Answer:
Step-by-step explanation:
The James family hosted an independent day party they expected 70 gusts but 7 times fewer showed up how many phone attend the party
Answer:10 people
Step-by-step explanation:
7 times less showed up so, 70 divided by 7 is 10. 10 guests attended.
The James family expected 70 guests for their party, but 7 times fewer showed up. By dividing the expected guest number by 7 (70 ÷ 7), we find that 10 guests attended the party.
Explanation:The James family expected 70 guests to attend their independent day party. However, 7 times fewer guests showed up than expected. We can calculate this by dividing the expected number of guests by 7.
Step 1: Identify the total number of guests expected which is 70.
Step 2: Divide the expected number of guests by 7. This is because the actual number of attendees was 7 times fewer than the expected.
Step 3: Perform the division: 70 ÷ 7 = 10.
So, 10 guests attended the independent day party hosted by the James family.
Learn more about Simple Division here:https://brainly.com/question/31392500
#SPJ11
PLEASE HELP!! WILL MARK BRAINLIEST AND THANK YOU!!! IM DESPERATE!!
Find the area.
______m²
Answer:
693 m²Step-by-step explanation:
This is a parallelogram.
The formula of an area of a parallelogram:
[tex]A=bh[/tex]
b - base
h - height
From the graph we have b = 21m and h = 33m.
Substitute:
[tex]A=(21)(33)=693\ m^3[/tex]
NEED HELP )Where is the number 3 - 6 located on a horizontal number line?
3 units to the left of 3
3 units to the right of 3
6 units to the right of 3
6 units to the left of 3
Answer:
The right option is 6 units to the left of 3.
Step-by-step explanation:
In the number line, +x means x units moved to the right and -x means x units moved to the left.
Now, in our case, we have to locate the number 3 - 6 on the horizontal number line.
Now, we can start with position 3 on the number line then move 6 units to the left.
Therefore, the right option is 6 units to the left of 3. (Answer)
Answer:
Last option is correct.
6 units to the left of 3
Step-by-step explanation:
given:
The given number is.
[tex]=3-6[/tex]
[tex]=-3[/tex]
So, the number is -3.
The number -3 located on horizontal line as shown in the attached file.
Therefore, the number -3 located on the horizontal line is 6 units to the left of 3.
PLZ HELPPPPP
maria borrowed 300 dollars from her parernts. She agreed to pay 15 dollars back each week. Which equation shows how much money, M, Maria owes after n week
A. M= -15n+300
B. M= 15n + 300
c. M= -15 + 300n
D. M= 15-300n
Answer:
A. M = -15n + 300
Step-by-step explanation:
Given:
Money Borrowed =300
Money to be paid each week = $15
Total number of weeks = 'n'
We need to find the equation which shows Money owes 'M' after 'n' weeks by maria.
Money Owes after n week will be equal to Total Money Borrowed minus Money to be paid each week multiplied by number of weeks.
framing in equation form we get;
[tex]M = 300-15n[/tex]
Hence The Equation representing the Money owes by Maria after n week is [tex]M = 300-15n[/tex]
Answer:
A M= -15n+300
Step-by-step explanation:
Need help! Please ! Thanks !
Answer:
Step 1: Distribute each term of the first polynomial to every term of the second polynomial. Remember that when you multiply two terms together you must multiply the coefficient (numbers) and add the exponents.
Step 2: Combine like terms (if you can).
x/2=1 what is the answer of x
PLEASE MARK BRAINLIEST!
Answer:
2!!
Step-by-step explanation:
2 ÷ 2 = 1
I hope this helps! If this answer is not correct, please don't hesitate to comment on it, as that way I can fix my answer!
- ibringsExxiback
Answer: X = 2
Step-by-step explanation: In this problem, notice that x is being divided by 2. So to get x by itself, we need to multiply both sides of the equation by 2.
Notice that on the left side, the 2 and 2 cancel each other out so we are just left with x. On the right side, we have 1 x 2 which is 2 so x = 2.
Finally, we can check our answer by plugging a 2 back into the original equation. So we have [tex]\frac{(2)}{2} = 1[/tex] which is a true statement so we know that our answer is correct.
Tamara estimated 50‾‾‾√ to fall between 7 and 8. Collin gave a more precise estimate, saying that it’s between 7.0 and 7.1. Brett says that he can estimate the value so that it’s between 2 consecutive rational numbers with decimals to the hundredths. Between what two consecutive numbers does 50‾‾‾√ lie? between 7.07 and 7.08 between 7.08 and 7.09 between 7.09 and 7.10 between 7.10 and 7.11
Answer:
√50 lies between 7.07 and 7.08.
ALGEBRA 100 Points helppp please:))
。☆✼★ ━━━━━━━━━━━━━━ ☾
The sun is roughly 93,000,000 miles away from Earth
We can round this to 100,000,000
As a power of 10, this is [tex]10^{8}[/tex]
Have A Nice Day ❤
Stay Brainly! ヅ
- Ally ✧
。☆✼★ ━━━━━━━━━━━━━━ ☾
Answer:
There are an estimated 1 quadrillion ants living on earth. A quadrillion as a power of 10 would be [tex]10^{15}[/tex], because there are 15 zeros in a quadrillion.
Evaluate AB/CD fo A = 5, B = -22, C = 4, and D = -6
Answer:
4.583 or 55/12
Step-by-step explanation:
A = 5, B = -22 and C = 4, D = -6. 5 multiplied by -22 is equal to -110, and 4 multiplied by -6 is equal to -24. Because a negative divided by a negative is a positive by the same rules of multiplication of negatives is a positive, just get rid of any negative signs in the equation. Now you have 110 / 24. 110/24 is equal to 4.583 or 55 / 12 in fraction form.
The position of an object at time t is given by s(t) = 6 - 14t. Find the instantaneous velocity at t = 6 by finding the derivative.
By using the difference quotient
Answer:
It results -14 in either way
Step-by-step explanation:
Velocity As A Rate Of Change
The velocity of an object can be computed as the rate of change of its displacement (or position taken as a vector) over time. If we compute it as a derivative, it's called instantaneous velocity, and if computed as the slope of the function (difference quotient) at a certain point it's the average velocity
The position of the object as a function of time is
[tex]\displaystyle s(t)=6-14t[/tex]
Computing the derivative
[tex]\displaystyle s'(t)=-14[/tex]
We can see it's a constant value. If we use the slope or rate of change:
[tex]\displaystyle v=\frac{s_2-s_1}{t_2-t_1}[/tex]
Now let's fix two values for time
[tex]\displaystyle t_1=5\ sec,\ t_2=8\ sec[/tex]
and compute the corresponding positions, by using the given function
[tex]\displaystyle s_1=6-14(5)=-64[/tex]
[tex]\displaystyle s_2=6-14(8)=-106[/tex]
Now we compute the average velocity
[tex]\displaystyle v=\frac{-106-(-64)}{8-5}[/tex]
[tex]\displaystyle v=\frac{-106+64}{3}=\frac{-42}{3}[/tex]
[tex]\displaystyle v=-14[/tex]
We get the very same result in both ways to compute v. It happens because the position is related with time as a linear function, it's called a constant velocity motion.
If h is a linear function with h(1) = 10 and h(3) = -6, what is h(5)?
Answer:
h(5) = - 22
Step-by-step explanation:
Given that h is a linear function say, h(x) = ax + b ......... (1)
Now, given that h(1) = 10 and h(3) = - 6
Hence, we can write from equation (1), a(1) + b = 10, ⇒ a + b = 10 .......... (2)
And a(3) + b = - 6, ⇒ 3a + b = - 6 ........ (3)
Now, solving equations (2) and (3) we get (3a - a) = - 6 - 10
⇒ 2a = - 16
⇒ a = - 8
So, from equation (2), we get, b = 10 - a = 18
Therefore, the linear function is
h(x) = - 8x + 18
Hence, h(5) = - 8(5) + 18 = - 22 (Answer)
someone should pls answer my question
Answer:
what is your question???????
Your teacher is giving you a test worth 100 points containing 40 questions. There are two point and to
ur point questions on the test. How many of each type of question are on the test?
Answer:
There are 30 two point questions and 10 four point questions on the test.
Step-by-step explanation:
Given:
Your teacher is giving you a test worth 100 points containing 40 questions. There are two point and four point questions on the test.
Now, to find number of each type of question are on the test.
Let the two point questions be [tex]x[/tex].
And let the four point questions be [tex]y[/tex].
So, total questions:
[tex]x+y=40.[/tex].........( 1 )
⇒ [tex]y=40-x.[/tex]
Now, total number of points of the questions on the test:
[tex]2x+4y=100.[/tex]
Substituting the value of [tex]y[/tex]:
⇒ [tex]2x+4(40-x)=100[/tex]
⇒ [tex]2x+160-4x=100[/tex]
⇒ [tex]160-2x=100[/tex]
Adding both sides by [tex]2x[/tex] we get:
⇒ [tex]160=100+2x[/tex]
Subtracting both sides by 100 we get:
⇒ [tex]60=2x[/tex]
Dividing both sides by 2 we get:
⇒ [tex]30=x[/tex]
⇒ [tex]x=30[/tex].
The number of two point questions = 30.
Putting the value of [tex]x[/tex] in the equation ( 1 ) we get:
[tex]30+y=40.[/tex]
Subtracting both sides by 30 we get:
⇒ [tex]y=10.[/tex]
The number of four point questions = 10.
Therefore, there are 30 two point questions and 10 four point questions on the test.
The domain of u(x) is the set of all real values except 0 and the domain of v(x) is the set of all real values except 2. What are the restrictions on the domain of (u circle v) (x)?
options are
u(x) Not-equals 0 and v(x) Not-equals 2
x Not-equals 0 and x cannot be any value for which u(x) Equals 2
x Not-equals 2 and x cannot be any value for which v(x) Equals 0
u(x) Not-equals 2 and v(x) Not-equals 0
Answer:
C
Step-by-step explanation:
I just did the test
Answer:
c
Step-by-step explanation:
Given
f(x)=3x2+7x and g(x)=2x2-x-1, find (f+g)(x).
Answer:
5x^2+6x-1
Step-by-step explanation:
Remember that (f+g)(x)=f(x)+g(x).
(3x^2+7x)+(2x^2-x-1)
3x^2+2x^2+7x-x-1
5x^2+6x-1
The sum of the functions f(x) = 3x^2 + 7x and g(x) = 2x^2 - x - 1, represented by (f+g)(x), equals to 5x^2 + 6x -1.
In mathematics, particularly in algebra, the operation (f+g)(x) represents the sum of the two functions f(x) and g(x). In order to find the sum, you simply carry out the addition operation on the functions term by term. Given your functions f(x) = 3x^2 + 7x and g(x) = 2x^2 - x - 1, the sum (f+g)(x) is then calculated as follows:
Add the x^2 terms: 3x^2 (from f(x)) + 2x^2 (from g(x)) = 5x^2Add the x terms: 7x (from f(x)) - x (from g(x)) = 6xAdd the constants: There's no constant in f(x), and -1 in g(x), so the sum is -1
Therefore, (f+g)(x) = 5x^2 + 6x -1.
Learn more about Addition of functions here:
https://brainly.com/question/34032219
#SPJ6
length of a room is 3 times its breadth and height is 4.6 m.if the total cost of carpeting the floor of a room at the rate of Rs. 60 per square meter is Rs. 4500,Find the total cost of papering the 4 walls at the rate of Rs. 6.
The student's homework question involves the calculation of a room's floor area for carpeting costs and then determining the wall area for papering costs, utilizing given ratios and costs per square meter.
The question involves calculating the area of a room's floor and using that to determine the cost of carpeting, followed by calculating the cost of papering the walls. To solve for this, we use the given ratio of the length being 3 times the breadth (let's say the breadth is 'b', then the length would be '3b'). When the carpeting cost of Rs. 60 per square meter totals Rs. 4500, we can find the area of the floor by dividing the total cost by the per square meter cost, which gives us an area of 75 square meters (i.e., 4500 / 60 = 75 m2).
Assuming the room to be a rectangle, the length and breadth can be determined from the area (since length times breadth = area), and given the relationship between length and breadth, we can solve for 'b' and then find '3b'. Once we have the dimensions of the floor, we can calculate the perimeter (2 times (length + breadth)) and use the given height to find the total area of the walls. The cost of papering is then determined by multiplying the wall area by the cost per square meter (Rs. 6 in this case).
The graphs of y=x-3 and y = 3x -4 intersect at
approximately
1) (0.38,-2.85), only
| 2) (2.62,3.85), only
3) (0.38,-2.85) and (2.62,3.85)
4) (0.38, -2.85) and (3.85,2.62)
Answer:
Option 3) (0.38,-2.85) and (2.62,3.85)
Step-by-step explanation:
The correct question is
The graphs of y=x^2-3 and y=3x-4 intersect at approximately...
we have
[tex]y=x^2-3[/tex] ----> equation A
[tex]y=3x-4[/tex] ----> equation B
Solve the system by graphing
Remember that the solution of the system is the intersection point both graphs
Equate equation A and equation B
[tex]x^2-3=3x-4[/tex]
[tex]x^2-3x-3+4=0[/tex]
[tex]x^2-3x+1=0[/tex]
The formula to solve a quadratic equation of the form
[tex]ax^{2} +bx+c=0[/tex]
is equal to
[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]x^2-3x+1=0[/tex]
so
[tex]a=1\\b=-3\\c=1[/tex]
substitute in the formula
[tex]x=\frac{-(-3)\pm\sqrt{-3^{2}-4(1)(1)}} {2(1)}[/tex]
[tex]x=\frac{3\pm\sqrt{5}} {2}[/tex]
so
[tex]x_1=\frac{3+\sqrt{5}} {2}=2.62[/tex]
[tex]x_2=\frac{3-\sqrt{5}} {2}=0.38[/tex]
Find the values of y (substitute the value of x in equation A or equation B)
For x=2.62 ----> [tex]y=(2.62)^2-3=3.85[/tex]
For x=0.38 ----> [tex]y=(0.38)^2-3=-2.85[/tex]
therefore
The intersection points are approximately (0.38,-2.85) and (2.62,3.85)
Find the primary solution of cosθ=−0.3
The primary solution for [tex]\( \cos \theta = -0.3 \) is approximately \( \theta \approx 109.47^\circ \) within \( [0^\circ, 360^\circ) \).[/tex]
To find the primary solution of [tex]\( \cos \theta = -0.3 \), we need to determine the angle \( \theta \) within the interval \( [0^\circ, 360^\circ) \) that satisfies this equation.[/tex]
1. **Using Inverse Cosine Function**: Since[tex]\( \cos \theta = -0.3 \), we need to find the angle whose cosine is -0.3. We use the inverse cosine function \( \arccos \) to find \( \theta \):[/tex]
[tex]\[ \theta = \arccos(-0.3) \][/tex]
2. **Evaluate the Inverse Cosine**: We evaluate [tex]\( \arccos(-0.3) \)[/tex] using a calculator or a trigonometric table. This gives us the angle in radians.
3. **Convert Radians to Degrees (if necessary)**: If the solution is given in radians, we convert it to degrees since the interval given is in degrees. Recall that [tex]\( 180^\circ = \pi \) radians. To convert radians to degrees, multiply by \( \frac{180}{\pi} \).[/tex]
4. **Check Interval**: Finally, we ensure that the angle [tex]\( \theta \)[/tex] is within the interval [tex]\( [0^\circ, 360^\circ) \). If the angle is greater than or equal to \( 360^\circ \), we subtract multiples of \( 360^\circ \)[/tex]until we get an angle within the desired interval.
5. **Final Result**: The angle [tex]\( \theta \)[/tex] found in step 4 is the primary solution of the given equation.
In summary, the detailed stepwise solution involves using the inverse cosine function to find the angle whose cosine is -0.3, evaluating this angle, converting it to degrees if necessary, and ensuring it falls within the desired interval.
how do you graph y>3x-4
Answer:
Given inequality:
[tex]y>3x-4[/tex]
To graph it.
Solution:
In order to graph the given inequality, we will first graph the equation of the line by replacing the inequality sign with equal to sign.
Thus, we will graph the line [tex]y=3x-4[/tex]
On comparing the line equation with standard equation [tex]y=mx+b[/tex] where [tex](0,b)[/tex] represents the y-intercept point of the line, we can conclude the y-intercept point for the given line is [tex](0,-4)[/tex]
We can find another point by plugging in [tex]x=1[/tex] in the equation.
So, we have:
[tex]y=3(1)-4[/tex]
[tex]y=3-4[/tex]
[tex]y=-1[/tex]
So, the other point is [tex](1,-1)[/tex]
Potting (0,-4) and (1,-1) on the graph.
We can joint the two points and extend it infinity in order to graph the equation of line.
Now, since the inequality sign is greater than,
1) so we make sure that the line of the equation is a broken line as the line is not included in the solution for the inequality.
2) The part of the graph lying above the line would be shaded as the solution for the inequality.
Teresa was the designing a game to play at lunch time with her friends she wanted to know which number on the die is the luckiest she roll a die 50 times the dial and it's showing the number five 20 times she claimed she rolled a five 20% of the time
Answer:
Teresa is wrong. 20 times does not always mean 20% because it depends on the total times she rolled the die. Since she rolled the die 50 times, the fraction she got five was 20/50, which is 40%.
he expression $130-60t$130−60t represents the distance, in miles, the counselor still needs to drive after $t$t hours.
What does the $60$60 in the expression represent?
Answer:
Speed of the counselor is represented by 60 and is equal to 60 mph
Step-by-step explanation:
Given:
The expression that represents the distance, in miles, the counselor still needs to drive after 't' hours is given as:
[tex]d=130-60t\\d=-60t+130[/tex]
The above expression is of the form of a standard linear equation:
[tex]y=mx+b[/tex]
Here, 'm' represents the slope or rate of change of 'y' with 'x' and 'b' is the y-intercept or initial value of 'y' when 'x' was 0.
On comparing the standard equation with the given equation, we conclude that:
[tex]m=-60[/tex]
Therefore, the slope here represents the change in distance with time 't'.
We know that, change in distance with time is nothing but the speed.
So, the speed of the counselor is 60 mph.
Therefore, the term 60 represents the speed of the counselor.
its 76 degrees fahrenheit at the 6000-foot level of a mountain, and 49 degrees Fahrenheit at the 12000-foot level of the mountain. write a liner equation to find the temperature T at an elevation x on the mountain, where x is in thousands of feet.
[tex]T = \frac{-9}{2}x + 103[/tex] is the linear equation to find the temperature T at an elevation x on the mountain, where x is in thousands of feet.
Solution:
The linear equation in slope intercept form is given as:
T = cx + k ------ (i)
Where "t" is the temperature at an elevation x
And x is in thousands of feet
Given that its 76 degrees fahrenheit at the 6000-foot level of a mountain
Given, when c = 6 thousand ft and [tex]T = 76^{\circ}[/tex] fahrenheit
This implies,
From (i)
76 = c(6) + k
76 = 6c + k
⇒ k = 76 - 6c ----- (ii)
Given that 49 degrees Fahrenheit at the 12000-foot level of the mountain
Given, when c = 12 thousand ft and [tex]T = 49^{\circ}[/tex] fahrenheit
This implies,
From (i)
49 = c(12) + k
49 = 12c + k
Substitute (ii) in above equation
49 = 12c + (76 - 6c)
49 = 12c + 76 - 6c
49 - 76 = 6c
6c = -27
[tex]c = \frac{-9}{2}[/tex]
Substituting the value of c in (ii) we get
[tex]k = 76 - 6( \frac{-9}{2})\\\\k = 76 + 27 = 103[/tex]
Substituting the value of c and k in (i)
[tex]T = \frac{-9}{2}x + 103[/tex]
Where "x" is in thousands of feet
Thus the required linear equation is found
The linear equation that represents the temperature T at an elevation x on the mountain (where x is in thousands of feet) is T = -4.5x + 103.
Explanation:
This is a problem involving linear equations in Mathematics. We are given two data points, (6, 76) and (12, 49) where the first value in each pair is an elevation (in thousands of feet) and the second value is the corresponding temperature in degrees Fahrenheit. We can use these points to derive a linear equation of the form T = mx + c where T is the temperature, m is the slope, x is the elevation, and c is the y-intercept. The slope of the line m can be calculated using the formula (y2-y1)/(x2-x1) = (49-76)/(12-6) = -27/6 = -4.5. Therefore, every thousand feet in elevation leads to a temperature drop of 4.5 degrees Fahrenheit. To calculate the y-intercept c we can substitute x and y values from one of our points into the linear equation. For instance, using point (6, 76) we get 76 = -4.5*6 + c, which gives c = 103. Therefore, the linear equation to find the temperature T at an elevation x (in thousands feet) is T = -4.5x + 103.
Learn more about Linear Equation here:
https://brainly.com/question/32634451
#SPJ3
Six times a larger number is equal to the sum of a smaller number and 18. The difference of twice the larger number and the
smaller number is 6. Let x represent the smaller number and y represent the larger number. Which equations represent the
situation?
y = 6x+18
y = 2x-6
o y = 6(x+18)
y = 2(x-6)
oy-ax+3
y-1x+6
The set of equations that represent this situation is:
[tex]y = \frac{1}{6}x + 3[/tex]
[tex]y = \frac{1}{2}x + 3[/tex]
Solution:
Let "x" represent the smaller number
Let "y" represent the larger number
Given that,
Six times a larger number is equal to the sum of a smaller number and 18
Here "times" represents multiplication
Six times a larger number = sum of a smaller number and 18
6 x larger number = smaller number + 18
6y = x + 18
Thus,
[tex]y = \frac{1}{6}(x + 18)\\\\y = \frac{1}{6}x + 3[/tex]
Also given that difference of twice the larger number and the smaller number is 6
twice the larger number - smaller number = 6
2y - x = 6
Thus,
2y = x + 6
[tex]y = \frac{1}{2}(x + 6)\\\\y = \frac{1}{2}x + 3[/tex]
Thus the set of equations that represent this situation is:
[tex]y = \frac{1}{6}x + 3[/tex]
[tex]y = \frac{1}{2}x + 3[/tex]
Answer:
the correct answer is D
Step-by-step explanation:
How can I solve this question
Answer:
The value of x can be 5 or 2
Step-by-step explanation:
In given triangle ABC
Interior Angle A = [tex]x^{2} +3x+20[/tex]
Interior Angle B = [tex]x^{2} +14x-5[/tex]
Exterior Angle I = [tex]3x^{2} +10x+25[/tex]
We know that
Exterior Angle of triangle is summation of corresponding opposite angles
Angle I = Angle A + Angle B
[tex]3x^{2} +10x+25= (x^{2} +3x+20)+(x^{2} +14x-5)[/tex]
[tex]3x^{2} +10x+25= 2x^{2} +17x+15[/tex]
[tex]1x^{2}-7x+10=0[/tex]
[tex]x^{2}-2x-5x+10=0[/tex]
[tex]x(x-2)-5(x-2)=0[/tex]
[tex](x-5)(x-2)=0[/tex]
If 6 pounds of pasta feeds 20 people. How much would 4 pounds of pasta feed?
Answer:
13.333...
Step-by-step explanation:
20 divided by 6 = 3.33...
3.33 * 4 = 13.333
Find the zeros of the function in the interval [-2pi, 2pi] f(x)= -4sin x
Answer:
Zeros are [tex]x=-2\pi,-\pi,0,\pi,2\pi[/tex]
Step-by-step explanation:
[tex]f(x)=0\\-4\sin x=0\\\sin x=0\\[/tex]
[tex]\sin(-2\pi)=0\\\sin(-\pi)=0\\\sin(0)=0\\\sin(\pi)=0\\\sin(2\pi)=0[/tex]
It's B) 0, ±pi, ±2pi on edge
What is the lcm of 1 and 5
Answer:
5
Step-by-step explanation:
The LCM of 1 and 5 is 5, as 1 is a factor of all numbers and thus does not change the other number when finding the LCM.
The least common multiple (LCM) of two numbers is the smallest number that is a multiple of both of the given numbers. In the case of 1 and 5, the LCM can be found by simply taking the larger number since 1 is a factor of all integers which therefore, gives the LCM of 1 and 5 as 5. There isn't really a need for a complex calculation because any number multiplied by 1 remains unchanged.
Factor completely 9x4y − 6x3y2 + 3x2y3.
Will give crown thingy
3x2y(3x2 − 2xy + y2)
3xy(3x2 − 2xy + y2)
3xy2(3x2 − 2xy + y2)
3x2y(3x2 + 2xy + y2)
Answer:
It's the first choice: 3x^2y(3x^2 - 2xy + y^2).
Step-by-step explanation:
9x4y − 6x3y2 + 3x2y3
We take the Greatest Common Factor which is 3x^2y:
= 3x^2y(3x^2 - 2xy + y^2).
Answer:
3x^2y(3x^2 - 2xy + y^2)
Step-by-step explanation:
You can give the guy above me a crown now lol 4 years later
Find the ratio of the surface area to volume of the rectangular prism brlow
Answer:
[tex]A = 2(width*length) + 2(length*height)+2(width*height)\\=> 2(wl+lh+wh)\\where \ w = width,\ l=length \ and \ h = height[/tex]
l = 8, w = 5, h = 6
A = 2(5*8 + 8*6 + 5*6)
A = 236
[tex]Volume = width * length * height\\V = wlh[/tex]
V = 5*8*6
V = 240
Ratio of A to V = A / V
236/240 = 236:240
Step-by-step explanation:
The surface area of any object is the total area of each face of that object. Now, we have a rectangular prism with dimensions given. Considering a face of the prism, there is an opposite face and this is why the area of each face was multiplied by 2. That is how the formula for the surface area of an object is derived
For the volume, the formula is multiplying the height, width and length
When the area and volume is computed, we now take the ratio of the answers to arrive at 236/240 which in ratio form is 236:240
Michelle collected 7 more than twice the number of newspaper David collected. Michelle collected 33 newspaper. How many did David collect
David collected 13 newspaper
Solution:
Given that,
Michelle collected 7 more than twice the number of newspaper David collected.
Michelle collected 33 newspaper
To find: Number of newspaper collected by David
From given information,
Number of newspaper collected by Michelle = 7 more than twice the number of newspaper David collected
Number of newspaper collected by Michelle = 7 + 2(Number of newspaper collected by David)
33 = 7 + 2(Number of newspaper collected by David)
2(Number of newspaper collected by David) = 33 - 7
2(Number of newspaper collected by David) = 26
Number of newspaper collected by David = [tex]26 \div 2 = 13[/tex]
Therefore David collected 13 newspaper