What is the concentration of nitrate ion in a 425 mL solution containing 32.0 g of Mg(NO3)2 (M = 148.3)?

Answers

Answer 1

Answer:

[tex]M=1.02M[/tex]

Explanation:

Hello,

In this case, we compute the concentration as the molarity of the nitrate ion as the ratio between the nitrate ion moles and the volume of the solution as shown below:

[tex]M_{NO_3^-}=\frac{n_{NO_3^-}}{V_{solution}}[/tex]

Now, the nitrate ion moles are computed considering that in mole of magnesium nitrate, there are two moles of the nitrate ion:

[tex]n_{NO_3^-}=32.0gMg(NO_3)_2*\frac{1molMg(NO_3)_2}{148.3gMg(NO_3)_2}*\frac{2molNO_3^-}{1molMg(NO_3)_2}\\n_{NO_3^-}=0.432molNO_3^-[/tex]

Finally, the requested molarity turns out into:

[tex]M_{NO_3^-}=\frac{0.432molNO_3^-}{0.425L}\\M=1.02M[/tex]

Best regards.

Answer 2

Final answer:

To calculate the nitrate ion concentration, convert the mass of magnesium nitrate to moles, convert volume to liters, determine the molarity of magnesium nitrate, and then multiply by 2, since each formula unit yields two nitrate ions. The concentration of nitrate ion is 1.0146 M.

Explanation:

The student is asking how to calculate the concentration of nitrate ion in a solution with a known volume and mass of magnesium nitrate. We can start by finding the molarity of magnesium nitrate and then use stoichiometry to determine the concentration of nitrate ions.

First, convert the mass of Mg(NO3)2 to moles:

Moles of Mg(NO3)2 = mass (g) / molar mass (g/mol)

32.0g / 148.3g/mol = 0.2156 mol

Next, convert the volume from mL to L:

425 mL * (1L / 1000 mL) = 0.425 L

Now calculate the molarity of the Mg(NO3)2 solution:

Molarity (M) = moles / volume (L)

0.2156 mol / 0.425 L = 0.5073 M

Each unit of Mg(NO3)2 gives two nitrate ions, so the concentration of nitrate ion is:

Concentration of NO3- = 2 × molarity of Mg(NO3)2

2 × 0.5073 M = 1.0146 M

Therefore, the concentration of nitrate ion in the solution is 1.0146 M.


Related Questions

which of the following statements correctly describes boyle's law

Answers

Answer:

A law stating that the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature.

Explanation:

Final answer:

Boyle's Law states that the pressure and volume of a gas are inversely proportional at constant temperature, described mathematically as PV = k.

Explanation:

The Boyle's Law correctly describes the relationship between pressure and volume of a gas. At a constant temperature, for a given mass of confined gas, the pressure (P) and the volume (V) are inversely proportional, which can be mathematically expressed as PV = k, where k is a constant for the given mass and temperature of the gas. This means that if the volume decreases, the pressure increases proportionally and vice versa, provided the temperature stays the same.

a sample of gas with a mass of 1.70 g occupies a volume of 961 ml at a pressure of 728 torr and a temperature of 21°C. what is the molar mass of the gas?

Answers


n = PV / RT = 733 torr *0.961 L / 62.363 L torr K^-1 mol^-1 * 294 K = 0.038419617 mol 

What is the value of a in the following nuclear reaction? 238 92u→234 90th azx

Answers

Final answer:

In the nuclear reaction of Uranium-238 decaying into Thorium-234, an alpha particle (He) with a mass number of 4 and atomic number of 2 is emitted. Uranium-235 contains 92 protons and 143 neutrons.

Explanation:

The nuclear reaction presented is 238 92U → 234 90Th + 4 2He. Here, we see Uranium-238 decaying into Thorium-234 and an alpha particle, which is identical to a helium nucleus with a mass number of 4 and an atomic number of 2. The original equation given in the question lacks the alpha particle (He), but by understanding the law of conservation of mass and charge, we can deduce the identity of the missing particle.

An isotope of uranium with an atomic number of 92 and a mass number of 235 will thus contain 92 protons, as the atomic number defines the number of protons in an atom's nucleus. To find the number of neutrons, we subtract the atomic number from the mass number: 235 - 92 = 143 neutrons.

what is the common name of the group whose members are characterized by endoskeleton and a unique water vascular system
a. Medusas
b. Echinoderms
c. Brachiopods
d. Tunicates

need now worth 25 points if correct will give the brainly-est

Answers

The correct answer for this question would be option B. The common name of the group whose members are characterized by endoskeleton and a unique water vascular system are called the  Echinoderms. Examples of echinoderms are starfish, sea urchin, feather stars and sea cucumbers. Hope this is the answer that you are looking for.

Answer:

answer b

Explanation:

What is the molarity of a 5.00 x 10^2 ml solution containing 21.1 g of potassium bromide (KBr) if the molar mass of KBr is 119.0 g/mol?

Answers

* number of moles :

1 mole KBr -------------- 119.0 g
? moles KBr ------------- 21.1 g

21.1 x 1 / 119.0 => 0.1773 moles

Volume in liters:

5.00 x 10² mL / 1000 => 0.5 L

Therefore:

M = moles KBr / volume

M = 0.1773 / 0.5

= 0.3546 M
Final answer:

The molarity of a 5.00 x 10² mL solution containing 21.1 g of potassium bromide (KBr) is 0.354 M, calculated by converting the mass of KBr to moles and then dividing by the volume of the solution in liters.

Explanation:

To find the molarity of a 5.00 x 10² mL solution containing 21.1 g of potassium bromide (KBr), you will need to use the definition of molarity, which is moles of solute per liter of solution (mol/L). The molar mass of KBr is given as 119.0 g/mol. First, convert the mass of KBr to moles by dividing by the molar mass:

21.1 g ÷ 119.0 g/mol = 0.177 moles of KBr

Next, convert the volume of the solution from milliliters to liters:

5.00 x 10² mL = 0.500 L

Now, you can calculate the molarity by dividing the moles of KBr by the volume of the solution in liters:

0.177 moles ÷ 0.500 L = 0.354 M

The molarity of the potassium bromide solution is 0.354 M.

Learn more about Molarity Calculation here:

https://brainly.com/question/15948514

#SPJ2

If 6.89 g of CuNO3 is dissolved in water to make a 0.460 M solution, what is the volume of the solution?

Answers

3.67  grams is the volume of the solution

To find the volume of a 0.460 M solution of CuNO₃ made from 6.89 g of CuNO₃, you calculate the number of moles and use the molarity formula, resulting in approximately 119 mL of solution.

To solve this problem, follow these steps:

Determine the molar mass of CuNO₃:

Cu: 63.55 g/mol

N: 14.01 g/mol

O: 16.00 g/mol (3 atoms, so 16.00 g/mol × 3 = 48.00 g/mol)

Molar mass of CuNO₃ = 63.55 + 14.01 + 48.00 = 125.56 g/mol.

Find the number of moles of CuNO₃⁺:

Number of moles = mass / molar mass = 6.89 g / 125.56 g/mol ≈ 0.0549 mol.

Use the molarity formula to find the volume of the solution:

M = moles of solute / volume of solution (in liters)

0.460 M = 0.0549 mol / volume

Volume = 0.0549 mol / 0.460 M ≈ 0.119 L (or 119 mL).

Therefore, the volume of the solution is approximately 119 mL.

• What would you predict if you used a starch solution instead of the protein?

Answers

Final answer:

Using a starch solution instead of a protein in an experiment would yield different results because proteins and starch have different biochemical properties.

Explanation:

If you used a starch solution instead of a protein, different biochemical reactions would occur, as they differ fundamentally in their nature. Proteins are made up of amino acids, while starch is a polysaccharide composed of glucose units. As such, they interact differently with various substances. For instance, if you perform a Iodine test, the results would vary: iodine reacts with starch to give a blue-black colour, but it shows no color change with proteins. Likewise with the Biuret's test, you would obtain a negative result with starch but a positive (purple color) with proteins.

Learn more about starch solution here:

https://brainly.com/question/30031313

Balance this nuclear reaction by supplying the missing nucleus: 249/98 Cf +__ --> 263/106 Sg +4 1/0 n

Answers

Answer: the missing nucleus is an isotope of oxygen 18/8 O

Explanation:

Since the reacting mass must be equal to the resulting mass

That is right hand side must be equal to the left

We check the total number of reacting moles in the equation

On the right hand we have 267/106

On the left hand side we have 249+x/98+x

Equation both we have

249+ x/98+y = 267/106

Therefore x = 18

y = 8

This is an isotope of oxygen

Final answer:

To balance the nuclear equation, we must find a nucleus whose addition will make the mass and atomic numbers equal on both sides. The missing nucleus is an oxygen isotope, 18/8 O, which balances the equation to 249/98 Cf + 18/8 O → 263/106 Sg + 4 1/0 n.

Explanation:

The student's question is asking to balance a nuclear reaction by supplying the missing nucleus in the given reaction. After analyzing the reaction 249/98 Cf +__ → 263/106 Sg + 4 1/0 n, we can see that the mass numbers (top numbers) and atomic numbers (bottom numbers) need to be balanced on both sides of the equation. In order to balance the equation, we need to add the missing mass number and atomic number from the left side to match the total on the right side.

To balance this equation, note that the sum of the mass numbers on the right side (seaborgium-263 plus four neutrons) is 263 + (4 × 1) = 267, while the mass number on the left side of the equation is 249 for the californium (Cf) nucleus. The missing mass number is therefore 267 - 249 = 18. Similarly, the sum of the atomic numbers on the right side (seaborgium-106 plus zero from the neutrons) is 106, and the atomic number on the left is 98 for the californium nucleus. The missing atomic number is 106 - 98 = 8.

Therefore, the missing nucleus must have a mass number of 18 and an atomic number of 8, which corresponds to an oxygen nucleus, 18/8 O. The balanced nuclear equation is 249/98 Cf + 18/8 O → 263/106 Sg + 4 1/0 n.

A compound is 54.53% C, 9.15% H, and 36.32% O by mass. What is its empirical formula?

Answers

Hope it cleared your doubt

Calculate ΔH∘ in kilojoules for the reaction of ammonia NH3 (ΔH∘f=−46.1kJ/mol) with O2 to yield nitric oxide (NO) (ΔH∘f=91.3 kJ/mol) and H2O(g) (ΔH∘f=−241.8kJ/mol), a step in the Ostwald process for the commercial production of nitric acid.

4NH3(g)+5O2(g)→4NO(g)+6H2O(g)

Answers

Answer: [tex]\Delta H^o[/tex] for the given reaction is -901.2 kJ.

Explanation: Enthalpy of the reaction is the amount of heat released or absorbed in a given chemical reaction.

Mathematically,

[tex]\Delta H_{rxn}=\Delta H_f_{(products)}-\Delta H_f_{(reactants)}[/tex]

For  given reaction:

[tex]4NH_3(g)+5O_2(g)\rightarrow 4NO(g)+6H_2O(g)[/tex]

[tex]H_f_{(NH_3)}=-46.1kJ/mol[/tex]

[tex]H_f_{(O_2)}=0kJ/mol[/tex]

[tex]H_f_{(H_2O)}=-241.8kJ/mol[/tex]

[tex]H_f_{(NO)}=-91.3kJ/mol[/tex]

[tex]\Delta H_{rxn}=[6\Delta H_f_{(H_2O)}+4\Delta H_f_{(H_2O)}-[4\Delta H_f_{(NH_3)}+5\Delta H_f_{(O_2)}][/tex]

Putting values in above equation, we get:

[tex]\Delta H_{rxn}=[6mol(-241.8kJ/mol)+4mol(91.3kJ/mol)]-[4mol(-46.1kJ/mol)+5mol(0kJ/mol)][/tex]

[tex]\Delta H_{rxn}=-901.2kJ[/tex]

Final answer:

To calculate ΔH∘ for the reaction, we need to use the given ΔH∘f values for the reactants and products. By finding the difference between the sum of the standard enthalpies of formation of the products and reactants, we can calculate ΔH∘.

Explanation:

To calculate the standard enthalpy change (ΔH°) for a reaction, we need to use the given standard enthalpy of formation (ΔH°f) values for the reactants and products. We'll start by determining the sum of the standard enthalpies of formation of the products and reactants, and then find the difference to calculate ΔH°. For the given reaction:

4NH3(g) + 5O2(g) → 4NO(g) + 6H2O(g)

ΔH° = (4ΔH°f(NO) + 6ΔH°f(H2O)) - (4ΔH°f(NH3) + 5ΔH°f(O2))

Substituting the given ΔH°f values into the equation, we get:

ΔH° = (4 * 91.3 kJ/mol + 6 * -241.8 kJ/mol) - (4 * -46.1 kJ/mol + 5 * 0 kJ/mol)

Simplifying the equation, we find:

ΔH° = 603.4 kJ/mol

Learn more about Enthalpy here:

https://brainly.com/question/32882904

#SPJ11

what are radial wave function and angular wave function

Answers

The part of a wave function that depends on the angles theta and phi when the Schrodinger wave equation is expressed in spherical polar coordinates Radical wave function is the part of the wave function that depends only on the distance r when the Schrodinger wave equation is expressed in spherical polar coordinates
Final answer:

The radial wave function represents the radial behavior of the electron, while the angular wave function describes the orientation and shape of the electron orbital.

Explanation:

The radial wave function and angular wave function are components of the wave function in quantum mechanics.

The radial wave function, denoted by R, depends only on the radial coordinate r and represents the probability density of finding an electron at a certain distance from the nucleus. It is responsible for the radial behavior of the electron.

The angular wave function, denoted as φ (phi), depends on the polar angle θ (theta) and azimuthal angle φ (phi). It describes the orientation and shape of the electron orbital.

A microwave oven produces energy waves with wavelengths that are

A.shorter than visible light
B.longer than visible light
C.the same length as visible light
D.not part of the electromagnetic spectrum

Answers

longer than visable light

A) longer than visible light

3.15 g of an unknown gas at 35 °C and 1.10 atm is stored in a 1.85-L flask. What is the density of the gas? what is the molar mass of the gas?

Answers

ensity: 
(1.05 g) / (1.45 L) = 0.724 g/L 

Answer:

[tex]M=39.1g/mol[/tex]

[tex]\rho=1.70g/L[/tex]

Explanation:

Hello,

In this case, one uses the ideal gas equation:

[tex]PV=nRT[/tex]

By solving for moles in terms of mass and molar mass one obtains:

[tex]PV=\frac{m}{M}RT\\M=\frac{mRT}{PV} =\frac{3.15g*0.082 \frac{atm*L}{mol*K} *(35+273)K}{1.10atm*1.85L} \\M=39.1g/mol[/tex]

On the other hand, the density is easily computed as shown below:

[tex]\rho=\frac{m}{V}=\frac{3.15g}{1.85L}=1.70g/L[/tex]

Best regards.

A sample of gas of 752 torr and occupies a volume of 5.12 L. What will the new volume be when the pressure is increased to 1.5 ATM

Answers

 7.80 hop it help u ok

According to Boyle's law and as 1 atmosphere= 760 torr the new volume when pressure is increased to 1.5 atmospheres is 3.37 L.

What is Boyle's law?

Boyle's law is an experimental gas law which describes how the pressure of the gas decreases as the volume increases. It's statement can be stated as, the absolute pressure which is exerted by a given mass of an ideal gas is inversely proportional to its volume provided temperature and amount of gas remains unchanged.

Mathematically, it can be stated as,

P∝1/V or PV=K. The equation states that the product of of pressure and volume is constant for a given mass of gas and the equation holds true as long as temperature is maintained constant.

According to the equation the unknown pressure and volume of any one gas can be determined if two gases are to be considered.That is,

P₁V₁=P₂V₂

Substitution in above equation gives V₂=0.989×5.12/1.5=3.37 L.

Thus, the new volume of gas is 3.37 L.

Learn more about Boyle's law,here:

https://brainly.com/question/1437490

#SPJ2

modify methionine, below to show its zwitterion form.

How do I make Methionine into a zwitterion?

Answers

Explanation :

Zwitter ion : An ion or molecule having separate negatively and positively charged groups.

Methionine is an amino acid with sulfur atom in its molecule .The proton from carboxylic group with get attached to amino group present in the methionine and negative charge will be generated on oxygen atom of a carboxylic group which will get in conjugation with an another oxygen atom of the carboxylic group.

The positive charge will generated on the nitrogen atom due  attachment of the proton from the carboxylic group.

As shown in the image attached.



To form the zwitterion of methionine, the amino group gains a proton to become -NH₃⁺, while the carboxyl group loses a proton to become CO²⁻, resulting in a molecule with no overall electrical charge.

To convert methionine to its zwitterion form, you need to recognize the conditions under which amino acids typically exist as zwitterions. The zwitterion form of an amino acid has both a positive charge and a negative charge, but the overall molecule is electrically neutral. Methionine, which has the chemical formula CH₃SCH₂CH₂CH(NH₂)CO₂H, will have its amino group (-NH₂) gain a proton to become -NH₃⁺, and the carboxyl group (CO₂H) lose a proton to become CO²⁻. This results in a molecule with a positively charged ammonium (NH₃⁺) at one end and a negatively charged carboxylate (CO²⁻) at the other, thus forming the zwitterion.

At the biological pH of approximately 7.4, or the isoelectric point of methionine, the molecule will adopt this zwitterionic form naturally. It's important to note that methionine is the only common amino acid with sulfur in its side chain (R group). As with alanine and other amino acids, this zwitterionic form is more soluble in water, has a high melting point, and is less soluble in nonpolar solvents.

a 1.1 mole sample of Kr has a volume of 371mL. How many moles of Kr are in a 2.85L sample at the same temperature and pressure

Answers

Moles of Kr is 7.68 moles.

A balloon is floating around outside. The temperature outside is -19 Celsius, and the air pressure is 0.800 ATM. Your neighbor, who released the balloon, tell you that he filled it with 4.50 moles of gas. What is the volume of gas inside this balloon

Answers

I don't have my data booklet handy but this question seems like it can be solved by manipulating the formula PV=nRT

So I would convert .800 atm into Kpa, then turn -19 to Kelvin by adding 273 which gives you . R is a constant represented by 8.314 and n is the moles that you have which is 4.50

when you manipulate the formula you can put it a V=nRT÷P
plug in 4.50 for n, 8.314 for R and 254 for T (what your temperature is in Kelvin)
change your atm to Kpa and you can solve for volume ...

P.S this is the ideal gas law so all units should be put in in their proper form, IE; Volume in litres, "n" in moles, R as 8.314, Temperature in Kelvin, and P in KPA

When 1.187 g of a metallic oxide is reduced with excess hydrogen 1.054 g of the metal is produced. what is the metallic oxide?

Answers

Answer: The metallic oxide formed will be [tex]Cu_2O[/tex]

Explanation:

We are given a metallic oxide, having general chemical formula [tex]M_2O_n[/tex]

We are given:

Mass of metallic oxide = 1.187 g

Mass of metal = 1.054 g

Mass of oxygen = 1.187 - 1.054 = 0.133 g

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]     .......(1)

Given mass of oxygen = 0.133 g

Molar mass of oxygen = 16 g/mol

Putting values equation 1, we get:

[tex]\text{Moles of oxygen}=\frac{0.133g}{16g/mol}=0.0083mol[/tex]

Number of moles of metal in the oxide is twice than the number of moles of oxygen

Number of moles of metal = [tex](2\times 0.0083)=0.0166[/tex] moles

Now, calculating the molar mass of metal by using equation 1, we get:

Moles of metal = 0.0166 moles

Mass of metal = 1.054 g

Putting values in equation 1, we get:

[tex]0.0166mol=\frac{1.054g}{\text{Molar mass of metal}}\\\\\text{Molar mass of metal}=\frac{1.054g}{0.0166mol}=63.49g/mol[/tex]

The metal having 63.49 g/mol as molar mass is copper

Hence, the metallic oxide formed will be [tex]Cu_2O[/tex]

How many grams of carbon are present in 45.0 g of CCl4?

Answers

Final answer:

To find the grams of carbon in 45.0 g of CCl4, calculate the molar mass of CCl4, convert the mass of CCl4 to moles, and then multiply the moles of carbon by the molar mass of carbon. The result is 3.513 grams of carbon.

Explanation:

To calculate the grams of carbon in 45.0 g of CCl4, we first need to determine the molar mass of CCl4. Carbon tetrachloride (CCl4) consists of one carbon atom and four chlorine atoms. The atomic mass of carbon (C) is approximately 12.01 g/mol, and the atomic mass of chlorine (Cl) is approximately 35.45 g/mol. So, the molar mass of CCl4 can be calculated as follows:

Molar mass of CCl4 = (1 × 12.01 g/mol) + (4 × 35.45 g/mol)

= 12.01 g/mol + 141.80 g/mol

= 153.81 g/mol.

Next, convert the mass of CCl4 to moles:

Moles of CCl4 = 45.0 g / 153.81 g/mol

= 0.2927 moles of CCl4.

Since there is one carbon atom in each molecule of CCl4, the moles of carbon are equal to the moles of CCl4. Now multiply the moles of carbon by the molar mass of carbon to get the grams:

Grams of Carbon = 0.2927 moles × 12.01 g/mol

= 3.513 grams of carbon.

How many unpaired electrons would you expect on aluminum in aluminum oxide.?

Answers

In aluminum (III) oxide [tex](\(Al_2O_3\))[/tex], aluminum has a +3 oxidation state, resulting in the loss of all its valence electrons. Hence, aluminum in [tex]\(Al_2O_3\)[/tex] has zero unpaired electrons, contributing to its diamagnetic properties.

In aluminum (III) oxide[tex](\(Al_2O_3\))[/tex], each aluminum atom has a +3 oxidation state. Aluminum's electron configuration [tex](\(1s^22s^22p^63s^23p^1\))[/tex] suggests one unpaired electron, but in the +3 oxidation state, it loses all three valence electrons. Thus, aluminum in [tex]\(Al_2O_3\)[/tex] has zero unpaired electrons because all its valence electrons are lost when it forms ions. Consequently, no unpaired electrons contribute to its magnetic properties, making it diamagnetic. Therefore, the number of unpaired electrons on aluminum in aluminum (III) oxide is 0.

Complete Question :

How many unpaired electrons would you expect on aluminum in aluminum (III) oxide. Enter an integer.

Add electron dots and charges as necessary to show the reaction of calcium and oxygen to form an ionic compound.

Answers

well you have to have energy levels. once those energy levels are done you have electrons to put on them. only 2 on the first level then eight and eight on the third level. and more on next levels.
Final answer:

Calcium (Ca) donates two electrons to become Ca2+, and oxygen (O) each accepts an electron to become O2-. The Ca2+ and O2- ions combine in a 1:1 ratio to form the electrically neutral ionic compound, CaO, known as calcium oxide.

Explanation:

Let's consider the Lewis symbols for each element to show the reaction of calcium and oxygen forming an ionic compound. Calcium (Ca), with an atomic number of 20, has two electrons in its outermost shell. Oxygen (O), with an atomic number of 8, has six electrons in its outermost shell and needs two more to achieve a full octet.

During the reaction, calcium donates its two electrons, one each going to two separate oxygen atoms. This results in calcium becoming a Ca2+ ion, losing its two outermost electrons. Upon receiving an electron, each oxygen atom becomes an O2- ion. The formation of these ions can be illustrated with Lewis symbols and arrows:

[Ca] 0 → [Ca]2+ + 2[e-]
[O]0 + [e-] → [O]2-

The positive charge of the calcium ion and the negative charges of the oxygen ions attract each other, and as a result, they come together to form the ionic compound calcium oxide, CaO. Since the ratio between Ca2+ and O2- needs to be 1:1 to balance the charges, the final compound formula is simply CaO, showing the combination of one calcium ion with one oxygen ion.

Palmitic acid C16H32O2 is a dietary fat found in beef and butter. The caloric content of palmitic acid is typical of fats in general.

Part A
Write a balanced equation for the complete combustion of palmitic acid. Use \rm H_2O(l) in the balanced chemical equation because the metabolism of these compounds produces liquid water.
Express your answer as a chemical equation. Identify all of the phases in your answer.

Answers

C16H32O2(aq) --> 16CO2(g) + 16H2O(l) ... said its wrong though? 
This is because you haven't added any oxygen needed for the combustion, so your equation does'nt balance. Also a solution in water [aq] doesn't burn! 
Try C16H32O2(s) + 23O2(g) --> 16CO2(g) + 16H2O(l) 

Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.

Explanation:

Combustion is a type of chemical reaction in which substance burns under the presence of oxygen or in other words reaction of hydrocarbon with oxygen to produce water and carbondioxide.

Palmitic acid when undergoes combustion it gives carbondioxide and water.

The balanced chemical  equation is given as:

[tex]C_{16}H_{32}O_2(s)+23O_2(g)\rightarrow 16CO_2(g)+16H_2O(l)[/tex]

According to stoichiometry, when 1 mol of palmitic acid reacts with 23 moles of oxygen to give 16 moles of carbondioxide and 12 moles of water.

Which of the following is not true of chemical changes?

A chemical change rarely occurs at the molecular level.
Flammability and decomposition are examples of chemical changes.
Chemical changes involve a rearrangement of atoms to form new substances.
Chemical changes can often be identified by clues such as formation of a gas or a solid and a release of heat.

Answers

They rarely occur at molecular levels is incorrect, actually they always occur at molecular levels

Answer: Option (a) is the correct answer.

Explanation:

At molecular level there will be need of energy always for breaking or making of chemical bonds. Therefore, a chemical change will always occur at molecular level.

Thus, we can conclude that out of the given options, the statement a chemical change rarely occurs at the molecular level is not true of chemical changes.  

A circuit contains two devices that are connected in parallel. If the resistance of one of these devices is 12 ohms and the resistance of the other device is 4 ohms, the total resistance of the two devices is

Answers

16 ohms is the answer to this question

Answer:

16 oms

Explanation: 12+4 +16

Atoms in molecules share pairs of electrons when they make what type of bonds?

Answers

ionic bonds; they make ionic bonds.

One loss mechanism for ozone in the atmosphere is the reaction with the ho2 radical what is the rate law expression

Answers

it turns unto h2o and then back into water

One loss mechanism for ozone in the atmosphere is the reaction with the HO₂ radical is Rate = k[O₃][HO₂]. The correct option is a.

The link between the rate of a chemical reaction and the concentrations of the reactants is described by the rate law expression.

In this instance, the ozone and HO₂ radical concentrations have a direct correlation with the rate of reaction.

A rate constant is denoted by the letter "k." As a result, Rate = k[O₃][HO₂] is the rate law equation for this reaction.

It shows that the ozone and HO₂ radical concentrations have a direct correlation with the rate of the reaction.

Thus, the correct option is a.

For more details regarding rate of reaction, visit:

https://brainly.com/question/13693578

#SPJ4

Your question seems incomplete, the probable complete question is:

One loss mechanism for ozone in the atmosphere is the reaction with the ho2 radical what is the rate law expression

a) Rate = k[O3][HO2]

b) Rate = k[O3]^2[HO2]

c) Rate = k[O3][HO2]^2

d) Rate = k[O3]^2/[HO2]

An ideal gas is contained in a cylinder with a volume of 5.0×102 mL at a temperature of 30. ºC and a pressure of 710. torr. The gas is then heated to a temperature of 820. ºC. What is the new pressure of the gas in atmospheres (atm)?

Answers

Final answer:

To find the new pressure of an ideal gas after heating, we use the combined gas law. The initial temperature and pressure are converted to Kelvins and atmospheres respectively, and then the formula is applied to give a new pressure of approximately 3.038 atm after heating the gas to 820.0 °C.

Explanation:

To determine the new pressure of an ideal gas after heating, we can use the combined gas law, which states that (P1 x V1) / T1 = (P2 x V2) / T2, where P is pressure, V is volume, and T is temperature in Kelvins. Given that volume remains constant (as the gas remains in the same cylinder) and considering the temperature change from 30.0 °C to 820.0 °C, we just need to convert these temperatures into Kelvins by adding 273.15 and calculate the new pressure.

Convert the initial temperature to Kelvins: T1 = 30.0 °C + 273.15 = 303.15 K
Convert the final temperature to Kelvins: T2 = 820.0 °C + 273.15 = 1093.15 K

Convert the initial pressure to atmospheres: P1 = 710 torr × (1 atm / 760 torr) ≈ 0.934 atm

Now apply the combined gas law: P2 = (P1 × T2) / T1
P2 = (0.934 atm × 1093.15 K) / 303.15 K ≈ 3.038 atm

Therefore, the new pressure of the gas after heating to 820.0 °C is approximately 3.038 atm.

Many amines with useful medicinal properties are sold as their ammonium salts true or false

Answers

true Many amines with useful medicinal properties are sold as their ammonium salts this is infact true

Calculate the equilibrium constant for each of the reactions at 25 ∘C. 2Fe3+(aq)+3Sn(s)→2Fe(s)+3Sn2+(aq)

Answers

Final answer:

Equilibrium constants are calculated using thermodynamic data such as standard free energy changes and standard cell potentials, which are then related to the equilibrium constant at a specific temperature using the formula ΔG° = -RTlnK.

Explanation:

The calculation of equilibrium constants for chemical reactions requires the use of thermodynamic data, such as standard free energy changes (ΔG°) or standard cell potentials (E°cell). The relationship between the standard free energy change and the equilibrium constant (K) at a given temperature (T) is given by the equation ΔG° = -RTlnK, where R is the universal gas constant and T is the temperature in Kelvin.

For a reaction such as 2Fe3+(aq) + 3Sn(s) → 2Fe(s) + 3Sn2+(aq), the standard free energy change ΔG° can be calculated from the standard reduction potentials of the half-reactions involved. The equilibrium constant K is then calculated using the aforementioned relationship. If ΔG° is negative, the reaction is spontaneous, and at equilibrium, there will be a greater concentration of products than reactants. Conversely, if ΔG° is positive, the reaction is non-spontaneous, and reactants will predominate at equilibrium.

To determine the equilibrium constant for a solubility product (Ksp), like for FeF2 (s), the concentration of the ions at equilibrium is calculated, considering that the product of the ion concentrations raised to the power of their respective stoichiometric coefficients in the dissolution reaction equals the Ksp. This assessment is key for predicting whether a precipitate will form when solutions containing different ions are mixed.

Final answer:

The equilibrium constant for a chemical reaction can be calculated using standard free energy change and the relationship K = e^{-ΔG°/RT}, or by using standard cell potentials through the equation ΔG° = -nFE°.

Explanation:

The question asks to calculate the equilibrium constant for a chemical reaction at 25 °C. The equilibrium constant, denoted as K, is a dimensionless number that provides a measure of the extent to which a reaction will proceed at a given temperature. The calculation of K often involves using the standard free energy change (ΔG°) and the relationship given by the equation K = e^{-ΔG°/RT}, where R is the universal gas constant and T is the temperature in Kelvin. To determine ΔG° for a reaction, one may need to reference thermodynamic data for the formation of compounds and elements involved in that reaction.

Standard cell potentials can also be used to calculate the equilibrium constant as they are related to the free energy change through the equation ΔG° = -nFE°, where F is Faraday's constant, E° is the standard cell potential, and n is the number of moles of electrons transferred in the reaction.

if the column of water in the water barometer rose to a height of 33 feet, what would the atmospheric pressure be in mm Hg?



Answers

Final answer:

A column of water that is 33 feet high in a water barometer would indicate normal atmospheric pressure, which is equivalent to a column of mercury that is 760 mm high.

Explanation:

In physics, we use tools like the barometer to measure atmospheric pressure. The atmospheric pressure is measured by the height to which a column of liquid, such as mercury or water, rises. If it's a water barometer, normal atmospheric pressure will support a column of water over 10 meters high, but since mercury (Hg) is denser, it only needs to be 1/13.6 as tall as a water barometer.

A standard atmospheric pressure of 1 atm at sea level (101,325 Pa) corresponds to a column of mercury that is about 760 mm high. So if the column of water rose to a height of 33 feet (approximately 10 meters), this would suggest a pressure equivalent to the normal atmospheric pressure.

However, we have to convert the height in a barometer containing mercury because of its density relative to water. We know water is 13.6 times less dense than mercury. Therefore, to find the height in a mercury barometer, we would need to divide the height of water by 13.6. So, 33 feet of water would be equivalent to 760 mm (29.92 inches) of mercury.

Learn more about Barometer here:

https://brainly.com/question/35887661

#SPJ11

Other Questions
Can someone please help me with A. Really need it Which nation was able to broker an armistice agreement between North and South Korea, ending the fighting? FTC is an acronym for the Federal Trade Commission.Question 2 options:TrueFalse Which of the following is a disadvantage to using equations? Check all that apply. A.Without a table or graph, you might forget what an equation represents. B.They have to be used alone. C.They are always the most difficult to use. D.Equations are not possible with complicated problems. The graph shows the cost for each lawn that is mowed.What does the rate of change represent in this situation?Select the choices to correctly complete the sentence.The rate of change represents A) The number of lawns moved for every 1 dollarB) The cost for every 1 lawn movedC) The amount of lawns moved every hour Do memories hinder or help people in their effort to learn from the past and succeed in the present? What imaginary line is located at 0 longitude?EquatorNorth PolePrime MeridianSouth Pole He walked with a limp whenever he saw a pretty girl approaching. a. adjective b. adverb laborers who built the central Pacific Railroad were immigrants from what country another term for the amish pennsylvania 5 letter Which is a characteristic of a strong base?? What is the relationship between self-regulation and behavior modification? a. self-regulation is the process that enables individuals to accomplish behavior modification goals. b. self-regulation is an internal form of behavior modification, which is generally external. c. self-regulation is about understanding the self, while behavior modification is about changing others. d. self-regulation is a responsibility, while behavior modification is a optional luxury. Consult Multiple-Concept Example 5 in preparation for this problem. The velocity of a diver just before hitting the water is -10.5 m/s, where the minus sign indicates that her motion is directly downward. What is her displacement during the last 1.17 s of the dive? You own a bond with a 6 percent coupon rate and a yield to call of 6.90 percent. the bond currently sells for $1,070. if the bond is callable in five years, what is the call premium of the bond? What is 2/4 times 8/11 Which answer is an equation in point-slope form for the given point and slope? Point: (1,9); Slope:5y - 1 = 5(x + 9)y + 9 = 5(x - 1)y - 9 = 5(x - 1)y - 9 = 5(x + 1)Think the answer is C. DO NOT JUST AGREE WITH ME I think I'm wrong. Thanks to whoever is going to answer. I will be marking the best answer the brainliest answer. Expand 2x (3x+2y) Thanks Over which area inside the church is bernini's baldacchino placed? Tabatha we shooting free throws in gym class she completed nine of the shots which was the third of four more than Joan completed what is the number of free throws the Joan completed What inductance l would be needed to store energy e=3.0kwh (kilowatt-hours) in a coil carrying current i=300a?