What is Δn for the following equation in relating Kc to Kp?SO3(g) + NO(g) ↔ SO2(g) + NO2(g)12-20-1

Answers

Answer 1

Answer:

0

Explanation:

The relation between Kp and Kc is given below:

[tex]K_p= K_c\times (RT)^{\Delta n}[/tex]

Where,  

Kp is the pressure equilibrium constant

Kc is the molar equilibrium constant

R is gas constant

T is the temperature in Kelvins

Δn = (No. of moles of gaseous products)-(No. of moles of gaseous reactants)

For the first equilibrium reaction:

[tex]SO_3_{(g)}+NO_{(g)}\rightleftharpoons SO_2_{(g)}+NO_2_{(g)}[/tex]

Δn = (2)-(2) = 0

Thus, Kp is:

[tex]K_p= Kc\times \times (RT)^{0}[/tex]

[tex]K_p= Kc[/tex]

Answer 2

Final answer:

The Δn represents the difference in moles of gaseous products and reactants for a reaction when relating Kc to Kp. For the reaction SO3(g) + NO(g) ↔ SO2(g) + NO2(g), Δn would be 0. Kp is related to Kc by the equation Kp = Kc(RT)Δn.

Explanation:

The question relates to the concept of the reaction quotient (Δn) when relating the equilibrium constants Kc (equilibrium constant in terms of concentration) to Kp (equilibrium constant in terms of partial pressure) for a given chemical reaction involving gases. The value of Δn is the difference in the sum of the moles of gaseous products and the sum of the moles of gaseous reactants in a balanced chemical equation. In the example given:

[tex]SO_{3}[/tex] (g) + NO(g) ↔ [tex]SO_{2}[/tex] (g) + [tex]NO_{2}[/tex] (g), Δn would be (1 + 1) - (1 + 1) = 0.

1[tex]N_{2}[/tex](g) + [tex]2H_{2} O[/tex](g) ↔ 2NO(g) + [tex]2H_{2}[/tex] (g), Δn would be (2 + 2) - (1 + 2) = 1.

To relate Kc and Kp, we use the equation Kp = Kc(RT)Δn, where R is the gas constant and T is the temperature in Kelvins. In cases where Δn is zero, as in the first equation, Kp will be equal to Kc because (RT)0 equals 1.


Related Questions

The electron cloud of HF is smaller than that of F2, however, HF has a much higher boiling point than F2 has. Which of the following explains how the dispersion-force model of intermolecular attraction does not account for the unusually high boiling point of HF?

A. F2 is soluble in water, whereas HF is insoluble in water.
B. The F2 molecule has a greater mass than the HF molecule has.
C. Liquid F2 has weak dispersion force attractions between its molecules, whereas liquid HF has strong ionic interactions between H+ and F- ions.
D. Liquid F2 has weak dispersion force attractions between its molecules, whereas liquid HF has both weak dispersion force attractions and hydrogen bonding interactions between its molecules.

Answers

Answer:D

Explanation:

The high boiling point of HF is not attributable to the dispersion forces mentioned in the question. In HF, a stronger attraction is in operation, that is hydrogen bonding. This ultimately accounts for the high boiling point and not solely the dispersion model as in F2.

Final answer:

The unusually high boiling point of HF compared to F2 is due to the strong hydrogen bonding interactions between HF molecules.

Explanation:

The correct answer is D. Liquid F2 has weak dispersion force attractions between its molecules, whereas liquid HF has both weak dispersion force attractions and hydrogen bonding interactions between its molecules. Dispersion forces are a type of intermolecular force that occurs between all molecules, regardless of polarity.

However, these forces are generally weaker than other types of intermolecular forces such as hydrogen bonding. In HF, the significant electronegativity difference between hydrogen and fluorine leads to the formation of a polar covalent bond, which makes the HF molecules capable of hydrogen bonding, a stronger intermolecular force.

This hydrogen bonding results in a much higher boiling point for HF as compared to F2, which can only interact with other F2 molecules via relatively weaker dispersion forces.

Learn more about boiling point of HF vs F2 here:

https://brainly.com/question/27900455

#SPJ11

Consider the following isotopic symbol: 137Ba2+
a. Explain how to find the number of protons
b. Explain how to find the number of electrons
c. Explain how to find the number of neutrons
d. The atomic number is not shown in the symbol. Why isn't it needed?
e. How would you write the name of this isotope?
f. Is the 137 the atomic mass or the mass number? Explain your answer.​

Answers

Answer:

a) 56 protons

b) 54 electrons

c) 81 neutrons

d) The sum of protons and neutrons is shown. The number of protons is always the same. So we can calculate the number of neutrons ( and also the isotopes)

e)137Ba (with 56 protons and 81 neutrons)

f) atomic mass is 136.9 u ; the mass number is the sum of protons and neutrons and is 137

Explanation:

Step 1: Data given

137 Ba2+ is an isotope of barium. The atomic number of barium( and its isotopes) is 56. This shows the number of protons.

For a neutral atom, the number of protons is equal to the number of electrons.

The different isotopes of an element have the same number of protons but a different number of neutrons.

137Ba2+ has 56 protons (this is the same as the atomic number)

137Ba2+ has 54 electrons ( since it's Ba2+, this means it has 2 electrons less than protons, that's why it's charged +2)

137Ba2+ has 81 neutrons ( 137 - 56 = 81)

In the symbol, the atomic number is not shown. The sum of the protons and neutrons is shown. (Since the number of protons is the same for every isotope, we can calculate the number of neutrons that way. By knowing the neutrons, we also know the isotope.

This isotope is 137Ba

Atomic mass is also known as atomic weight. The atomic mass is the weighted average mass of an atom of an element based on the relative natural abundance of that element's isotopes.

The atomic mass of 137Ba2+ is 136.9 u

The mass number is a count of the total number of protons and neutrons in an atom's nucleus.

The mass number of 137Ba2+ is 137

During a sunset, molecules interact with light and scatter all but which colors?

A.green
B.red
C.blue
D.purple

Answers

Answer:

B.red

Explanation:

Electromagnetic spectrum is range of the frequencies and their respective wavelengths of the various type of the electromagnetic radiation.

In order of the decreasing wavelength the spectrum are:  

Red , Orange, Yellow, Green, Blue, Indigo, Violet

Increasing wavelength is the opposite trend. Thus, The longest visible wavelength is red and the shortest is violet.

Also, Violet light gets scattered the most while the red light gets scattered the least.

During the time of the sunset, the Earth is rotating away from the Sun. Thus, most of the light colors scatters in the ways and the color that least scatter which is red reaches the Earth.

That's why, at the time of sunrise and sunset, the sky looks red.

Select the set of quantum numbers that represents each electron in a ground‑state Be atom. n = 2 , ???? = 0 , m ???? = 0 , m s = − 1 2 n = 1 , ???? = 0 , m ???? = 0 , m s = + 1 2 n = 2 , ???? = 0 , m ???? = 0 , m s = + 1 2 n = 2 , ???? = 1 , m ???? = 0 , m s = − 1 2 n = 1 , ???? = 0 , m ???? = − 1 , m s = + 1 2 n = 1 , ???? = 0 , m ???? = 0 , m s = − 1 2 n = 2 , ???? = 0 , m ???? = 0 , m s = − 1 n = 2 , ???? = 1 , m ???? = 1 , m s = + 1 2

Answers

Answer:

n: 1, ℓ: 0, ml: 0, ms:+1/2

n: 1, ℓ: 0, ml: 0, ms:-1/2

n: 2, ℓ: 0, ml: 0, ms:+1/2

n: 2, ℓ: 0, ml: 0, ms:-1/2

Explanation:

Beryllium has 4 electrons and its electron configuration is 1s² 2s².

The principal quantum number (n) describes the level of energy. Then, the first two electrons have n = 1, and the second 2 electrons have n = 2.

The azimuthal number (ℓ) describes the subshell of energy. All the 4 electrons are in s subshells, which correspond to ℓ = 0.

The magnetic quantum number (ml) describes the orbital of the subshell. The s subshell has only 1 s orbital, so the only possible value for ml is 0.

The spin quantum number (ms) describes the spin of the electron and can take 2 values: +1/2 or -1/2.

Considering these rules, the quantum numbers for these 4 electrons are:

n: 1, ℓ: 0, ml: 0, ms:+1/2

n: 1, ℓ: 0, ml: 0, ms:-1/2

n: 2, ℓ: 0, ml: 0, ms:+1/2

n: 2, ℓ: 0, ml: 0, ms:-1/2

The nuclide As-76 has a half-life of 26.0 hours. If a sample of As-76 weighs 344 g, what mass of As-76 remains after 538 minutes?271 g67.8 g144 g437 g251 g

Answers

Answer:

271g

Explanation:

The full explanation is seen in the image attached. See the solution below for details

For the decomposition of hydrogen peroxide in dilute sodium hydroxide at 20 °C 2 H2O2(aq)2 H2O(l) + O2(g) the following data have been obtained: [H2O2], M 8.92×10-2 4.72×10-2 2.50×10-2 1.32×10-2 time, min 0 9.63 19.3 28.9 The average rate of disappearance of H2O2 over the time period from t = 0 min to t = 9.63 min is -4.36x10^-3 M min-1.

Answers

Answer:

K= 0.06611

Explanation: The rate of reaction is defined as the change in concentration of any of reactant or products per unit time. From the given reaction, the rate of reaction may be equal to the rate of disappearance of reactant which is equal to the rate of appearance of products.

The average rate of disappearance of H2O2 over the time period from t=0 min at 8.92×10^-2 to t=9.63min at 4.72×10^-2 is given as -4.36×10^-3Mmin-1.

We can say:

•The initial concentration [H2O2]o is 8.92×10^-2M

•The concentration at time t. [H2O2]t is 4.72×10^-2

•The time (t) is 9.63 min

The expression of rate constant for a first order reaction is shown as

K=2.303/t log[H2O2]o/ [H2O2]t

Substitute the values of t, [H2O2]o and [H2O2]t in the equation of rate constant.

K=2.303/9.63 log [8.92×10^-2]/ [4.72×10^-2]

K= 0.2391 (log 8.92×10^-2 - log 4.72×10^-2)

K= 0.2391 [-1.0496-(-1.3261)]

K= 0.2391 (-1.0496+1.3261)

K= 0.2391 (0.2765)

K= 0.06611

Since the value of k is almost constant, the decomposition of H2O2 is a first order reaction.

The total volume in milliliters of a glucose-water solution is given by the equation below: V = 1001.93 + 111.5282m + 0.64698m^2 where m is the molality of the solution. a. The partial molar volume of glucose, is? b. Find the partial molar volume of glucose in a 0.100m solution of glucose in water.

Answers

Answer:

a. Vₐ = 111.5282 + 1.29396m

b. For m = 0.100m; Vₐ = 111.6576

Explanation:

The partial molar volume of compound A in a mixture of A and B is defined as :

[tex]V_a = \frac{dV}{dn_a}[/tex]

Where V is volume and n are moles of a.

a. As molality is proportional to moles of substance, partial molar volume of glucose can be defined as:

Vₐ =  dV / dm =  d(1001.93 + 111.5282m + 0.64698m²) / dm

Vₐ = 111.5282 + 1.29396m

b. Replacing for m = 0.100m:

Vₐ = 111.5282 + 1.29396×0.100

Vₐ = 111.6576

I hope it helps!

Final answer:

The partial molar volume of glucose is calculated by taking the derivative of the volume-molality equation and then evaluating at a specific molality (0.100m). The result is 111.657596 mL/mol for the partial molar volume of glucose in a 0.100m solution.

Explanation:

The question asks us to calculate the partial molar volume of glucose and then find its value in a 0.100m glucose-water solution. The partial molar volume (denoted as ϕV/ϕm) represents the change in total volume (V) with respect to the change in molality (m) of the solution, holding the amount of solvent constant. This can be computed by taking the derivative of the volume equation with respect to m:

V = 1001.93 + 111.5282m + 0.64698m2

The first derivative will yield the expression for the partial molar volume:

(ϕV/ϕm) = 111.5282 + 2×0.64698m

To calculate the partial molar volume of glucose in a 0.100m solution, simply substitute 0.100 for m in the derived expression:

(ϕV/ϕm) = 111.5282 + 2×0.64698×0.100 = 111.5282 + 0.129396 = 111.657596 mL/mol

Note that to find the mass of the solvent, water, in the solution, a calculation is needed using the molarity and density of the solution. Knowing that the mass of glucose and molality conversions are essential for such calculations, and realizing that glucose's molar mass is needed to find the mass of glucose from its molar amount.

Nitrogen and oxygen can react to form various compounds.
Two experiments showed that one compound is formed when 3.62 g of nitrogen and 2.07 g of oxygen react completely, while another compound is formed when 1.82 g of nitrogen reacts completely with 4.13 g of oxygen.

Which of the following are most likely the molecular formulas for the nitrogen oxides obtained in these experiments?(1) NO, N2O(2) NO, NO2(3) N2O, N2O5(4) NO, N2O4(5) N2O, N2O4

Answers

Answer:

5- N20 and N2O5

Explanation:

Full working is shown in the image attached. It is important to remember that NO2 dimerizes to N2O4 while N2PO occurs as monomers.

Place the following in order of decreasing X-A-X bond angle, where A represents the central atom and X represents the outer atoms in each molecule.CS2 CF4 SCl2CS2 > SCl2 > CF4CF4 > SCl2 > CS2CF4 > CS2 > SCl2CS2 > CF4 > SCl2SCl2 > CF4 > CS2Step by Step

Answers

Answer:

[tex]CS_{2}[/tex] > [tex]CF_{4}[/tex] > [tex]SCl_{2}[/tex]

Explanation:

The X-A-X bond angle means the angle between the surrounding 'X' atoms and the central 'A' atom. The compound [tex]CS_{2}[/tex] has two bond pairs and it is linear in shape. Its bond angle is 180 degrees. The compound [tex]CF_{4}[/tex] has four bond pairs and it is tetrahedral in shape. Its bond angle is 109.5 degrees. The compound [tex]SCl_{2}[/tex] has a bond angle of approximately 109.5 degrees. Therefore the decreasing order of bond angle is:

[tex]CS_{2}[/tex] > [tex]CF_{4}[/tex] > [tex]SCl_{2}[/tex]

The correct order of decreasing X-A-X bond angle is CS2 > CF4 >SCl2.

What is bond angle?

The term bond angle refers to the dihedral angle that exists between two atoms that are bonded to the same central atom. Usually, the central atom is the least electronegative atom of the three.

Looking at the compounds involved, we will see that the correct order of decreasing X-A-X bond angle, where A represents the central atom and X represents the outer atoms in each molecule is CS2 > CF4 >SCl2.

Learn more about bond angle: https://brainly.com/question/17960050

A block of aluminum with m = 0.5 kg, T = 20oC is dropped into a reservoir at a temperature of 90oC. Calculate (a) the change in stored energy (ΔE), (b) the amount of heat transfer (Q), (c) the change in entropy (ΔS), (d) the amount of entropy transfer by heat and (e) the entropy generation (Sgen,univ) in the system's universe during the heat transfer process.

Answers

Explanation:

The given data is as follows.

     m = 0.5 kg,     [tex]T = 20^{o}C[/tex],     [tex]T_{2} = 90^{o}C[/tex]

It is known that specific heat of aluminium is 0.91 kJ/kg.

As we know that,   dQ = dU + dw

where,     dQ = heat transfer

                dU = change in internal energy

                dw = work transfer

For the given system, work transfer "w" is 0.

(a)    Hence, change in stored energy will be calculated as follows.

               Q = [tex]mC \Delta T[/tex]

                   = [tex]0.5 \times 0.91 \times (90 - 20)[/tex]

                   = 31.85 kJ

(b)    The amount of heat transferred will be equal to change in stored energy.

So,              dQ = Q = 31.85 kJ

(c)     Change in entropy will be calculated as follows.

                dS = [tex]mC ln \frac{T_{2}}{T_{1}}[/tex]          

                      = [tex]0.5 \times 0.91 \times ln \frac{90}{20}[/tex]

                      = 0.684 kJ/K

(d)     Entropy transfer by heat will be calculated as follows.

             [tex]\Delta S = \frac{dQ}{dT}[/tex]

                          = [tex]\frac{31.85}{(20 + 273)}[/tex]

                          = 0.1087 kJ/K

(e)    Entropy change will be calculated as follows.

              Entropy change = entropy transfer + entropy generation

           [tex]S_{2} - S_{1} = \frac{dQ}{T} + S^{o}_{gen}[/tex]

            0.684 kJ/K = 0.187 + [tex]S^{o}_{gen}[/tex]

                  [tex]S^{o}_{gen}[/tex] = 0.5752 kJ/K

Suppose caffeine has a partition coefficient of 2.5 between dichloromethane and water (2.5/1 = dichloromethane/water). You are given a solution of 10 grams of caffeine dissolved in 100 mL water. You extract your caffeine solution 1 x 100 mL dichloromethane, and evaporate your dichloromethane layer. How much caffeine would you expect to isolate?A) 8.0 grams B) 7.5 grams C) 7.1 grams D) 6.5 grams E) 2.9 grams

Answers

Answer: Option (C) is the correct answer.

Explanation:

It is given that partition coefficient between dichloromethane and water is 2.5. Let us assume that "x" grams of caffeine is present in 100 ml.

Hence, find the value of x as follows.

          2.5 = [tex]\frac{\frac{x}{100}}{\frac{(10 - x)}{100}}[/tex]

            x = 25 - 2.5x

           x = 7.14

or,        x = 7.1

Therefore, we can conclude that caffeine extracted is 7.1 grams.

When can a hypothesis be elevated to the status of a theory?

Answers

Answer:

A hypothesis can be described as a tentative statement which can be proved either right or wrong through scientific experiments. If a hypothesis is tested again and again and every time the experiments give the same results, then the hypothesis can take the form of a theory. However, a theory is subjected to change if new researches are made which can annul it.  For a theory to be formed, there should be enough explanation behind the phenomenon along with the experiments.

In a separate experiment beginning from the same initial conditions, including a temperature Ti of 25.0°C, half the number of moles found in part (a) are withdrawn while the temperature is allowed to vary and the pressure undergoes the same change from 25.7 atm to 4.10 atm. What is the final temperature (in °C) of the gas?

Answers

Final answer:

The problem involves physics principles, specifically the ideal gas law. To solve for the final temperature of a gas when pressure changes and the number of moles is halved from an initial condition, the relationship between pressure and temperature must be considered. However, the type of process (isothermal, isobaric, adiabatic) must be known for an accurate calculation.

Explanation:

The student's question involves finding the final temperature of a gas when the pressure changes and the number of moles is reduced by half, starting from an initial temperature (Ti) of 25.0°C. This problem can be solved by applying the ideal gas law and the concept that, for a given amount of gas, the pressure is directly proportional to the temperature (P ∝ T) when volume and the number of moles are constant. Given the initial conditions and the pressure change from 25.7 atm to 4.10 atm, the process is not specified as isothermal, isobaric, or adiabatic; therefore, additional details from the context of the part (a) of the experiment would be required to provide a comprehensive solution.

To find the final temperature based on the given information, one would have to assume the same type of process that occurred in part (a), where volume doubled and pressure got halved. If we assume a similar relationship between temperature and pressure as was demonstrated before, where if the pressure is halved from 2.50 atm, the temperature must also be halved from 303.15 K, we could calculate the final temperature for the new conditions by adjusting for the fact that the number of moles was halved. However, without explicit mention of whether this happens in an isothermal, isobaric, or adiabatic process, a direct calculation cannot be provided here.

Exactly 1.0 lb Hydrone, an alloy of sodium with lead, yields (at 0.0°C and 1.00 atm) 2.6 ft3 of hydrogen when it is treated with water. All the sodium reacts according to the following reaction: 2 Na 1 2 H O() 8n 2 NaOH(aq) 1 H (g) in alloy 2 2 and the lead does not react with water. Compute the per- centage by mass of sodium in the alloy.

Answers

Answer:

The percentage by mass of sodium in the alloy is 33.29%.

Explanation:

Volume of hydrogen gas = [tex]V = 2.6 ft^3=73.6237 L[/tex]

[tex]1 ft^3=28.3168 L[/tex]

Pressure of hydrogen gas = P = 1 atm

Temperature of the gas = T = 0.0°C =273.15 K

Moles of hydrogen gas = n

[tex]PV=nRT[/tex] (Ideal gas)

[tex]n=\frac{PV}{RT}=\frac{1atm \times 73.6237 L}{0.0821 atm L/mol K\times 273.15 K}[/tex]

n = 3.2830 mole

Moles of hydrogen gas = 3.280 mole

[tex]2 Na(s) +2H_2O(l)\rightarrow 2NaOH(aq)+ H_2 (g)[/tex]

According to reaction 1 mole of hydrogen is obtained from 2 moles of sodium.

Then 3.280 moles of hydrogen gas will be obtained from :

[tex]\frac{2}{1}\times 3.280 mol=6.566 mol[/tex]

Mass of 6.566 moles of sodium =

6.566 mol × 23 g/mol = 151.02 g

Mass of hydrone = 1.0 lb = 453.592 g

The percentage by mass of sodium in the alloy:

[tex]\frac{151.02 g}{ 453.592 g}\times 100=33.29\%[/tex]

Write a balanced chemical equation, including physical state symbols, for the decomposition of solid sodium azide (NaN3) into solid sodium and gaseous dinitrogen. Suppose 22.0 L of dinitrogen gas are produced by this reaction, at a temperature of 11.0 C and pressure of exactly 1 atm. Calculate the mass of sodium azide that must have reacted.

Answers

Answer:

39g

Explanation:

Details of the solution is shown below. From the information provided regarding the N2 produced, we could calculate the amount of N2 produced and use that to find the mass of sodium azide reacted.

The balanced chemical equation for the decomposition of solid sodium azide (NaN3) is 2 NaN3(s) = 2 Na(s) + 3 N2(g). Using the ideal gas law, we can calculate the number of moles of dinitrogen gas produced, which is 1.07 mol. From the balanced equation, we find that 1 mole of NaN3 decomposes to produce 3 moles of N2. Therefore, the mass of sodium azide that reacted is 23.40 g.

The balanced chemical equation for the decomposition of solid sodium azide (NaN3) into solid sodium and gaseous dinitrogen is:

2 NaN3(s) → 2 Na(s) + 3 N2(g)


Given that 22.0 L of dinitrogen gas are produced by this reaction at a temperature of 11.0°C and a pressure of exactly 1 atm, we can use the ideal gas law to calculate the number of moles of dinitrogen gas produced:

n = PV / RT = (1 atm)(22.0 L) / (0.0821 atm·L/mol·K)(11.0°C + 273.15 K) = 1.07 mol

From the balanced chemical equation, we can see that 1 mole of NaN3 decomposes to produce 3 moles of N2. Therefore, the number of moles of NaN3 that reacted is 1.07 / 3 = 0.36 mol.

To calculate the mass of sodium azide that must have reacted, we can use the molar mass of NaN3 which is 65.01 g/mol:

mass = moles × molar mass = 0.36 mol × 65.01 g/mol = 23.40 g

Learn more about Decomposition of Sodium Azide here:

https://brainly.com/question/21264860

#SPJ6

A solid is hard brittle and electrically nonconducting. it's melt ( the liquid form of the substance) and an aqueous solution containing the substance conduct electricity. classify solid.

Answers

Answer: ionic solid

Explanation:

In an ionic solid, the ions are bound together by strong electrostatic attraction hence they are immobile and the solid is unable to conduct electricity. If this solid is dissolved in water, the ions move apart due to solvation and become mobile hence the solution conduts electricity. Similarly, when the solid melts, the ions also become free and the melt conduct electricity.

Final answer:

A solid that is hard, brittle, does not conduct electricity in solid form but does in liquid form or when dissolved in water, and has a high melting point is classified as an ionic solid.

Explanation:

The characteristics of the solid described are indicative of an ionic solid. These solids are typically hard and brittle, and they have high melting points. As a solid, ionic compounds do not conduct electricity because the ions are locked in place within the crystal lattice and thus cannot move freely. When these compounds melt, however, the ionic lattice breaks down and the ions are free to move, allowing the liquid to conduct electricity.

Similarly, when an ionic compound is dissolved in water, it dissociates into ions, which are free to move in the solution, making the solution an electrical conductor. This is because an electrolyte is present, which is a substance that contains free ions and can behave as an electrical conductor.

Compute the radius r of an impurity atom that will just fit into an FCC octahedral site in terms of the atomic radius R of the host atom, and compute the radius r of an impurity atom that will just fit into an BCC tetrahedral site in terms of the atomic radius R.

Answers

Answer:

FCC: r = 0.414R

BCC: r = 0.291R

Explanation:

For an FCC unit cell, the interstitial site is located at the middle of the edge. An atom that can occupy the interstitial site will have a diameter of 2*r. And we know that:

2*r = a - 2*R        equation (1.0)

a = [tex]2*\sqrt{2}*R[/tex]

Therefore, substituting the expression for 'a' in equation (1.0)

2*r =  [tex]2*\sqrt{2}*R[/tex] - 2*R

r = R*([tex]2\sqrt{2} - 2[/tex])/2 = 0.414R

For a BCC unit cell, there is a right-angle triangle formed by 3 arrows. Using the triangle, we have:

[tex]\frac{a^{2} }{2} +\frac{a^{2} }{4} = (R+r)^{2}[/tex]        equation (2.0)

a = [tex]\frac{4R}{\sqrt{3} }[/tex]

replacing the expression for a in equation (2.0), we have:

[tex]\frac{4R^{2} }{2\sqrt{3} } + \frac{4R^{2} }{4\sqrt{3} } = R^{2} + 2Rr + r^{2}[/tex]

Further simplification and rearrangement, the expression above is simplified to:

[tex]r^{2} + 2Rr - 0.667R^{2} = 0[/tex]

Solving the above quadratic equation, we have:

[tex]r = \frac{-2R - 2.582R}{2}or\frac{-2R + 2.582R}{2}[/tex]

r = - 2.291R or 0.291 R

Since the value of r can only be positive, the correct answer is r = 0.291R

Final answer:

To find the radius of an impurity atom in a FCC octahedral site, use the length of the face diagonal and the atomic radius of the host atom. For a BCC tetrahedral site, consider the relationship between the cation and anion radii.

Explanation:

In an FCC structure, the radius of an impurity atom that will just fit into an octahedral site can be calculated using the length of the face diagonal and the atomic radius of the host atom. The length of the diagonal is equal to four times the host atom radius, so we can use this information to find the radius of the impurity atom.

For a BCC structure, the radius of an impurity atom that will just fit into a tetrahedral site can be calculated by considering the relationship between the cation and anion radii. The cation radius is typically a certain percentage of the anion radius, and this information can be used to determine the radius of the impurity atom.

Learn more about Calculating impurity atom radii in FCC and BCC structures here:

https://brainly.com/question/35351972

#SPJ12

How will an increase in temperature affect each of the following equilibria? How will a decrease in the volume of the reaction vessel affect each?
(a) 2NH3(g) ⇌ N2(g)+3H2(g) ΔH = 92kJ

(b) N2(g) + O2(g) ⇌ 2NO(g) ΔH =181kJ

(c) 2O3(g) ⇌ 3O2(g) ΔH = − 285kJ

(d) CaO(s) + CO2(g) ⇌ CaCO3(s) ΔH = − 176kJ

Answers

Final answer:

An increase in temperature shifts an endothermic reaction to the right and an exothermic reaction to the left. For the reduced volume, it shifts the equilibriums to the side with the fewer moles of gas.

Explanation:

The effect of an increase in temperature on the given equilibrium systems depends on the sign of Delta H (ΔH), which represents the heat of reaction. For (a) 2NH3(g) ⇌ N2(g)+3H2(g) with ΔH = 92kJ and (b) N2(g) + O2(g) ⇌ 2NO(g) with ΔH = 181kJ, because these reactions are endothermic (ΔH is positive), an increase in temperature will shift the equilibrium towards the right to absorb the excess heat. On the other hand, reactions (c) 2O3(g) ⇌ 3O2(g) with ΔH = - 285kJ and (d) CaO(s) + CO2(g) ⇌ CaCO3(s) with ΔH = - 176kJ are exothermic (ΔH is negative), an increase in temperature will shift the equilibrium to the left to offset the increase in heat.

Learn more about Le Chatelier's Principle here:

https://brainly.com/question/29009512

#SPJ2

Increasing temperature generally shifts endothermic reactions to the right and exothermic reactions to the left. Decreasing volume typically shifts equilibria towards the side with fewer moles of gas. Each reaction's equilibrium shift depends on its enthalpy change (ΔH) and the moles of gases involved.

(a) 2NH₃(g) ⇌ N₂(g) + 3H₂(g) ΔH = 92kJ

Increase in temperature: The reaction is endothermic (ΔH is positive), so an increase in temperature will shift the equilibrium to the right, favoring the formation of N₂ and H₂.Decrease in volume: Decreasing the volume increases pressure. Since there are more moles of gas on the right side, the equilibrium will shift to the left to reduce pressure, favoring the formation of NH₃.

(b) N₂(g) + O₂(g) ⇌ 2NO(g) ΔH = 181kJ

Increase in temperature: Similar to (a), the reaction is endothermic, so increasing temperature shifts the equilibrium to the right, favoring the formation of NO.Decrease in volume: Since there is no change in the number of moles of gas (2 moles reactants, 2 moles products), a decrease in volume has little to no effect on the equilibrium position.

(c) 2O₃(g) ⇌ 3O₂(g) ΔH = − 285kJ

Increase in temperature: The reaction is exothermic (ΔH is negative), so an increase in temperature will shift the equilibrium to the left, favoring the formation of O₃.Decrease in volume: Decreasing the volume increases pressure. Since there are more moles of gas on the right side, the equilibrium will shift to the left to decrease the pressure, favoring the formation of O₃.

(d) CaO(s) + CO₂(g) ⇌ CaCO₃(s) ΔH = −176kJ

Increase in temperature: This reaction is exothermic, so increasing temperature will shift the equilibrium to the left, favoring the formation of CaO and CO₂.Decrease in volume: Decreasing the volume increases pressure. Since CO₂ is the only gas involved, the equilibrium will shift to the right to decrease the amount of gas, favoring the formation of CaCO₃.

What mass of water can be obtained from 4.0 g of H2 and 16 g of O2?2 H2 + O2 ---> 2 H2O18 g36 g54 g9 g

Answers

Answer:

18 g is the mass produced by 4 g of H₂ and 16 g of O₂

Explanation:

The reaction is:

2H₂  +  O₂  →  2H₂O

So, let's find out the limiting reactant as we have both data from the reactants.

Mass / Molar mass = moles

4 g/ 2g/m = 2 moles H₂

16g / 32 g/m = 0.5 moles O₂

2 moles of hydrogen react with 1 mol of oxygen, but I have 0.5, so the O₂ is the limiting.

1 mol of O₂ produces 2 mol of water.

0.5 mol of O₂ produce  (0.5  .2)/1 = 1 mol of water.

1 mol of water weighs 18 grams.

Answer:

18 grams of [tex]H_2O[/tex]

Explanation:

The balanced equation of the reaction is:

[tex]H_2+\frac{1}{2}O_2 -->H_2O[/tex]

From the balanced equation we can say 1 mole of H2 reacts with 0.5 moles of O2 to give one mole of H2O.

Number of moles of H2 = [tex]\frac{Given\ mass}{Molar\ mass}=\frac{4}{2}=2\ moles[/tex]

Number of moles of O2 = [tex]\frac{Given\ mass}{Molar\ mass}=\frac{16}{32}=0.5\ moles[/tex]

We have 2 moles H2 and 0.5 moles of O2.

Not all H2 reacts because the amount of O2 is limited.

Since only 0.5 moles of O2 is available only 1 mole of H2 reacts according to the balanced equation.

Hence 1 mole of H2O is formed which is 18 grams.

After a polypeptide chain has been synthesized, certain amino acids in the peptide may become modified. For each modified amino acid, identify the standard amino acid from which it is derived. Enter the unabbreviated name of the standard amino acid. The amino acid structure shows the fully ionized form. The side chain is C H 2, C H 2, C H (O H), C H 2, N H 3 (plus). standard amino acid: Identify the modification that yields the first amino acid depicted.

Answers

Answer:

The name of the amino acid is lysine.

The number five carbon in lysine is the carbon that is hydroxylated. The modification you ask is when adding hydroxyl group (C-OH bonds). These links are made by an enzyme called hydroxylase, vitamin C acting as a cofactor. This reaction is one of the most fundamental post-translational modifications.

Explanation:

Final answer:

Hydroxyproline is derived from the standard amino acid proline through the addition of a hydroxyl group, and it plays a role in the structure of collagen.

Explanation:

The modified amino acid depicted in the question is hydroxyproline, which is derived from the standard amino acid proline.

During the modification process, proline is hydroxylated by adding a hydroxyl group (-OH) to the side chain. This results in the formation of hydroxyproline. Hydroxyproline plays an important role in the structure and stability of collagen, a protein found in connective tissues.

In summary, hydroxyproline is derived from proline through the addition of a hydroxyl group, and it is involved in the structure of collagen.

Learn more about Modified amino acids here:

https://brainly.com/question/34263709

#SPJ3

How much energy must be supplied to break a single 21Ne nucleus into separated protons and neutrons if the nucleus has a mass of 20.98846 amu?

What is the nuclear binding energy for 1 {\rm mol} of {\rm ^{21}Ne}?

Answers

Answer:

1)There is 2.68 * 10^-11 J of energy needed

2) The nuclear binding energy for 1 mol of Ne is 1.6 *10^13 J/mol

Explanation:

Step 1: Data given

The nucleus of a21Ne atom has a amass of 20.98846 amu.

Step 2: Calculate number of protons and neutrons

The number of electrons and protons in an 21Ne atom = 10

The number of neutrons = 21 -10 =11

Step 3: mass of the atom

Mass of a proton = 1.00727647 u

Mass of a neutron = 1.0086649 u

The mass of the atom = mass of all neutrons + mass of protons

Mass of atom = 11*1.0086649 + 10*1.00727647  = 21.1680786 amu

Step 4: Calculate change of mass

The change in mass = Mass of atom - mass of neon

Δmass = 21.1680786 - 20.98846

Δmass = 0.1796186

Step 5: Calculate mass for a single nucleus

The change of mass for a single nucleus is = Δmass / number of avogadro

Δmass of nucleus = 0.1796186 / 6.022*10^23

Δmass of nucleus =2.98 * 10^-25 grams = 2.98 * 10^-28 kg

Step 6: Calculate energy to break a Ne nucleus

Calculate the amount of energy to break a Ne nucleus

ΔEnucleus = Δmass of nucleus * c²

⇒ with c = 2.9979 *10^8 m/s

ΔEnucleus = 2.98 * 10^-28 kg * (2.9979*10^8)² = 2.68 * 10^-11 J

What is the nuclear binding energy for 1 mol of Ne?

ΔE= ΔEnucleus * number of avogadro

ΔE= 2.68 * 10^-11 J * 6.022*10^23

ΔE= 1.6 *10^13 J/mol

The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose we start with 2.90×10−2 mol of N2O5(g) in a volume of 1.7 L.

Part A How many moles of N2O5 will remain after 4.0 min ?

Answers

Answer:

0.00564 moles

Explanation:

Given that:

The rate constant, k = [tex]6.82\times 10^{-3}[/tex] s⁻¹

Initial concentration [A₀] = [tex]2.90\times 10^{-2}[/tex] mol

Time = 4.0 min = [tex]4.0\times 60[/tex] sec = 240 sec

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

Where,  

[tex][A_t][/tex] is the concentration at time t

So,  

[tex][A_t]=2.90\times 10^{-2}\times e^{-6.82\times 10^{-3}\times 240}=2.9\times \frac{1}{10^2}\times \frac{1}{e^{1.6368}}[/tex]

[tex][A_t]=0.00564\ moles[/tex]

The concentration after four minutes is 3.3 ×10−3.

Let us recall that for a first order reaction;

ln[A] = ln[A]o - kt

Where;

[A] = concentration at time t

[A]o = initial concentration

k = rate constant

t = time

[A]o = 2.90×10−2 mol/1.7 L = 0.0171 M

k = 6.82×10−3 s−1

t = 4 min or 240 s

Substituting values;

ln[A] = ln[0.0171 M] - (6.82×10−3 s−1 × 240 s)

[A]  = e^ln[0.0171 M] - (6.82×10−3 s−1 × 240 s)

[A]  = 3.3 ×10−3.

Learn more about rate of reaction: https://brainly.com/question/17960050

We discussed the different types of intermolecular forces in this lesson. Which type would you expect to find in CO2?

Answers

Answer:

Dispersion forces.

Explanation:

CO2 contains dispersion forces, and covalent bonds. It is a linear molecule, and the bond angle of O-C-O is 180 degree. O is more electronegative than C, the C-O contains polar bond with the having negative end pointing towards the O.

CO contains two C-O bonds. They cancel each other out because of the dipoles point in opposite directions. Although, CO2 contains polar bonds, it is known as a nonpolar molecule. So, the only intramolecular forces which CO2 having are London dispersion forces.

The relative rates of reaction of ethane, toluene, and ethylbenzene with bromine atoms have been measured.

The most reactive hydrocarbon undergoes hydrogen atom abstraction a million times faster than does the least reactive one.


Arrange these hydrocarbons in order of decreasing reactivity.

Answers

Answer:

Reactivity: Ethyl benzene > Toluene > Ethane

Explanation:

The order of reactivity depends on how easily the most reactive hydrogen can be abstracted.

The order of reactivity of hydrogen is : 1° < 2° < 3° < Benzyllic based on the stabilizing effects like inductive effect, hyperconjugation , resonance effect.

In ethane, all the hydrogen present are 1°.In toluene, the most reactive hydrogen is benzyllic.In Ethyl Benzene, the most reactive hydrogen is 2° as well as benzyllic.

Hence the order of decreasing reactivity : Ethyl Benzene, Toluene , Ethane.

To sum up, ethylbenzene > toluene > ethane is the sequence in which reactivity decreases with bromine, and the previously described components are critical in dictating the rates of reaction.

Hydrocarbons containing bromine atoms exhibit varying degrees of reactivity, which can be attributed mainly to the stability of the free radical generated during hydrogen atom abstraction. When an unpaired electron delocalizes across the aromatic ring, a more stable benzyl radical is produced upon abstraction from a benzylic carbon in toluene and ethylbenzene. Compared to toluene, the benzyl radical generated from ethylbenzene has somewhat more reactivity due to this delocalization. Ethane has the lowest reactivity of the three compounds since it doesn't have an aromatic ring or benzylic hydrogens, which leads to the formation of a primary free radical that is much less stable.

alculate the percent by mass (percent composition) of hydrogen in methane (CH4). Round your answer to the nearest whole number.

Answers

Answer:

25

Explanation:

In one mole of methane [tex](CH_{4})[/tex] there are 4 moles of hydrogen and one mole of carbon atom.

Mass of 1 mole of hydrogen atom = 1 g

Mass of 4 moles of hydrogen atom = 4 g

Mass of 1 mole of carbon atom = 12 g

Mass of 1 mole of methane = 12+4 = 16 g

Mass percent of hydrogen in methane = [tex]\frac{mass\ of\ 4\ moles\ of\ hydrogen\ atom}{mass\ of\ 1\ mole\ of\ methane}[/tex]

[tex]=\frac{4}{16}\times100=25[/tex]

Answer:25%

Explanation:

The total molecular mass of methane (CH4) = 12+4 =16

Hydrogen has a total mass of 4 out of the 16. Now to calculate the percentage of hydrogen there, we have (4/16) x 100 = 25

Dimethyl sulfoxide is an important polar aprotic solvent that can dissolve both polar and nonpolar compounds and is miscible in a wide range of organic solvents as well as water. Because it penetrates the skin very readily, it is sometimes used as a vehicle for topical application of pharmaceuticals.



Draw the structure of dimethyl sulfoxide. Include any nonbonding electrons on sulfur, and minimize formal charges by allowing sulfur to expand its octet.

Answers

Answer:

The structure is shown below.

Explanation:

To draw a structure first we need to know its molecular formula, which is C2H6SO for dimethyl sulfoxide. The central atom is sulfur, which is bonded to an oxygen and with two methyl groups (CH3).

Sulfur has 6 electrons in its valence shell, as so oxygen. To complete the octet of oxygen, 2 electrons will be shared by sulfur with it. So, it remains 4 electrons at the central atom. Carbon has 4 electrons in its valence shell, so it needs more 4 to be stable, and is already sharing 3 electrons with the hydrogens, thus, sulfur will share one electron with each one of them.

So, it will remain 2 nonbonding electrons in the central atom. According to the VSPER theory, to minimize formal charges, the structure would be a trigonal pyramid, but, the double bonding with oxygen has a large volume, then the geometry will be trigonal, as shown below.

A chemist must prepare 400 mL of 1.00M of aqueous potassium iodide working solution. He'll do this by pouring out 1.82 mol/L some aqueous potassium iodide stock solution into a graduated cylinder and diluting it with distilled water. Calculate the volume in of the potassium iodide stock solution that the chemist should pour out. Round your answer to significant digits.

Answers

Answer:

220mL

Explanation:

The dilution formular was applied to obtain the volume of stock solution required to prepare the desired concentration of solution in the desired volume. Details are found in the image attached.

The Ostwald process is used commercially to produce nitric acid, which is, in turn, used in many modern chemical processes. In the first step of the Ostwald process, ammonia is reacted with oxygen gas to produce nitric oxide and water. What is the maximum mass of H 2 O H2O that can be produced by combining 62.8 g 62.8 g of each reactant? 4 NH 3 ( g ) + 5 O 2 ( g ) ⟶ 4 NO ( g ) + 6 H 2 O ( g )

Answers

Answer:

42,3g of H₂O

Explanation:

For the reaction:

4NH₃(g) + 5O₂(g) ⟶ 4NO(g) + 6H₂O(g)

62,8 g of NH₃ are:

62,8g×(1mol/17,031g) = 3,69 moles of NH₃

62,8 g of O₂ are:

62,8g×(1mol/32g) = 1,96 moles of O₂

For a complete reaction of 1,96 moles of O₂ you need:

1,96mol O₂×(4mol NH₃ / 5molO₂) = 1,57 moles NH₃. As you have 3,69 moles, limiting reactant is O₂.

Assuming a complete reaction, 1,96mol O₂ produce:

1,96mol O₂×(6mol H₂O / 5molO₂) = 2,35 moles of H₂O. In grams:

2,35 moles of H₂O×(18,01g/1mol) = 42,3g of H₂O

I hope it helps!

In a certain industrial process involving a heterogeneous catalyst, the volume of the catalyst (in the shape of a sphere) is 10.0 cm^3. If the sphere were broken down into eight spheres each having a volume of 1.25 cm^3, and the reaction is run a second time, which of the following accurately characterizes the second run?
Choose all that apply.
A. The second run will be faster.
B. The second run will be slower.
C. The second run will have the same rate as the first.
D. The second run has twice the surface area.
E. The second run has eight times the surface area.
F. The second run has 10 times the surface area.

Answers

Answer:

D

Explanation:

We know that the

reaction catalyzing power of a catalyst ∝ surface area exposed by it

Given

volume V1= 10 cm^3

⇒[tex]\frac{4}{3} \pi r^3= 10[/tex]

hence r= 1.545 cm

also, surface area S1= [tex]4\pi r^2[/tex]

now when the sphere is broken down into 8 smaller spheres

S2= 8×4πr'^2

now, equating V1 and V2 ( as the volume must remain same )

[tex]\frac{4}{3}\pi r^3=8\times\frac{4}{3} \pi r'^3[/tex]

and solving we get

r'= r/2

therefore, S2=[tex]8\times4\pi\frac{r}{2}^2[/tex]

S2=[tex]2\times4\pi r^2[/tex]

S2= 2S1

hence the correct answer is

. The second run has twice the surface area.

Choose a depiction of a gas sample containing equal molar amounts of xenon and argon as described by kinetic molecular theory. Red dots are used to represent xenon atoms and blue dots to represent argon atoms. Each atom is drawn with a "tail" that represents its velocity relative to the others in the mixture.

Answers

Answer:

On the attached picture.

Explanation:

Hello,

At first, it is important to remember that kinetic molecular theory help us understand how the molecules of a gas behave in terms of motion. In such a way, the relative velocity of a gas molecule has the following relationship with the gas' molar mass:

[tex]V[/tex]∝[tex]\frac{1}{\sqrt{M} }[/tex]

That is, an inversely proportional relationship which allows us to infer that the bigger the molecule the slower it. In this manner, as argon is smaller than xenon, it will move faster.

Now, as the gases are in equal molar amounts and considering that argon moves faster, on the attached picture you will find the suitable depiction of the gas sample, since red dots (argon) have a larger tail than the blue dots (xenon).

Best regards.

Final answer:

The kinetic molecular theory explains gas behavior, showing that at a given temperature, heavier molecules like xenon move slower than lighter molecules like argon, which can be depicted with varying tail lengths in visual models.

Explanation:Understanding Gases through Kinetic Molecular Theory

The kinetic molecular theory of gases provides an explanation for the properties of gases by modeling them as small, hard spheres with insignificant volume, in constant motion, and undergoing perfectly elastic collisions. According to this theory, the average kinetic energy (KEavg) of gas molecules is the same for all gases at a given temperature, regardless of the molecular mass. However, because the kinetic energy depends only on temperature, lighter molecules will have higher speeds compared to heavier molecules at the same temperature.

Given a gas sample containing equal molar amounts of xenon and argon, depicted by kinetic molecular theory, we would see red dots (xenon) and blue dots (argon) with tails representing their velocities. As the diagrams from the theory suggest, we would expect that, at the same temperature, xenon atoms (being heavier) would have shorter tails (indicating lower speeds) than argon atoms (which are lighter and thus would have longer tails for higher speeds).

This behavior of the molecules can be seen in the average root mean square speed (Urms) trend, where heavier noble gases like xenon show a distribution of speeds peaking at lower values, whereas lighter ones like argon peak at higher speeds. This concept is crucial in the depiction of gas samples in kinetic molecular theory and can be visualized through illustrations that incorporate this difference in molecular speed based on the mass of the gas particles.

Other Questions
Marketing managers at a cosmetic company wanted to find out how resistant their product is to smudging. They hired a research firm to ask 293 women who were wearing the company's StayColor line of cosmetics to rub their cheeks against their shirts using "the pressure they use when caressing someone else's face." The company was conducting ________. A. custom research B. ethnography C. secondary research D. case study research E. syndicated research Determine which of the following bags of chips of comparable quality has the lowest per-unit cost and, thus, is the best buy.A. Brand A, 8 oz. bag for $3.60B. Brand B, 10 oz. bag for $3.90C. Brand C, 16 oz. bag for $6.50D. Brand D, 1 oz. bag for $0.59 (Easy Points, Will mark Brainliest) What number is point A on the number line? 1. According to the chart, the percentage of people living in poverty in Europe __________ from 1987 to 1995.2. The country with the greatest jump in percentage of population living in poverty was ___________.3. According to what you have learned in the lesson, the ___________ was a contributing factor to the trends shown on the chart. Identify the type of observational study (cross-sectional, retrospective, or prospective) described below. A research company uses a device to record the viewing habits of about 2500 households, and the data collected over the past 2 years will be used to determine whether the proportion of households tuned to a particular children's program increased. Which type of observational study is described in the problem statement? A. A prospective studyB. A retrospective study C. A cross-sectional study Given that (-3,5) is on the graph of f(x), find the corresponding point for the function f(x) - 4. Last year, Martina was in love with Robert, but they broke up a few months ago. Today in the mall, Martina smells someone wearing the same cologne that Robert always wore. She is immediately filled with positive feelings, which is most likely due to____________. Please help me!!!Choose the word that best completes the phrase.Nosotros ____ ocho horas pero los caballos ____ tres.A. duermimos; duermenB. duermen; duermeC. dormimos; duermenD. dormen; duerme Before lending someone money, banks must decide whether they believe the applicant will repay the loan. One strategy used is a point system. Loan officers assess information about the applicant, totalling points they award for the persons income level, credit history, current debt burden, and so on. The higher the point total, the more convinced the bank is that its safe to make the loan. Any applicant with a lower point total than a certain cut-off score is denied a loan. We can think of this decision as a hypothesis test. Since the bank makes its profit from the interest collected on repaid loans, their null hypothesis is that the applicant will repay the loan and therefore should get the money. Only if the persons score falls below the minimum cut-off will the bank reject the null and deny the loan. This system is reasonably reliable, but, of course, sometimes there are mistakes.a) When a person defaults on a loan, which type of error did the bank make?b) Which kind of error is it when the bank misses an opportunity to make a loan to someone who would have repaid it?c) Suppose the bank decides to lower the cut-off score from 250 points to 200. Is that analogous to choosing a higher or lower value of for a hypothesis test? Explain.d) What impact does this change in the cut-off value have on the chance of each type of error? Find the APY corresponding to the following nominal rate. 7% compounded semiannually. Rafael is on his way home in his car. His drive is 22 miles long. He has finished one-half of the drive so far, how far has he driven This type of burn results from high temperatures caused by an electric arc or explosion near the body What is the most common way for an attacker outside of the system to gain unauthorized access to the target system? 6.Why did African Americans form the Urban League?to help African Americans in Illinois recover after the Springfield riotsto help African Americans in the South who were being denied the right to voteO to help African Americans in New York who were not allowed to stay in hotelsto help African Americans in the North get settled and find work The binary value of the ASCII letter "c" is 0110 0011. Using the handy chart that we learned in the lesson, convert this number to its decimal value. You'll need to use some math for this question. Read the article and use the information to answer the questions that follow. Discovering the Structure of DNA Explain how the discoveries by Rosalind Franklin helped Watson and Crick build an accurate model of DNA. Can I buy this website? Each box contains 10 to the power of 2 pencils. The school store has 15 boxes of pencils. How many pencil does the school store have The cost of cleaning a rectangular ground is $120 per square m. Calculate the price to be paid if theatre length of ground is 145m and breadth is 85m PLEASE HELP!!! Acar depreciates at a rate kf 13% per year. the car was originally purchased for 28,000. 1. what is the decay factor of the car? 2. Wrtie a function for this situation with the value if the car as a function of the age of the car in years 3. How much will the car be worth in 6 years? 4. Rewrite the function for question 2 so it is an equivalent function with a negative exponent. Steam Workshop Downloader