What are the explicit equation and domain for an arithmetic sequence with a first term of 5 and a second term of 2?
an = 5 − 2(n − 1); all integers where n ≥ 1
an = 5 − 2(n − 1); all integers where n ≥ 0
an = 5 − 3(n − 1); all integers where n ≥ 1
an = 5 − 3(n − 1); all integers where n ≥ 0

Answers

Answer 1

The easiest way to answer this is to try all choices, plug in values for the 1st term and 2nd term then check if the answer matches with 5 and 2. (n = 1 and n = 2)

We know that n starts with 1 because that is our 1st term, we do not have 0th term, therefore that leaves us with 2 choices.

Choice 1: an = 5 − 2(n − 1); all integers where n ≥ 1

n = 1

a1 = 5 – 2 (1 – 1) = 5 – 2 (0)

a1 = 5

 

n = 2

a2 = 5 – 2 (2 – 1) = 5 – 2 (1)

a2 = 3   (FALSE!)

 

Choice 2: an = 5 − 3(n − 1); all integers where n ≥ 1

n = 1

a1 = 5 – 3 (1 – 1) = 5 – 3 (0)

a1 = 5

 

n = 2

a2 = 5 – 3 (2 – 1) = 5 – 3 (1)

a2 = 2   (TRUE)

 

Therefore the correct answer is:

an = 5 − 3(n − 1); all integers where n ≥ 1

Answer 2

Answer:

A is INCORRECT

Step-by-step explanation:

Just finished the FLVS test


Related Questions

Solve the system by the elimination method.
x + y - 6 = 0
x - y - 8 = 0
When you eliminate y , what is the resulting equation?

Answers

Since we have a positive y in one equation and a negative y in the other, we can simple add the two together to eliminate y...

2x-14=0

2x=14

x=7, which makes x+y=6 become:

7+y=6

y=-1, so the solution to the system of equations is the point:

(7, -1)

Answer: 2x = 14

Step-by-step explanation:

Solving the equation us in elimination method,

x + y - 6 = 0...1

x - y - 8 = 0...2

From 1,

x+y = 6...3

x-y = 8...4

To eliminate y, we will add equation 3 and 4 since both the signs attached to y are different.

2x=6+8

2x = 14 (This will be the resulting equation)

To get the variables x, we will divide both sides of the resulting equation by 2

x = 14/2

x = 7

Substituting x = 7 into eqn 3

7 + y = 6

y = -1

Need help. Thank you

Answers

The answer is D.
The side lengths aren't the same and you can tell by calculating the hypotenuses of sides AB and sides BC.
For AB 2^2+5^2= 29 The length is root 29.
For BC 2^2+4^2=20 The length is root 20.
A square must have equal side lengths, which this figure does not

Calculate the average rate of change for the graphed sequence from n = 2 to n = 4. graphed sequence showing point 1, negative 3, point 2, negative 3.5, point 3, negative 6.75, point 4, negative 10.125, point 5, negative 15.1875, and point 6, negative 22.78125

Answers

 I believe the given sequence is in the tabular form of:

n             value

1              - 3

2              - 3.5

3              - 6.75

4              - 10.125

5              - 15.1875

6              - 22.78125

 

Now to find for the average rate of change from n1 = 2 to n2 = 4, we simply have to use the formula:

average rate of change = (value2 – value1) / (n2 – n1)

Substituting:

average rate of change = (- 10.125 – (-3.5)) / (4 – 2)

average rate of change = (- 6.625) / (2)

average rate of change = -3.3125

 

Therefore the average rate of change from n=2 to n=4 is -3.3125.

Answer:

B or −3.3125

Step-by-step explanation:

flex point 2023

A right triangle has leg lengths of x units and 3(x + 1) units. Its hypotenuse measures 25 units. Find the leg lengths. URGENT! Brainliest to the best answer!

Answers

You get the hypothenuse by doing √a²+b² = c

So....

[tex] \sqrt{x^2+[3(x+1)]^2} = 25[/tex]

Square both terms

x² + (3x+3)² = 625

x² + 9x² + 18x + 9 - 625 = 0

10x² + 18x - 616 = 0

x₁,₂ = (-b±√Δ)/2a

Δ = b²-4ac

You call a 10, b 18 and c -616

x1,2 = (-18±√18²-4*10*-616)/2*10

x1,2 = (-18±√324+24640)/20

x1,2 = (-18±√24964)/20

x1,2 = (-18±158)/20

x1 = -18+158/20 = 140/20 = 7

x2 = (-18-158)/20 = -176/20 = -44/5

Pick the first solution

So one leg is 7 and the other is 3(7+1) = 3(8) = 24

Let's verify √24²+7² = √576+49 = √625 = 25
i am not sure about the answer but i guess  the answer is 7 and 24

Can someone help me out please ? Thanks!

Answers

Segments AB and CD are parallel and congruent. Segments AD  and BC are also parallel and congruent. AC is reflexive (both triangles have the same side AC in common). Vertex angles [tex]CAD[/tex] and [tex]ACB[/tex] are also congruent.

Then, they are congruent.

Read the following statement: x + 6 = 6 + x. This statement demonstrates:

the substitution property.
the reflexive property.
the symmetric property.
the transitive property.

Answers

The reflective property
Final answer:

The statement x + 6 = 6 + x demonstrates the symmetric property of equality.

Explanation:

The given statement x + 6 = 6 + x represents the symmetric property.

The symmetric property of equality states that if a = b, then b = a. In this case, both sides of the equation are the same, with x and 6 appearing in different orders. Thus, the equation satisfies the symmetric property.

For example, if we let x = 2, the equation becomes 2 + 6 = 6 + 2, which is true.

Learn more about Symmetric property of equality here:

https://brainly.com/question/29206759

#SPJ2

Determine the number of possible triangles, ABC, that can be formed given B = 45°, b = 4, and c = 5.

Answers

Given:
m∠B = 45°
b = 4
c = 5

From the Law of Sines, obtain
[tex] \frac{sinC}{c}= \frac{sinB}{b} \\ sinC=( \frac{c}{b})sinB \\sinC = ( \frac{5}{4} )sin(45^{o})=0.884\\ C = sin^{-1}0.884=62.1^{o}[/tex]
This yields
m∠A = 180 - 45 - 62.1 = 72.9°
[tex]a=( \frac{sinA}{sinB})b=( \frac{sin(72.9^{o})}{sin(42^{o})})4=5.41[/tex]
The first triangle has
∠A=72.9°,  m∠B=45°,  m∠C = 62.1°,  a=5.41,  b=4,  c=5.

Also, 
[tex]m\angle{C} = sin^{-1}0.884 = 117.9^{o}[/tex]
This yields
m∠A = 180 - 45 - 117.9 = 17.1°
[tex]a=( \frac{sinA}{sin(45^{o})} )4=1.66[/tex]
The second triangle has
m∠A = 17.1°,  m∠B = 45°,  m∠C = 117.9°,  a = 1.66,  b = 4,  c = 5

Answer: There are 2 possible triangles.

Answer:

2

Step-by-step explanation:

this is right trust

Identify the function that best models the data.

Answers

The answer you are  looking for is A, I'm a little rusts at these but that should your answer have a good day!
Using a graphing calculator with a quadratic regression function, the answer is letter A.

Formula for volume and surface area of a cylinder and explain why

Answers

V = πr² * h (where r is the radius and h the height)
Total SA = Lateral Area + 2Base Area

LA = 2πr * h
BA = πr²

Why?

The cylinder is made by rotating a rectangle for 360°. Two sides make the top and bottom faces, that are circles. The radius is the dimension of the widht/lenght that generated the circles. The other sides form the lateral face (the cylinder has only one lateral face).

Of course to find the lateral area you multiply the radius for 2, to find the diameter of the circle and multiply for π since the rectangle rotates.

For the circles, the base area is just the formula to find the area of a circumference.

You sum the two areas (two times the base area, since it has a circle on the top and one on the bottom) to find the total area.

For the volume, that is the profondity, the capacity of the cylinder, you find the base area (so you know all the capacity) and multiply for the height.

How do I find the linear equation for y=4x-5

Answers

This is simple as all you have to learn is what slope intercept form is and how it works. In SIF, the number paired with the x is the slope, which should always be put over 1 if it is not already put over another number. The slope is the "rise over the run" which means that it is a proportion. For every 4 that you go up in this case, you should be moving over 1 on the x axis. The other number (-5) is the y-intercept, which means that the line you draw at the slope should go through that number. 

In the attached image, the y-intercept (-5) is highlighted and the blue dots shows that the line goes up 4 and over 1 (slope) between each point. 

WHAT IS 50% OF 9? ROUND TO THE NEAREST HUNDRETH

Answers

50% is equal to the so we can easily divide 9 by 2 to get your answer 4.50 there is no hundreths for it is a clean divide (4.5×2=9)
Convert 50% to a decimal by moving the decimal point two places to the left:

50% = 0.50

Multiply 0.50 * 9 = 4.5

So, your answer is 4.5.

Hope this helps, please mark brainliest and have an amazing evening!

how do you know when to rewrite square trinomials and difference of squares as separate factors

Answers

Recognizing the specific forms of square trinomials and the difference of squares allows you to rewrite them as separate factors, simplifying algebraic expressions and facilitating further mathematical operations.

Knowing when to rewrite square trinomials and the difference of squares as separate factors depends on the algebraic expression you are dealing with. Let's consider each case separately.

1. Square Trinomials:

  - Square trinomials have the form [tex]\(a^2 + 2ab + b^2\) or \(a^2 - 2ab + b^2\)[/tex], where(a) and (b) are algebraic expressions.

  - These trinomials can be factored into the square of a binomial: [tex]\((a + b)^2\) or \((a - b)^2\).[/tex]

  - You should rewrite a square trinomial as separate factors when you encounter an expression that matches the form of a perfect square trinomial. Recognizing this pattern allows you to simplify the expression.

2. Difference of Squares:

  - The difference of squares has the form [tex]\(a^2 - b^2\),[/tex] where (a) and (b) are algebraic expressions.

  - This expression can be factored into the product of conjugates: [tex]\((a + b)(a - b)\).[/tex]

  - You should rewrite a difference of squares as separate factors when you have an expression in the form [tex]\(a^2 - b^2\)[/tex]. Recognizing this pattern helps you simplify and factor the expression efficiently.

Where does the normal line to the parabola y = x − x2 at the point (1, 0) intersect the parabola a second time?

Answers

find the line that is normal to the parabola at the given point
remember that normal means perpendicular
perpendicular lines have slopes that multiply to -1
we can use point slope form to write the equation of the line since we are given the point (1,0)

we just need the slope

take derivitive
y'=1-2x
at x=1
y'=1-2(1)
y'=1-2
y'=-1

the slope is -1
the perpendicular of that slope is what number we can multiply to get -1
-1 times what=-1?
what=1
duh
so
point (1,0) and slope 1
y-0=1(x-1)
y=x-1 is da equation

solve for where y=x-1 and y=x-x² intersect

set equatl to each other since equal y
x-1=x-x²
x²-1=0
factor difference of 2 perfect squares
(x-1)(x+1)=0
set to zero

x-1=0
x=1
we got this point already

x+1=0
x=-1
sub back
y=-1-(-1)²
y=-1-(1)
y=-1-1
y=-2

it intersects at (-1,-2)

The normal line to the parabola [tex]y=x-x^2[/tex] at the point [tex](1,0)[/tex] intersect it second time at the point [tex](-1,-2)[/tex].

The given equation is:

[tex]y = x-x^2[/tex]

at point,

[tex](1,0)[/tex]

then,

→ [tex]y' = 1-2x[/tex]

So, at (1,0),

→ [tex]y' = 1-2\times 1[/tex]

      [tex]= -1[/tex]

Since,

This is the slope of the tangent, we take its negative reciprocal to get the slope of normal:

= [tex]-\frac{1}{(-1)}[/tex]

= [tex]1[/tex]

The normal line has slope 1 and goes through (1,0):

→ [tex]y-0=1(x-1)[/tex]

→       [tex]y = x-1[/tex]

We want to know where this intersects [tex]y = x-x^2[/tex], we get

→ [tex]x-1=x-x^2[/tex]

→ [tex]x^2=1[/tex]

→ [tex]x = \pm 1[/tex]

hence,

The point corresponding to (1,0) is the one we started with, so we want x=-1:  

→ [tex]x = -1[/tex]

→ [tex]y = x-x^2[/tex]

By substituting the value of "x", we get

→    [tex]= -1-1[/tex]

→    [tex]= -1[/tex]

Thus the answer above is right.

Learn more about Parabola here:

https://brainly.com/question/21685473

A system of linear equations includes the line that is created by the equation y=0.5x-1 and the line through the points (3, 1) and (–5, –7), shown below.

What is the solution to the system of equations?

a. (–6, –4)
b. (0, –1)
c. (0, –2)
d. (2, 0)

Answers

The answer is (2,0). If you graph the lines, it shows that the intersection occurs right there.

Answer: Solution is,

d. (2, 0)

Step-by-step explanation:

Since, the equation of line that passes through points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is,

[tex](y-y_1)=\frac{x_2-x_1}{y_2-y_1}(y-y_1)[/tex]

Thus, the equation of line through the points (3, 1) and (–5, –7) is,

[tex](y-1)=\frac{-7-1}{-5-3}(x-3)[/tex]

[tex](y-1)=\frac{-8}{-8}(x-3)[/tex]

[tex]y - 1 = x - 3[/tex]

[tex]\implies y = x - 2------(1)[/tex],

Equation of second line is,

[tex]y = 0.5x - 1 -----(2)[/tex],

By equation (1) and (2),

x - 2 = 0.5x - 1 ⇒ 0.5x = 1 ⇒ x = 2,

From equation (1),

We get, y = 0,

Hence, the solution of line (1) and (2) is (2,0).

Find the coordinates of point Q that lies along the directed line segment from R(-2, 4) to S(18, -6) and partitions the segment in the ratio of 3:7.
Please help!!

Answers

check the picture below

thus then

[tex]\bf \qquad \textit{internal division of a line segment}\\\\ R(-2,4)\qquad S(18,-6)\qquad ratio1=3\qquad ratio2=7\qquad 3:7\\ \quad \\ \quad \\ \cfrac{RQ}{QS}=\cfrac{ratio1}{ratio2}\implies \cfrac{R}{S}=\cfrac{3}{7} \implies 7R=3S \\\\\\ 7(-2,4)=3(18,-6)[/tex]

[tex]\bf {{ Q=\left(\cfrac{\textit{sum of "x" values}}{ratio1+ratio2}\quad ,\quad \cfrac{\textit{sum of "y" values}}{ratio1+ratio2}\right)}}\\ \quad \\ \qquad thus\qquad \\ \quad \\ Q=\left(\cfrac{(7\cdot -2)+(3\cdot 18)}{3+7}\quad ,\quad \cfrac{(7\cdot 4)+(3\cdot -6)}{3+7}\right)[/tex]

A carnival game allows a group of players to each draw and keep a marble from a bag. The bag contains 5 gold marbles, 25 silver marbles, and 70 red marbles.

A player wins a large prize for drawing a gold marble and a small prize for drawing a silver marble. There is no prize for drawing a red marble.

At the start of the game, the probability of winning a large prize is 0.05 and the probability of winning a small prize is 0.25.

1. Suppose that the first player draws a silver marble and wins a small prize. What is the probability that the second player will also win a small prize?

2. If a group of four plays the game one at a time and everyone wins a small prize, which player had the greatest probability of winning a large prize?

3. How could the game be made fair for each player? That is, how could you change the game so that each player has an equal chance of winning a prize?

Answers

5 gold marbles,
25 silver marbles, and
70 red marbles.
------------------------------

100 total marbles

large prize: drawing a gold marble
small prize: drawing a silver marble.

At the start of the game,

probability of winning a large prize = positive outcoumes / total possible outcomes = 5 gold marbles / 100 total marbles =  0.05

probability of winning a small prize = positive outcomes / total possible outcomes = 25 silver marbles / 100 total marbles = 0.25.

1. Suppose that the first player draws a silver marble and wins a small prize. What is the probability that the second player will also win a small prize?

Answer:

numer of silver marbles / number of total marbles = (25 -1 ) / (100 - 1) = 24 / 99 ≈ 0.24

2. If a group of four plays the game one at a time and everyone wins a small prize, which player had the greatest probability of winning a large prize?

Answer:

First player: 0.25

Second player: 5 gold marbles / ( 100 - 1) total marbles = 5 /99 ≈ 0.0505

Third player: 5 gold marbles / (99 - 1) total marbles = 5 / 98 ≈ 0.051

Fourth player: 5 gold marbles / ( 98 - 1) total marbles = 5 / 97 ≈ 0.0515

So, the probability of winning a big prize increases as more balls different of gold marbles are extracted from the bag, and so, in this case, the fourth player has a greater chance to win a large prize.

3. How could the game be made fair for each player? That is, how could you change the game so that each player has an equal chance of winning a prize?

Answer: All the players would have equal chance of winning a prize if the balls were replaced in the bag after each play.

(15 POINTS) A card is drawn from a deck of 52. What is the probability of drawing either a diamond or a seven?
A) 6/13
B) 17/52
C) 19/52
D) 4/13

Answers

that would be a 6/13

Answer:

The correct answer is 4/13

Step-by-step explanation:

The events "drawing a diamond or a seven" are inclusive events since there is a seven of diamonds. Follow the rule for inclusive events.

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

Hope this helps! :)

In the triangle below, b = _____. If necessary, round your answer to two decimal places.

Answers

The Law of Sines is applicable here for quick calculation...

b/sin(180-42-41.5)=37/sin42

b/sin96.5=37/sin42

b=37sin96.5/sin42 units

b≈54.94 units (to nearest hundredth of a unit)


Answer: The value of b is approximately 54.94 .

Explanation:

In the given figure two angles are given and according to the angle sum property the sum of interior angles of a triangle is 180 degree.

[tex]\angle A+\angle B+\angle C=180[/tex]

[tex]42+\angle B+41.5=180[/tex]

[tex]\angle B=180-83.5[/tex]

[tex]\angle B=96.5[/tex]

According to the law of sine,

[tex]\frac{a}{\sin A} =\frac{b}{\sin B} =\frac{c}{\sin C}[/tex]

From given figure, [tex]\angle A=42,a=37[/tex]

[tex]\frac{37}{\sin (42^{\circ})}= \frac{b}{\sin (96.5^{\circ})}[/tex]

[tex]\frac{37}{0,66913} =\frac{b}{0.99357}[/tex]

[tex]b=54.94018[/tex]

[tex]b\approx 54.94[/tex]

Therefore, the value of b is 54.94.

Divide 6 feet 6 inches by 5

Answers

6 ft 6 in....
1 ft = 12 inches, so 6 ft = (12 * 6) = 72 inches...+ the other 6 inches = 78 inches

78 / 5 = 15.6 inches


Final answer:

To divide 6 feet 6 inches by 5, convert the length to inches, divide by 5, then convert back to feet and inches, resulting in 1 foot 3 inches per section.

Explanation:

To divide 6 feet 6 inches by 5, first convert the entire length to inches. Since there are 12 inches in 1 foot, 6 feet equals 72 inches (6 feet x 12 inches/foot). Adding the additional 6 inches gives us a total of 78 inches. Now, divide 78 inches by 5 to find the length of each section.

78 inches ÷ 5 = 15.6 inches per section.

To convert this back to feet and inches, remember that there are 12 inches in a foot. Therefore, 15 inches is 1 foot 3 inches, and the remaining 0.6 inches can be expressed as a fraction of an inch (0.6 x 12 = 7.2, which is approximately 7 inches). So, each section is 1 foot 3 inches.

Can someone please help me solve 91

Answers

[tex]3x^3+7x^2-20x=0\\ x(3x^2+7x-20)=0\\ x(3x^2-5x+12x-20)=0\\ x(x(3x-5)+4(3x-5))=0\\ x(x+4)(3x-5)=0\\ x=0 \vee x=-4 \vee x=\dfrac{5}{3}[/tex]
3x^3+7x^2-20x=0  factor out x first

x(3x^2+7x-20)=0

x(3x^2+12x-5x-20)=0

x(3x(x+4)-5(x+4))=0

x(3x-5)(x+4)=0

x={-4, 0, 5/3}

AB is tangent to circle O at B. what is the length of the radius r? Round to the nearest tenth. Look at image attached.

Answers

check the picture below.

A circle is a curve sketched out by a point moving in a plane. The radius of the given circle is 8.4 units. The correct option is D.

What is a circle?

A circle is a curve sketched out by a point moving in a plane so that its distance from a given point is constant; alternatively, it is the shape formed by all points in a plane that are at a set distance from a given point, the centre.

In a circle, a tangent is always perpendicular to the radius of the circle. Therefore, in the given figure the triangle formed will be a right angled triangle.

Now, in a right angle triangle, using the Pythagoras theorem the relation between the different sides of the triangle can be written as,

AO² = AB² + OB²

(9.8)² = 5² + r²

96.04 = 25 + r²

r² = 96.04 - 25

r² = 71.04

r = √(71.04)

r = 8.4

Hence, the radius of the given circle is 8.4 units.

Learn more about Circle here:

https://brainly.com/question/11833983

#SPJ5

Suppose the vertex of a parabola is in the first quadrant and the parabola opens upwards. What can be determined about the value of a and the discriminant?

Answers

A parabola is the graph of a quadratic function, 

that is the graph of [tex]f(x)=a x^{2} +bx+c[/tex], where a is not 0.

from a, b and c we can derive the following informations about the shape of a parabola:

if a>0, the parabola opens upwards.
if a<0, the parabola opens downwards.

Consider the discriminant [tex]D= b^{2} -4ac[/tex]

If D>0, the parabola intersects the x-axis at 2 points.
If D=0, the parabola intersects the x-axis at 1 point.
If D<0, the parabola does not intersect the x axis.

"the vertex of a parabola is in the first quadrant and the parabola opens upwards."

the vertex is in the first quadrant means that the vertex is above the x-axis, and it opens upwards, so the parabola does not intersect the x-axis.

This means that:

Answer: a>0, the discriminant D<0

Final answer:

A parabola in the first quadrant opening upwards implies a positive 'a' value and a discriminant that, if not negative, yields real roots with positive values.

Explanation:

When a parabola has its vertex in the first quadrant and it opens upwards, we can determine specific values for a and the discriminant. The coefficient 'a' in the quadratic equation ax²+bx+c = 0 must be positive for the parabola to open upwards. Concerning the discriminant (calculated as b²-4ac), if the vertex is in the first quadrant, the parabola either does not intersect the x-axis at all (discriminant < 0), or it intersects the x-axis at one point (discriminant = 0) or two points (discriminant > 0) that both have positive x values.

The discriminant plays a key role in determining the nature of the roots of the quadratic equation. For quadratic equations constructed on physical data, they usually have real roots. Practical applications often deem the positive roots significant.

Determine the interest rate in order to Dublin investment in nine years assuming interest is compounded continuously

Answers

Set up the equation 2P=Pe^9r since you are doubling your money in nine years and it is continuous interest. Divide everything by P, so 2=e^9r, then take the ln of each side so ln2=9r. Now divide by 9 to get your interest. 

Joe multiplies a number by 4, adds 1, and then divides by 3, getting a result of 7. sue divides the same original number by 3, adds 1, and multiplies by 4. what result does she get? express your answer as a common fraction.

Answers

Final answer:

Sue divides the initial number (which is 20/3 in this case) by 3, adds 1, and then multiplies by 4. Simplifying this we find her result to be 80/9 or 8 8/9.

Explanation:

Let's denote the initial number as 'x'. If Joe multiplies 'x' by 4, adds 1 and then divides by 3, getting 7, we can say that (4x+1)/3 = 7. Solving this equation, we find that x = 20/3.

Now let's apply this value to Sue's operations. Sue divides the initial number (which is 20/3) by 3, adds 1, and then multiplies by 4. Therefore, Sue's result is 4*((20/3)/3 + 1). Simplifying this expression, we obtain that Sue's result is 80/9 or 8 8/9.

Learn more about Number Operations here:

https://brainly.com/question/33817208

#SPJ12

the gas tank on a car holds 16.6 gallons. If the car goes 332 miles on a single tank how many miles per gallon does the car get

A 18 miles
B 20 miles
C 17 miles
D 19 miles

(as with any math question I ask I would also like an explanation of why the answer is what it is//how you get the answer so I am able to do it on my own the next time)

Answers

the answer is B.
the reason "B"ing 332/16.6=20
therefore 20 miles per gallon
Final answer:

The car gets 20 miles per gallon.

Explanation:

To find the miles per gallon the car gets, we need to divide the total miles driven by the number of gallons of gas used. In this case, the car goes 332 miles on a single tank, and the gas tank holds 16.6 gallons. So, the miles per gallon can be calculated as:

Miles per gallon = Total miles driven / Number of gallons used

Miles per gallon = 332 miles / 16.6 gallons

Miles per gallon = 20 miles

Therefore, the car gets 20 miles per gallon.

Learn more about Miles per gallon here:

https://brainly.com/question/37036502

#SPJ2

The population of current statistics students has ages with mean muμ and standard deviation sigmaσ. samples of statistics students are randomly selected so that there are exactly 4242 students in each sample. for each​ sample, the mean age is computed. what does the central limit theorem tell us about the distribution of those mean​ ages?

Answers

We are told that the population has a mean of μ and standard deviation of σ.

From each sample of 42, we can compute a mean value of [tex]\Bar{x}[/tex].
We do not know the distribution for any sample.

According to the Central Limit Theorem, the distribution of the sample means will follow a normal distribution, regardless of the distribution of the individual samples.

Answer:
The distribution of sample means is normally distributed, and [tex]\Bar{x} \Rightarrow \mu[/tex],

Find the value of x.

A.
25
B.
32.5
C.
37.5
D.
65

Answers

The answer is A. 25.
Hope this helped!

Answer:  The correct option is (A) 25.

Step-by-step explanation:  We are given to find the value of x from the figure shown.

From the figure, we note that there are two parallel lines and a transversal.

Also, the angles with measurements (x + 40)° and (3x - 10)° are corresponding angles.

Since the measures of two corresponding angles are equal, so we must have

[tex](x+40)^\circ=(3x-10)^\circ\\\\\Rightarrow x+40=3x-10\\\\\Rightarrow 3x-x=40+10\\\\\Rightarrow 2x=50\\\\\Rightarrow x=\dfrac{50}{2}\\\\\Rightarrow x=25.[/tex]

Thus, the required value of x is 25.

Option (A) is CORRECT.

How can an expression or process be determined for an arithmetic sequence?

Answers

an aritmetic sequcne is represented as

[tex]a_n=a_1+d(n-1)[/tex]

where
an=nth term
a1=first term
d=common differnce, or how much each term increases by
n=which term



example

1,3,5, etc
first term is 1
common difference is 2 because it increases by 2 each time
so the formula would be
[tex]a_n=1+2(n-1)[/tex]

if we had
5,3,1
first term s 5
common difference is -2 since it goes up by -2 each time
so formula is
[tex]a_n=5-2(n-1)[/tex]



hope this helps

77+14 is the same as blank +11

Answers

77 + 14 = 91
91 - 11 = 80

Therefore, 80 + 11 = 90
The answer is 80. Hope I helped!
77 + 14 = x + 11
        91 = x + 11
        80 = x

Therefore the blank is 80.

80 + 11 = 91
77 + 14 = 91

91 = 91

yo, can someone give me an algebraic expression with work that equals 3? & it also has to include addition & multiplication.

Answers

(y x 2) +7= X

2 - 7= -4

and (-4 x 2) +7= 3 

I hope this helps, sorry it took awhile! ^_^

Other Questions
What is the correct way to write 6.3 10^8 in standard notation? (25 Points) What is the simplified form of 14x^5y^9 divided by 2xy^3 NEED HELP ASAP PLEASE!!! If a person weighs 240 pounds on Earth, what would be the difference in weight of the same person on Mars and on the Moon What is the graph of the system? y -x 1 y 2x + 4 Which word in the following sentence contains a capitalization error "You should go to the museum on Tuesday "he is slow as molasses" might be a good way to describe the energy level of people suffering from: Baseball player swings and hits a pop fly straight up in the air to the catcher. the height of the baseball in meters t seconds after it is hit is given by the quadratic function h left parenthesis t right parenthesis equals negative 4.9 t squared plus 34.3 t plus 1h(t)=4.9t2+34.3t+1. how long does it take for the baseball to reach its maximum height? what is the maximum height obtained by the baseball? Gamma corporation allows kappa company to use gamma's trademark as part of kappa's domain name. this is Exactly 1/20 of the students in Mr.Perez's class have a bird.What Percentage of his students has a bird? Luca, Zane, and Zion together sold 77 tickets for the school banquet. Luca sold 22 tickets and Zane sold 29 tickets. How many tickets did Zion sell?A.) 11B.) 26C.) 51D.) 55 A movie theater sold 422 tickets on Friday. On Saturday, they sold 518 tickets. What was the approximate percentage that ticket sales increased on Saturday? These three regions are regions of net immigration: All of the following are types of symbiotic relationships except forA. competitive exclusion.B. parasitism.C. commensalism.D. mutualism.answer is a Women athletes at the university of colorado, boulder, have a long-term graduation rate of 67% (source: the chronicle of higher education). over the past several years, a random sample of 38 women athletes at the school showed that 21 eventually graduated. does this indicate that the population proportion of women athletes who graduate from the university of colorado, boulder, is not less than 67%? use a 5% level of significance. find the p-value of the test statistic (round to the nearest ten thousandths). The physical gap between two nerve cells across which messages are transmitted is the How many moles of nacl are required to prepare 0.80 l of 6.4 m nacl? 0.13 mol nacl 5.1 mol nacl 7.2 mol nacl 8.0 mol nacl? When 7.0 mol Al react with 8.5 mol HCl, what is the limiting reactant and how many moles of AlCl3 can be formed? 2 Al + 6 HCl yields 2 AlCl3 + 3 H2 Al is the limiting reactant; 7.0 mol AlCl3 can be formed HCl is the limiting reactant; 2.8 mol AlCl3 can be formed Al is the limiting reactant; 3.5 mol AlCl3 can be formed HCl is the limiting reactant; 8.5 mol AlCl3 can be formed The industrial revolution brought enormous cultural and economic changes to the world. Which of these changes do you think were most significant? Write abput whether the most important influences of the industrial rev. were cultural or economic. Evaluate the line integral for x^2yds where c is the top hal fo the circle x62 _y^2 = 9