is an average rate of change for this exponential function for the interval from x=0 to x=2?
A. 4
B. 1.5
C. -4
D. -1.5
Answer:
b
Step-by-step explanation:
Answer:
b
Step-by-step explanation:
bc IM JUICE WRLD
A rectangle field has side lengths that measure 5/6 mile and 1/3 mile . What is the area of the field ?
Answer:
Step-by-step explanation:
A=l•w
=5/6•1/3
=5/18
A=0.28 mi²
A circle has a circumference of 28.2628.2628, point, 26 units. What is the diameter of the circle?
Answer:
8.28 units
Step-by-step explanation:
The formula for the circumference of a circle is [tex]C=\pi d[/tex]
where
[tex]C[/tex] is the circumference of the circle
[tex]d[/tex] is the diameter of the circle
We know form our problem that the circumference of our circle is 26.28 units, so [tex]C=28.26[/tex]. Let's replace that value in our formula and find [tex]d[/tex]:
[tex]C=\pi d[/tex]
[tex]26=\pi d[/tex]
Divide both sides of the equation by [tex]\pi[/tex]
[tex]\frac{26}{\pi } =\frac{\pi d }{\pi }[/tex]
[tex]\frac{26}{\pi } =d[/tex]
[tex]d=\frac{26}{\pi }[/tex]
[tex]d=8.28[/tex]
The diameter of the circle that has a circumference of 28.26 units is 8.28 units.
Answer:
The diameter of a circle is 9 units
Step-by-step explanation:
A circle has a circumference of 28.26
Let diameter of a circle be d unit.
Formula:
[tex]C=\pi d[/tex]
where, C=28.26
[tex]28.26=\pi d[/tex]
[tex]d=\dfrac{28.26}{\pi}[/tex]
[tex]d=8.995\approx 9[/tex]
Hence, The diameter of a circle is 9 units
How do you write 24% as a fraction, mixed number, or whole number in simplest form?
Answer:
but putting 24% in the calculator
Step-by-step explanation:
24% as a fraction: 6/25
24% as a mixed number: it just a fraction
24% as a whole number: 24
A leprechaun places a magic penny under a? girl's pillow. The next night there are 2 magic pennies under her pillow. Each night the number of magic pennies doubles. How much money will the girl have after 23 ?nights?
Doubling the number every night will result in 4,194,304. How can that girl possibly sleep now with all those magic pennies?
Answer: The girl will have $524.288 (524,288 pennies) after 19 nights.
Step-by-step explanation:
Hi, to answer this question we have to analyze the information given:
Each night the number of magic pennies doubles Nights passed: 23So, we have to write an exponential expression where the initial value (a) is 1, the multiplicative rate of growth (b) is 2, and the time period (x) is 19.
Mathematically speaking: (where "y” is the total money)
y = ab×
y = 1 x (2) ∧19 = 524,288 pennies
Since 1 dollar = 100 pennies,
524,288 / 100 = $524.288
The girl will have $524.288 (524,288 pennies) after 19 nights.
A rectangle has a length this is three times its width. If the area of the rectangle is 27 square feet, what are the dimensions of the rectangle
Answer:
The width of the rectangle is 3 and the width is 9. Those are reasonable measurements.
Step-by-step explanation:
The graph of y= -4x + 7 is
Answer:
See attachment.
Step-by-step explanation:
The equation of the function is
[tex]y=-4x+7[/tex]
The slope of this function is
[tex]m=-4[/tex] and the y-intercept is [tex]c=7[/tex].
This implies that the graph of the straight line passes through (0,7).
Let us also find the x-intercept by putting y=0 into the equation.
[tex]0=-4x+7[/tex]
[tex]-7=-4x[/tex]
Divide through by -4.
[tex]\Rightarrow x=\frac{7}{4}[/tex]
Therefore the graph also passes through [tex](\frac{7}{4},0)[/tex].
We plot these two points and draw a straight line through them.
How is a colloid distinguished from a solution or a suspension
Answer:
The difference is in which in way that they can be separated.
Step-by-step explanation:
While all three of these include mixtures of two or more things, a suspension can typically be re-separated by using a centrifuge and a solution can be filtered out. A colloid on the other hand, cannot typically be separated after it is put together.
How can I use scaling to help predict the product of a number and I fraction
To start off scaling is another way of saying resizing the numbers --
Example: "1" on paper means "10" in real life --
To predict a product of a number/fraction using scaling, you would compare the size of a product on the basis of the size of the other.
Most scaling is used in maps or something to do with rulers
I hope this helps!!
Multiply the polynomials (7a – 7) and (2a2 – a + 5). Simplify the answer. Show your work.
Answer: [tex]=14a^3-21a^2+42a-35[/tex]
Step-by-step explanation:
You can multiply the polynomials by applying the Distributive property.
It is important to remember the Product of powers property, which states that:
[tex](b^a)(b^c)=b^{(a+c)[/tex]
Where b is the base and a and c are exponents.
It is also important to remember the multiplication of signs:
[tex](-)(-)=+\\(+)(+)=+\\(+)(-)=-[/tex]
Then:
Each term inside of the first parentheses must multiply each term inside of the second parentheses:
[tex](7a-7)(2a^2-a+5)=(7a)(2a^2)+(7a)(-a)+(7a)(5)+(-7)(2a^2)+(-7)(-a)+(-7)(5)\\\\=14a^3-7a^2+35a-14a^2+7a-35[/tex]
Finally, add like terms:
[tex]=14a^3-21a^2+42a-35[/tex]
what are the values of the function y = neg2x - 4 for x= 0,1, 2 and 3?
A) 0, neg 6, neg 8 , neg 10
B) neg 4, neg 6 , neg 8 , neg 10
C) neg 4, neg 2, 0 , 2
D) 0 , 6 , 8 , 10
PLEASE HURRY NO WORK NEEDED
Answer:
It is B.
Step-by-step explanation:
Substitute x = 0 into the function
y = -2(0) - 4 = -4
x = 1:
y = -2(1) - 4 = -6.
x = 2 and 3 give y = -8 and - 10.
Answer:
The correct answer is B.
Step-by-step explanation:
Solve the following system
Solve for the first variable in one of the equations, then substitute the result into the other equation.
Point form:
(3,2), (3-2), (-3,2), (-3,-2)
Equation Form:
x = 3, y = 2.
x = 3, y = -2.
x = -3, y = 2.
x = -3, y = -2.
Hope this is helpful. <33
f the equation of a circle is (x - 2)2 + (y - 6)2 = 4, it passes through point ______. (2, 8) (5, 6) (-5, 6) (2, -8)
Answer:
(2, 8).
Step-by-step explanation:
(x - 2)^2 + (y - 6)^2 = 4
If x = 2 and y = 8 we have:
(2 - 2)^2 + (8 - 6)^2
= 0 + (2^2
= 4.
So it passes through the point (2,8).
The point through which the circle passes is:
(2,8)
Step-by-step explanation:The equation of the circle is given by:
[tex](x-2)^2+(y-6)^2=4[/tex]
We will check by putting each point in the equation and check which is equal to 4.
1)
(2,8)
when x=2 and y=8 we have:
[tex](2-2)^2+(8-6)^2=4\\\\i.e.\\\\0^2+2^2=4\\\\i.e.\\\\4=4[/tex]
Hence, the circle passes through the point (2,8).
2)
(5,6)
when x=5 and y=6 we have:
[tex](5-2)^2+(6-6)^2=4\\\\i.e.\\\\3^2+0^2=4\\\\i.e.\\\\9=4[/tex]
which is not true.
Hence, the circle does not pass through (5,6).
3)
(-5,6)
when x= -5 and y=6 we have:
[tex](-5-2)^2+(6-6)^2=4\\\\i.e.\\\\(-7)^2+0^2=4\\\\i.e.\\\\49=4[/tex]
which is not true.
Hence, the circle does not pass through (-5,6).
4)
(2,-8)
when x=2 and y= -8 we have:
[tex](2-2)^2+(-8-6)^2=4\\\\i.e.\\\\0^2+(-14)^2=4\\\\i.e.\\\\196=4[/tex]
Hence, the circle does not passes through the point (2,-8).
If one leg of a 45-45-90 triangle is 12 cm, find the length of the hypotenuse.
A) 12 cm
B) 24 cm
C) 12[tex]\sqrt{2[/tex]
D) 24[tex]\sqrt{2[/tex]
It’s the third one C)