Answer: 45
Explanation: Remember that dividing by a fraction is the same thing as multiplying by the reciprocal of that fraction or that fraction flipped.
Also, think of the 15 in this problem as 15/1.
So we can rewrite 15/1 ÷ 1/3 as 15/1 · 3/1.
Multiplying across the numerators and the denominators,
we find that our answer is 45/1 or just 45.
15 divided by 1/3 is equal to 45.
To divide 15 by 1/3, we can interpret it as finding how many groups of 1/3 can be made from 15.
To begin, we can convert the division of 15 by 1/3 into a multiplication problem by taking the reciprocal of 1/3, which is 3/1 or simply 3.
So, we have:
15 ÷ (1/3) = 15 x 3
Multiplying 15 by 3, we get:
15 x 3 = 45
Therefore, 15 divided by 1/3 is equal to 45.
In other words, 15 can be divided into 45 equal parts of size 1/3. Each of these parts represents the quotient when dividing 15 by 1/3.
When we multiply 1/3 by 45, we get 15. This confirms that 15 divided by 1/3 is indeed equal to 45.
To learn more about the division;
https://brainly.com/question/13263114
#SPJ6
the sum of two numbers is 9 and their difference is 5.
What are the two numbers?
To solve this problem, we can set up a system of equations using the information given and solve it using the substitution method.
Explanation:To solve this problem, we can set up a system of equations using the information given. Let's call the two numbers x and y.
From the given information, we can write:
x + y = 9 (equation 1)
x - y = 5 (equation 2)
To solve this system, we can use the method of substitution or elimination. Let's solve it using the substitution method:
From equation 2, we can isolate x by adding y to both sides:
x = y + 5
Now substitute this expression for x in equation 1:
(y + 5) + y = 9
Combine like terms:
2y + 5 = 9
Subtract 5 from both sides:
2y = 4
Divide both sides by 2:
y = 2
Now substitute this value for y in equation 1:
x + 2 = 9
Subtract 2 from both sides:
x = 7
So, the two numbers are 7 and 2.
The quality control department at Food Town Inc., a grocery chain in upstate New York, conducts a monthly check on the comparison of scanned prices to posted prices. The chart below summarizes the results of a sample of 500 items last month. Company management would like to know whether there is any relationship between error rates on regularly priced items and specially priced items.
Regular Price Advertised Special Price
Undercharge 20 10
Overcharge 15 30
Correct Price 200 225
Find the attachments for step by step solutions
Note: The .01 significance level is used
The management at Food Town Inc. is investigating potential correlations between error rates in price checking between regular priced and specially priced items. This relates to business and statistics. A detailed look at the data, and potentially a formal correlation test, can provide insights.
Explanation:The subject of the question is related to statistics and business with a focus on quality control in a grocery chain. The quality control department at Food Town Inc. conducts a check comparing scanned prices to posted prices. In essence, management is interested in understanding any possible relationship between error rates for regularly priced and specially priced items. A simple way to understand this is through the concept of a correlation.
Correlation is a term in statistics used to indicate the degree to which two or more attributes or measurements on the same group of elements show a tendency to vary together. By looking at the data, especially the error rates (overcharge and undercharge) on regular and special priced items, one could check if there's a negative or positive correlation between these variables.
It seems at first glance that regularly priced items incur fewer errors overall than specially priced items, especially in overcharging. A statistical correlation test, such as the Pearson correlation, can further confirm or refute this observation.
Learn more about Correlation in pricing errors here:https://brainly.com/question/31034664
#SPJ12
Write 3.274 x 10^3 as an ordinary number
3.274 x 10^3 written as an ordinary number is 3274. This is achieved by moving the decimal point three places to the right.
Explanation:The student's question is asking for a conversion from scientific notation to an ordinary number. This process is simple once you understand what the scientific notation represents. The value 3.274 x 10^3 implies that the decimal point in 3.274 is moved to the right three places because the power of 10 is positive 3.
Therefore to write 3.274 x 10^3 as an ordinary number, we move the decimal point three places to the right starting from where it currently is after the number 3. So, 3.274 becomes 3274.
In concise, 3.274 x 10^3 written as an ordinary number is 3274.
Learn more about Scientific Notation here:https://brainly.com/question/16936662
#SPJ12
rebecca has 21 cupcakes to frost. She has frosted 2/7 of them. How many cuppcakes does she have left to frost
Answer:
15
Step-by-step explanation:
Answer:
15
Step-by-step explanation:
21 * 2/7= 42/7=6 cupcakes that she's already frosted.
21-6=15 cupcakes left to frost.
Hope this helps!
Captain Ishaan has a ship, the H.M.S Crimson Lynx. The ship is four furlongs from the dread pirate Michael and his merciless band of thieves.
If his ship hasn't already been hit, Captain Ishaan has a probability 5/2 If his ship has been hit, Captain Ishaan will always miss.
If his ship hasn't already been hit, dread pirate Michael has a probability 8/3 of hitting the Captain's ship. If his ship has been hit, dread pirate Michael will always miss.
If the Captain and the pirate each shoot once, and the Captain shoots first, what is the probability that both the Captain and the pirate hit each other's ships?
Answer: 0
Step-by-step explanation:
The probability of event A happening, then event B, is the probability of event A happening times the probability of event B happening given that event A already happened.
In this case, event A is the Captain hitting the pirate ship and event B is the pirate hitting the Captain's ship.
The Captain fires first, so his ship can't be sunk before he fires his cannons.
So, the probability of the Captain hitting the pirate ship is 2/5
If the Captain hit the pirate ship, the pirate has no chance of firing back.
So, the probability of the pirate hitting the Captain's ship given the Captain hitting the pirate ship is 0.
A designated hitter made 8 hits in 10 games. find the ratio of hits to games
Answer:
4:5
Step-by-step explanation:
reduce the 8 and 10 by dividing both by 2.
Which of the following expressions can be used to find the area of a square with a side length of 1/3m?
(1/3)^2 m^2
(1/3) ^3 m^2
1/3x2 m^2
2x1/3 m^2
Answer:
(1/3)^2 m^2
Step-by-step explanation:
Because Area of square = A = x*x
here x = 1/3 m.
so A = (1/3 m)*(1/3 m) = (1/3)^2 * m^2
From a point on the ground 47ft from the base of a tree, the angle
of elevation to the top of the tree is 35 degrees. Find the height
of the tree to the nearest foot.
Answer:
33 ft
Step-by-step explanation:
In a diagram of the geometry, you see that the angle of elevation is opposite the triangle leg representing the tree height, and is adjacent to the triangle leg representing distance from the tree.
The tangent ratio relates these lengths to the angle:
Tan = Opposite/Adjacent
Opposite = Adjacent×Tan
tree height = (47 ft)tan(35°) ≈ 33 ft
The height of the tree is about 33 feet.
How can you break up the figure into familiar shapes to determine the area?
The area of a 2D form is the amount of space within its perimeter. The area of the composite figure is 5 1/3 ft².
What is an area?The area of a 2D form is the amount of space within its perimeter. It is measured in square units such as cm², m², and so on. To find the area of a square formula or another quadrilateral, multiply its length by its width.
The given figure can be breakdown into two parts as shown below. Therefore, the area of the composite figure will be,
Area of the composite figure = Area A + Area B
= (5 × 1/3) + [0.5×2×(5- 4/3)]
= 5/3 + 11/3
= 16/3 = 5 1/3 ft²
Hence, the area of the composite figure is 5 1/3 ft².
Learn more about the Area:
https://brainly.com/question/1631786
#SPJ1
ABC Restaurant has an ice-cream counter where it sells two main products, ice cream and frozen yogurt. The restaurant makes a gallon ice cream and yogurt each day, and store has enough freezer space for 115 gallons total of both products. A gallon of frozen yogurt costs $0.75 and a gallon of ice cream costs $0.93, and the restaurant has budget of $90 for these products. The manager estimates that the store sells at least twice as much ice cream as frozen yogurt. Profit per gallon of ice cream is $4.15, and profit per gallon is $3.60. Formulate a linear programming model for this problem.
Answer:
sorry i cant
Step-by-step explanation:
my eyes hurt reading this
good luck to whoever solves this
John took all his money from his savings account. He spent $52 on a radio and 1/2 of what was left on presents for his friends, Of the money remaining, John put 4/13 into checking account and the last remaining $180 was left to charity. How much money did John originally have in his savings account?
Answer:
John had $572 in his savings account.
Step-by-step explanation:
Let the total amount John took from his savings account be T.
He spent $52. That means he has $(T - 52) left.
He then spent 1/2 of what was left on presents for his friends. That is:
[tex]\frac{1}{2} * (T - 52) = \frac{T - 52}{2}[/tex]
Which means he is left with another half of what was left, that is, [tex]\frac{T - 52}{2}[/tex]
Of the money remaining, John put 4/13 into checking account.
This means that he is left with 9/13 of [tex]\frac{T - 52}{2}[/tex].
We are told that this is equivalent to the last remaining $180 that John left to charity.
=> [tex]\frac{9}{13} * \frac{T - 52}{2} = 108[/tex]
Hence:
[tex]\frac{9(T - 52)}{13 * 2} = 180\\\\9(T - 52) = 180 * 13 * 2\\\\9(T - 52) = 4680\\\\T - 52 = \frac{4680}{9} = 520\\\\[/tex]
=> T = 520 + 52 = $572
Hence, John took $572 from his savings account. Since this is all he had in his savings account, John had $572 in his savings account.
Working backward, we determined that John originally had $572 in his savings account before spending on the radio, presents, putting money into his checking account, and giving to charity.
Explanation:To solve this mathematics problem, we need to work backward from the information provided. John spent $52 on a radio and then spent half of the remaining amount on presents. After that, he put 4/13 of the remaining money into his checking account and then gave $180 to charity. Let's represent the original amount of money John had as x.
After buying the radio, John had x - $52 left. He then spent half on presents, so he had (x - $52)/2 remaining. After putting 4/13 of what was left into his checking, the equation becomes ((x - $52)/2) * (9/13) since 9/13 is the complement of 4/13, which goes into the checking account. This amount equaled the last remaining $180.
The equation to find the original amount x is:
(((x - $52) / 2) * (9/13)) = $180
Now solve for x:
Multiply both sides by 13/9 to get (x - $52) / 2 = $260.Multiply both sides by 2 to get x - $52 = $520.Finally, add $52 to both sides to get x = $572.So, the original amount of money John had was $572.
Learn more about Solving a multistep problem here:https://brainly.com/question/28904617
#SPJ3
In 2009, a survey of 23 people who had home access to the Internet asked them how much they paid per month for that access, rounded to the nearest dollar. The following data show each person's response, from smallest monthly bill to largest. $14, $18, $18, $18, $19, $19, $23, $23, $23, $25, $25, $25, $25, $25, $26, $26, $26, $27, $33, $37, $42, $58 Make a histogram of the data on the cost of Internet access using the intervals 0-4, 5-9, 10-14, and so on. Describe the distribution of values in words.
Answer:
See attachment for histogram
Step-by-step explanation:
The histogram shows that the majority of customers have monthly bills between 25 to 29. There is a break between $45-$54 monthly bill as there is no customer with this amount of monthly bill. Then there is one customer between $55-$59 monthly bill.
Final answer:
The histogram of Internet costs shows a concentration between $19-28, with the majority of prices ranging from $23 to $27. It is unimodal and right-skewed with costs spread from $14 to $58, indicating that a smaller number of individuals pay much higher prices for internet access.
Explanation:
To create a histogram of the data on the cost of Internet access using intervals of $5, we will first determine the range of values within each interval:
14-18: $1419-23: $18, $18, $18, $19, $19, $23, $23, $2324-28: $25, $25, $25, $25, $25, $26, $26, $26, $2729-33: $3334-38: $3739-43: $4244-48: None49-53: None54-58: $58From the histogram, we can see that the majority of responses fall within the $19-28 range, specifically between $23 and $27. This signifies that most people in the survey pay a moderate price for Internet access. The distribution is unimodal, skewing right, and has a spread from $14 to $58, with a slight concentration of high costs on the right indicating few individuals pay significantly more for internet access.
Subtract the following military times 2330 - 0540
The final result is 17 hours and 50 minutes, or in military time format, 1750.
To subtract the military times 2330 and 0540, we can approach it as a regular subtraction problem, but we need to borrow from the hour when the minutes in the subtrahend (0540) are larger than the minutes in the minuend (2330). Since military time is on a 24-hour clock, we treat 2330 as 23 hours and 30 minutes, and 0540 as 5 hours and 40 minutes.
Step 1: Since we cannot subtract 40 minutes from 30 minutes, we need to borrow 1 hour from the 23 hours, converting it to 22 hours and 90 minutes.
Step 2: Now we subtract the minutes: 90 minutes - 40 minutes = 50 minutes.
Step 3: Then we subtract the hours: 22 hours - 5 hours = 17 hours.
So, the final result is 17 hours and 50 minutes, or in military time format, 1750.
which word describes the four angels formed by the intersection of two perpendicular lines
The word that describes the four angles formed by the intersection of two perpendicular lines is "right angles" because they each measure 90 degrees and create an L-shaped corner.
The four angles formed by the intersection of two perpendicular lines are often described as "right angles." A right angle measures exactly 90 degrees, and it is the angle at which two lines meet and form a perfect L shape.
Right angles are a fundamental concept in geometry and have many practical applications in everyday life. They are essential in fields such as architecture, engineering, and mathematics. Right angles are known for their symmetry and balance, making them a crucial element in various geometric shapes and constructions.
In summary, the word that describes the four angles formed by the intersection of two perpendicular lines is "right angles" due to their characteristic 90-degree measurement and significance in geometry.
For more such questions on perpendicular lines
https://brainly.com/question/1202004
#SPJ3
Complete question below :
What word describes the four angles formed by the intersection of two perpendicular lines?
Simplify (6x−2)2(0.5x)4
. Show your work.
Answer:
(6x − 2) * 2 * (0.5x) * 4 = (6x - 2) * 4x
Hope this helps!
:)
I want to know if mammal usually have more teeth than reptiles
Final answer:
While the number of teeth varies among species, mammals usually have more complex dentition than reptiles due to their heterodont (four different types) teeth, compared to reptiles' homodont teeth. Most mammals are diphyodonts with two sets of teeth over their lifetime, unlike many reptiles that replace their teeth continuously.
Explanation:
Mammals generally have a more complex dental structure than reptiles due to their heterodont dentition. Mammals have four different types of teeth: incisors, canines, premolars, and molars, each specialized for different dietary functions such as cutting, tearing, and grinding. In contrast, most other vertebrates, including reptiles, possess homodont teeth, meaning their teeth are all the same type and shape, which often don't vary much in structure compared to mammals.
This difference in dentition is related to the various diets that mammals adapt to, allowing them to process different kinds of foods more efficiently. Furthermore, most mammals are diphyodonts, meaning they have two sets of teeth in their lifetime—deciduous ("baby") teeth and permanent teeth—compared to many reptiles that replace their teeth throughout their lives.
In terms of the absolute number of teeth, it varies widely among species in both groups. Some reptiles indeed have a high number of teeth; for instance, a crocodile has many sharp, conical teeth. However, it's not accurate to say that all reptiles have more teeth than all mammals because there is a great deal of variation within each group, with some mammals having more teeth than certain reptiles, and vice versa.
The Scholastic Aptitude Test (SAT) is a standardized test for college admissions in the U.S. Scores on the SAT can range from 600 to 2400. Suppose that PrepIt! is a company that offers classes to help students prepare for the SAT exam. In their ad, PrepIt! claims to produce "statistically significant" increases in SAT scores. This claim comes from a study in which 427 PrepIt! students took the SAT before and after PrepIt! classes. These students are compared to 2,733 students who took the SAT twice, without any type of formal preparation between tries. We conduct a hypothesis test and find that PrepIt! students significantly improve their SAT scores (p-value < 0.0001). Now we want to determine how much improvement we can expect in SAT scores for students who take the PrepIt! class. Which of the following is the best approach to answering this question? Group of answer choices Use the sample mean 29 to calculate a confidence interval for a population mean. Use the difference in sample means (500 − 529) in a hypothesis test for a difference in two population means (or treatment effect). Use the difference in sample means (500 − 529) to calculate a confidence interval for a difference in two population means (or treatment effect). Use the difference in sample means (29 and 21) in a hypothesis test for a difference in two population means (or treatment effect).
The best approach to determine the average improvement in SAT scores for PrepIt! students is to calculate a confidence interval for the difference in two population means using the sample mean differences, option A.
To determine the average improvement in SAT scores for students who take the PrepIt! class, the best approach is to use the difference in sample means to calculate a confidence interval for a difference in two population means (or treatment effect), option A.
This involves taking the mean SAT score before the PrepIt! class and the mean SAT score after the class and computing the confidence interval for this difference. Doing this calculation will provide an interval estimate that shows the range of values within which the true mean difference in SAT scores, due to the PrepIt! class, is likely to fall. For instance, if the mean SAT score improvement is 29 points, we would use this value and the appropriate standard error and confidence level to calculate the confidence interval.
A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.
i can't make a model, but the answer is 11167.79
The archway to the entrance of an art gallery can be
modeled by y = -}(x - 5)(x + 5), where x and y
are measured in feet. The x-axis represents the floor.
Find the width of the arch at floor level.
The width of the arch at floor level is 5 feet.
Explanation:The equation given to model the archway to the entrance of an art gallery is y = -}(x - 5)(x + 5). To find the width of the arch at floor level, we need to find the x-values that correspond to y = 0. Setting y = 0 and solving for x, we get:
0 = -}(x - 5)(x + 5)
0 = (x - 5)(x + 5)
Using the zero product property, we can separate the equation into two parts:
x - 5 = 0 and x + 5 = 0
Solving each equation separately, we get:
x = 5 and x = -5
Therefore, the width of the arch at floor level is 5 feet.
Learn more about Finding the width here:https://brainly.com/question/37884381
#SPJ2
The width of the arch at floor level is the distance between these points, which is 10 feet (5 - (-5) = 10).
The archway to the entrance of an art gallery is modeled by the equation y = -1(x - 5)(x + 5). To find the width of the arch at floor level (y = 0), we need to determine the x-intercepts of the equation.
1. Set y = 0 in the equation: 0 = -1(x - 5)(x + 5).
2. This simplifies to (x - 5)(x + 5) = 0.
3. Setting each factor to zero, we get x - 5 = 0 or x + 5 = 0.
4. Solve these equations for x: x = 5 or x = -5.
The x-intercepts are -5 and 5.
Therefore, the width of the arch at floor level is the distance between these points, which is 10 feet (5 - (-5) = 10).
A marine surveyor uses a rangefinder and a compass to locate a ship and an island in the vicinity of the coast on which she stands. The rangefinder indicates that the island is 353 ft from her position and the ship is 474 ft from her position. Using the compass, she finds that the ship's azimuth (the direction measured as an angle from north) is 320 degrees and that of the island is 58 degrees. What is the distance between the ship and the island?
Answer:
distance between the ship and the island is 465.72 ft
Step-by-step explanation:
given data
island = 353 ft
ship = 474 ft
ship's azimuth = 320 degrees
island = 58 degrees
to find out
distance between the ship and the island
solution
as per given figure we can see that
AC = 353
AB = 474
we get here angle ABC that is = 360 - 320 = 40 degree
and angle BAC is = 180 - 58 = 122
and now we apply here law sign
so
[tex]\frac{BC}{sinA} = \frac{AC}{sinB}[/tex] ...........1
put here value and we get
[tex]\frac{BC}{sin122} = \frac{353}{sin40}[/tex]
BC = 465.72 ft
so distance between the ship and the island is 465.72 ft
Suppose you are taking a 15 question True/False quiz which you are not prepared for. You find yourself simply guessing at every answer. What is the probability that you get less than 3 answers correct?
Answer:
[tex]P(X=0)=(15C0)(0.5)^0 (1-0.5)^{15-0}=0.0000305[/tex]
[tex]P(X=1)=(15C1)(0.5)^1 (1-0.5)^{15-1}=0.000457[/tex]
[tex]P(X=2)=(15C1)(0.5)^2 (1-0.5)^{15-2}=0.00320[/tex]
And adding the results we got:
[tex] P(X<3) =P(X \leq 2) = 0.0036875[/tex]
Step-by-step explanation:
We can define the variable of interest s X representing the number of correct questions for the exam. and we can model this random variable with a binomial distribution. The probability of select the correct answer would be [tex]p =\frac{1}{2}[/tex] since is a true/false question.
[tex] X \sim Binom (n =15, p=0.5[/tex]
And we want to find this probability:
[tex]P(X <3)= P(X\leq 2)=P(X=0) +P(X=1) +P(X=2)[/tex]
The probability mass function for the Binomial distribution is given as:
[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]
Where (nCx) means combinatory and it's given by this formula:
[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]
And we want to find this probability:
[tex]P(X \leq 2)=P(X=0)+P(X=1)+P(X=2)[/tex]
We can find the individual probabilities and we got:
[tex]P(X=0)=(15C0)(0.5)^0 (1-0.5)^{15-0}=0.0000305[/tex]
[tex]P(X=1)=(15C1)(0.5)^1 (1-0.5)^{15-1}=0.000457[/tex]
[tex]P(X=2)=(15C1)(0.5)^2 (1-0.5)^{15-2}=0.00320[/tex]
And adding the results we got:
[tex] P(X<3) =P(X \leq 2) = 0.0036875[/tex]
The following table shows the number of comments on each of Omar's 9 most recent social media posts.
Based on this data, what is a reasonable estimate of the probability that Omar's next post will get no
comments?
The question is incomplete! Complete question along with answer and step by step explanation is provided below.
Question:
The following table shows the number of comments on each of Omar's 9 most recent social media posts.
0 2 8
7 0 0
0 6 4
Based on this data, what is a reasonable estimate of the probability that Omar's next post will get no comments?
Answer:
P(0) = 44.4%
Step-by-step explanation:
We are given the number of comments on each of Omar's 9 most recent social media posts.
We want to find the probability that Omar's next post will have 0 comments.
We know that probability is given by
P(0) = No. of desired outcomes/No. of total outcomes
From the above data we know that total number of outcomes are 9.
Now count the number of times Omar got 0 comments.
These are the desired outcomes. (4 times)
Therefore, the probability of getting 0 comments is
P(0) = 4/9
P(0) = 0.444
P(0) = 44.4%
Answer:
4/9.
Step-by-step explanation:
I know where you get these questions from ;)
I need help please and thank you
Answer:
C = 25
Step-by-step explanation:
C = 5/9(F - 32)
Let F = 77
C = 5/9(77- 32)
Parentheses first
C = 5/9(45)
C = 25
On a coordinate plane, a line with negative slope goes through (0, 4) and (4, 0). The graph is shown for the equation y = –x + 4. Which equation, when graphed with the given equation, will form a system that has an infinite number of solutions? y = negative 4 (x + 1) y = negative (x + 4) y = negative one-half (2 x minus 8) y = x + negative 4
Answer:
c
Step-by-step explanation:
Answer:
c
Step-by-step explanation:
In a classroom, the students are set up in the arrangement shown in the table.
How many students are sitting at the 4 tables?
Answer:
20
Step-by-step explanation:
multiplying by 5 just divide the 7 with 35 you get 5 so multiply 4 and the 5 and get 20
Answer:
20
Step-by-step explanation:
A sociologist is studying the social media habits of high school students in a school district. The sociologist wants to estimate the average total number of minutes spent on social media per day in the population. A random sample of 50 high school students was selected, and they were asked, “How many minutes per day, on average, do you spend visiting social media sites?"
Which of the following is the most appropriate inference procedure for the sociologist to use?
A one-sample z-interval for a population proportion
A
A one-sample t-interval for a population mean
B
A matched-pairs t -interval for a mean difference
C
A two-sample z-interval for a difference between proportions
D
A two-sample t-interval for a difference between means
Answer:
A one-sample t-interval for a population mean
Step-by-step explanation:
As the question is "How many minutes per day, on average, do you spend visiting social media sites?", the answer will be in a numerical form (number of hours, positive integer or real number).
As this is not a proportion, the option "A one-sample t-interval for a population mean" is discarded.
As the study does not defined another variable to compare in pairs, it is not a matched-pairs test. Option "A matched-pairs t -interval for a mean difference" discarded.
There are not two means in the study, so there is no "difference between means" variable. Options "A two-sample z-interval for a difference between proportions" and "A two-sample t-interval for a difference between means".
This should be a one-sample t-interval for a population mean, as there is only one sample, one population mean and the population standard deviation is not known.
The required correct statement 'A one-sample t-interval for a population mean'.
We have to determine, Which of the following is the most appropriate inference procedure for the sociologist to use?
According to the question,
The sociologist wants to estimate the average total number of minutes spent on social media per day in the population.,
A random sample of 50 high school students was selected,
And they were asked, “How many minutes per day, on average, do you spend visiting social media sites.
The answer will be in a numerical form (number of hours, positive integer or real number).
The time spent on social media keeps increasing. it can deduce as at now that trending social media platforms take much of the time spent on social media.
On average, spend 240 minutes per day on social media sites. As New social media handles keep coming,
As the given condition is not a proportion, the option "A one-sample t-interval for a population mean" is discarded.
The study does not defined another variable n difference" discarded.
There are not two means in the study, so there is no "difference between means" variable.
"A two-sample z-interval for a difference between proportions" and "A two-sample t-interval for a difference between means".
This should be a one-sample t-interval for a population mean, as there is only one sample, one population mean and the population standard deviation is not known.
Hence, The required correct statement 'A one-sample t-interval for a population mean'.
To know more about Sample space click the link given below.
https://brainly.com/question/24128248?referrer
The original price of an airplane ticket is $990. How much will Hazel pay if she buys it during the 20% off sale?
Answer:
792 dollars
Step-by-step explanation:
20% of 990= 0.2*990=198
Subtracting this from the total price of the original ticket, you get 990-198=$792. Hope this helps!
Given: mKP=2mIP, mIVK =120°
Find: m∠KJL.
Answer:
The measure of angle KJL is 40°.Step-by-step explanation:
Givens
[tex]m(KP)=2m(IP)[/tex]
[tex]m(IVK)=120\°[/tex]
Notice that
[tex]m(KP)+m(IP)+m(IVK)=360\°[/tex], by definition sum of arcs.
Replacing given values, we have
[tex]2m(IP)+m(IP)+120\°=360\°\\3m(IP)=360\° - 120\°\\m(IP)=\frac{240\°}{3}\\ m(IP)=80\°[/tex]
Which means [tex]m(KP)=2(80\°)=160\°[/tex]
Notice that arc KP is the subtended arc by angle KJL.
We know that the angle formed by a tangen and a secant is equal to one-half of the difference of the intercepted arcs.
[tex]m\angle KJL = \frac{1}{2} (m(KP)-m(IP))\\m \angle KJL = \frac{1}{2}(160\° - 80\° )=\frac{1}{2}(80\°)=40\°[/tex]
Therefore, the measure of angle KJL is 40°.
What is the distance to the Earth's Horizon from point P? Enter enter the decimal in the Box round only your final answer to the nearest tenth.
Answer:
The distance to the Eath's Horizon from point P is 352.8 mi, approximately.Step-by-step explanation:
You observe the problem from a graphical perspective with the image attached.
Notice that side [tex]x[/tex] is tangent to the circle, which means is perpendicular to the radius which is equal to 3,959 mi.
We have a right triangle, that means we need to use the Pythagorean's Theorem, to find the distance to the Earth's Horizon from point P.
The hypothenuse is 3959 + 15.6 = 3974.6 mi.
[tex](3974.6)^{2}=x^{2} +(3959)^{2} \\x^{2} =15,797,445.16 - 15,673,681\\x=\sqrt{123,764.16} \approx 351.8[/tex]
Therefore, the distance to the Eath's Horizon from point P is 352.8 mi, approximately.
y= x^3-19x+30
State the number of complex zeros for each function
Answer:
0
Step-by-step explanation:
Using Descartes' rule of signs, we observe that the signs of the coefficients, + - +, have two changes. Thus there will be 0 or 2 positive real roots, hence 0 or 2 complex roots.
We can do further work to determine if it is 0 or 2. A graphing calculator provides an easy answer.
This function of x has no complex zeros. They are all real.
_____
For a cubic, it isn't always easy to find the zeros. The rational root theorem tells you any rational zeros will be factors of 30. Possibilities are ...
±1, ±2, ±3, ±5, ±6 . . . . . we're pretty sure no roots have magnitude > 6
For x=0, y = 30 . . . . the constant
For x=1, y = 12 . . . . . a smaller value, so we're going in the right direction
For x=2, y = 0 . . . . . one of the real roots
Dividing out this factor*, we get ...
y = (x -2)(x^2 +2x -15)
Factoring the quadratic gives ...
y = (x -2)(x -3)(x +5) . . . . . . all real zeros
_____
* For dividing x^3 -19x +30, synthetic division works well. The work for that is shown in the second attachment.