Answer:
(3, 1)
Step-by-step explanation:
x = y + 2
y = -2x + 7
y = -2(y +2) +7
y = -2y -4 +7
y + 2y = 3
3y = 3
y = 3/3
y = 1
x = y +2
x = 1 +2
x = 3
The value of x is 1/3 and y is -5/3. using substitution method
What is a linear equation?A linear equation has one or two variables. No variable in a linear equation is raised to a power greater than 1.No variable is used as the denominator of a fraction. A linear equation is defined as an equation that is written in the form of ax+by=c. When solving the system of linear equations, we will get the values of the variable, which is called the solution of a linear equation.
solving this we will get the valve of Y if x is given.
CALCULATION:-
Y=x-2 -----(1)
y=-2x+7 ---------(2)
putting the value of y in the equation (2)
x-2= -2x+7
x+2x=7+2
3x=9
x=9/3
x=1/9
putting the value of X in equation(1)
Y=x-2 -----(1)
y=1/3-2
y=-5/6
Learn more about linear equations here:https://brainly.com/question/2972832
#SPJ2
The legs of a right triangle measure 6 meters and 8 meters. What is the length of the hypotonuse.
Using the Pythagorean theorem a^2 + b^2 = c^2, where a and b are the sides and c is the hypotenuse, we can find the length needed.
6^2 + 8^2 = c^2
Simplify:
36 + 64 = c^2
100 =c^2
Take the square root of both sides:
c = √100
c = 10
The hypotenuse is 10 meters.
Alex has 209 coins. Of the coins, 5/11 are nickels, 5/11 are dimes, and rest are quarters. What is the ratio of Alex’s nickels to dimes to quarters?
Answer:
95:95:19
Step-by-step explanation:
1.Divide 209 by 11.(209÷19)
2.Multiply 19×5 since 5/11 of the coins are nickels.(19×5=95)
3.Multiply 19×5 again since 5/11 of the coins are dimes.(19×5=95)
4.Multiply 19×1 since there would be 1/11 left of the coins which are quarters. (19×1=19)
5.Check your awnser by adding 95+95+19.(95+95+19=209)
Solve the equation using the Zero Product Property.
(X– 2) (2x – 7) (4x + 5) = 0
Enter your answers in the boxes as a solution set in order from least to
greatest
Answer:
-1.25, 2, 3.5
Step-by-step explanation:
(x-2)(2x-7)(4x+5)=0
(2x^2-7x-4x+14)(4x+5)=5
from now on you know that either
(2x^2-7x-4x+14)=0 or
(4x+5)=0
By solving the first eqation (2x^2-7x-4x+14)=0
you get x = 2 or 3.5
By solving the second equation (4x+5)=0
you get x = -1.25
Find the focus for y=x^2+4x-7
ANSWER
[tex](2,-10.75)[/tex]
EXPLANATION
The given function is
[tex]y = {x}^{2} - 4x - 7[/tex]
We rewrite this function to obtain,
[tex](y + 11) = {( x- 2)}^{2} [/tex]
We now compare this function to
[tex](y - k) = 4p {( x- h)}^{2} [/tex]
We have
[tex]4p = 1[/tex]
This implies that,
[tex]p = \frac{1}{4} [/tex]
The vertex is (2,-11).
The focus is
[tex](2,-11+ \frac{1}{4} )[/tex]
[tex](2,- \frac{43}{4} )[/tex]
[tex](2,-10.75)[/tex]
a quadratic equation has a discriminant of 12. what could be the equation?
Answer:
the answer is 2 :)
Step-by-step explanation:
Pacey's computer is infected with a virus. The number of files the virus corrupts doubles every 8 minutes. The following expression represents the number of files corrupted after x minutes.
Answer:
x=8*2
Step-by-step explanation:
Answer:
[tex]8(2)^{x-1}[/tex]
Step-by-step explanation:
Pacey's computer is infected with a virus. The number of files the virus corrupts doubles every 8 minutes.
That means at every 8 minutes interval sequence becomes 8, 8 × 2, 8 × 2 × 2,.....
So the sequence is a geometric sequence.
Explicit formula of geometric sequence is
[tex]A_{x}=A_{0}(r)^{x-1}[/tex]
When[tex] A_{x}[/tex] = xth term
[tex]A_{0}[/tex] = first term
x = number of term
and r = common ratio
Here [tex]A_{0}[/tex] = 8 and r = [tex]\frac{8\times2}{8}[/tex] = 2
So expression representing the number of files corrupted will be [tex]A_{x}[/tex] = [tex]8(2)^{x-1}[/tex]
How much gold foil did it take to cover the trophy including the bottom?
Answer:
i need mesurements
Step-by-step explanation:
It took 45 square units of gold foil to cover the entire pyramid trophy, including the bottom.
To find the amount of gold foil needed to cover the square pyramid-shaped trophy, we need to calculate the total surface area of the pyramid, including the base.
A square pyramid consists of the following surfaces:
1. The base (which is a square)
2. Four triangular faces
First, let's find the area of the base. Since it's a square, we can use the formula for the area of a square:
[tex]\[ \text{Area of the base} = \text{side}^2 \][/tex]
Given that the side of the square base is 3 units, the area of the base is:
[tex]\[ \text{Area of the base} = 3^2 = 9 \text{ square units} \][/tex]
Next, let's find the area of each triangular face. Since it's a regular pyramid, all four triangular faces have the same dimensions and area. We'll use the formula for the area of a triangle:
[tex]\[ \text{Area of a triangle} = \frac{1}{2} \times \text{base} \times \text{height} \][/tex]
Given that the base of each triangular face is the side length of the square base (which is 3 units) and the height of the pyramid is 6 units, the area of each triangular face is:
[tex]\[ \text{Area of a triangle} = \frac{1}{2} \times 3 \times 6 = 9 \text{ square units} \][/tex]
Since there are four identical triangular faces, the total area of all four faces combined is:
[tex]\[ \text{Total area of all four triangular faces} = 4 \times 9 = 36 \text{ square units} \][/tex]
Now, let's calculate the total surface area of the pyramid by adding the area of the base and the total area of all four triangular faces:
[tex]\[ \text{Total surface area} = \text{Area of the base} + \text{Total area of all four triangular faces} \][/tex]
[tex]\[ = 9 + 36 = 45 \text{ square units} \][/tex]
Therefore, it took 45 square units of gold foil to cover the entire pyramid trophy, including the bottom.
Complete question:
Akira receives the prize at the science fair for having the most informative project her trophy is in the shape of a square pyramid and is covered in shiny gold foil how much gold foil did it take to cover the chair free including the bottom.
What is the index of the radical below? 4 radical 8
The index of a radical is the number indicating what root of a given number should be taken. In the expression '4 radical 8', '4' is the index of the radical, meaning the expression represents the fourth root of 8.
Explanation:In the expression '4 radical 8', '4' is referred to as the index of the radical. The index of a radical is the number that denotes what root of the number is to be taken. For example, an index of 2 (which is often not written) refers to a square root, an index of 3 refers to a cube root, and so on. In this case, since the expression is '4 radical 8', it means we are looking at the fourth root of 8.
Learn more about Index of Radical here:https://brainly.com/question/12831776
#SPJ12
In 4 radical 8, the given index of the radical 4, means we are looking for a number that, when raised to the power of 4, gives us 8.
Explanation:The index of a radical is the number that is written just above and to the left of the radical symbol. In your problem, 4 radical 8, the number 4 is the index of the radical. So, the index of the radical in 4 radical 8 is 4. This means that we are looking for a number that, when raised to the power of 4, gives us 8.
Learn more about Radical Indices here:https://brainly.com/question/28062392
#SPJ12
Which is the common difference between successive terms in the sequence.
Answer:
6
Step-by-step explanation:
2+6=8
8+6=14
14+6=20
20+6=26
A line passes through the points (8, –1) and (–4, 2).
What is the y-intercept of this line?
–4
–1
1
4
Answer:
The y-intercept of this line: -4
Step-by-step explanation:
A line passes through the points (8, –1) and (–4, 2).
Slope = (-1 - 2)/(8 + 4) = -3/4
Equation in slope intercept form:
y = mx + b where m = slope and b = y-intercept
Substitute m = -3/4 into the equation to find y-intercept
y = -3/4 x + b
Plug in one of those coordinate points above to find b. In this case, I'm using (–4, 2)
y = -3/4 x + b
2= -3/4 (-4) + b
-1 = 3 + b
b = -4
Answer:
THE ANSWER IS -4
Step-by-step explanation:
The retail price of a snowblower is $617.40. The wholesale price was 420.00. What is the percent markup?
Find the difference between the two prices:
617.40 - 420 = 197.40
Now divide the difference by the wholesale price:
197.40 / 420 = 0.47 = 47% markup.
The percent markup when retail price is $617.40 and wholesale price is 420.00 is 47%.
To calculate the percent markup on the snowblower, we need to find the difference between the retail price and the wholesale price, and then divide that by the wholesale price. The markup is the amount added to the cost of the goods to cover overhead and profit.
Retail Price: $617.40Wholesale Price: $420.00Markup Amount: Retail Price - Wholesale Price = $617.40 - $420.00 = $197.40Percent Markup: (Markup Amount / Wholesale Price) × 100Percent Markup: ($197.40 / $420.00) × 100Percent Markup: 0.47 × 100Percent Markup: 47%Therefore, the percent markup on the snowblower is 47%.
What are the solutions to the equation 4x 3 - 5x = |4x|? List your answers in increasing order.
The solutions are x =
,
and
Answer:
-1/2 , 0 , 3/2
Step-by-step explanation:
Given equation is:
[tex]4x^3-5x = |4x|[/tex]
We know that [tex]|x|=a\\The\ solution\ will\ be:\\x=a\ and\ x=-a\\[/tex]
So, from given equation,we will get two solutions:
[tex]4x^3-5x = 4x\\4x^3-5x-4x=0\\4x^3-9x=0\\x(4x^2-9) = 0\\x = 0\\and\\4x^2-9 = 0\\4x^2=9\\x^2 = \frac{9}{4} \\\sqrt{x^2}=\sqrt{\frac{9}{4} }\\[/tex]
x= ±√3/2 , 0
and
[tex]4x^3-5x = -4x\\4x^3-5x+4x=0\\4x^3-x=0\\x(4x^2-1) = 0\\x = 0\\and\\4x^2-1 = 0\\4x^2=1\\x^2 = \frac{1}{4} \\\sqrt{x^2}=\sqrt{\frac{1}{4} }[/tex]
x= ±1/2 , 0
We can check that 1/2 and -3/2 do not satisfy the given equation.
[tex]4x^3-5x = |4x|\\Put\ x=1/2\\4(\frac{1}{2})^3 - 5(\frac{1}{2}) = |4 * \frac{1}{2}|\\ 4 * (\frac{1}{8)} - \frac{5}{2} = |2|\\ -2 = 2\\Put\ x=-\frac{3}{2} \\4(\frac{-3}{2})^3 - 5(\frac{-3}{2}) = |4 * \frac{-3}{2}|\\-6 = 6\\[/tex]
So, 1/2 and -3/2 will not be the part of the solution ..
So, the solutions in increasing order are:
-1/2 , 0 , 3/2 ..
Answer:
[tex]-\frac{1}{2},0,\frac{3}{2}[/tex]
Step-by-step explanation:
We are given that an equation
[tex]4x^3-5x=\mid x\mid[/tex]
We have to find the solution of given equation and arrange the solution in increasing order.
[tex]4x^3-5x=4x[/tex] when x >0
and [tex]4x^3-5x=-4x[/tex] when x < 0
because [tex]\mid x\mid =x when x > 0 [/tex]
=-x when x < 0
[tex]4x^3-5x-4x=0[/tex]
[tex]4x^3-9x=0[/tex]
[tex]x(4x^2-9)=0[/tex]
[tex]x(2x+3)(2x-3)=0[/tex]
Using identity [tex]a^2-b^2=(a+b)(a-b)[/tex]
[tex]x=0,2x+3=0,2x-3=0[/tex]
[tex]2x=3\implies x=\frac{3}{2}=1.5[/tex]
[tex]2x=-3 \implies x=-\frac{3}{2}=-1.5[/tex]
[tex]4x^3-5x=-4x=0[/tex]
[tex]4x^3-5x+4x=0[/tex]
[tex]4x^3-x=0[/tex]
[tex]x(4x^2-1)=0[/tex]
[tex]x(2x+1)(2x-1)=0[/tex]
[tex]x=0,2x+1=0[/tex]
[tex]2x-1=0[/tex]
[tex]2x-1=0[/tex]
[tex]2x=1 \ilmplies x=\frac{1}{2}=0.5[/tex]
[tex]2x+1=0[/tex]
[tex]2x=-1 \implies x=-\frac{1}{2}=-0.5[/tex]
When we substitute x=[tex]\frac{1}{2}[/tex]
[tex]4(\frac{1}{2})^3-\frac{5}{2}=\frac{1}{2}-\frac{5}{2}=\frac{1-5}{2}=-2[/tex]
[tex]\mid 4(\frac{1}{2})\mid=2[/tex]
[tex]-2\neq 2[/tex]
Hence, [tex]\frac{1}{2}[/tex] is a not solution of given equation.
When substitute [tex]x=\frac{-3}{2}[/tex]
[tex]4(\frac{-3}{2})^3+\frac{15}{2}=\frac{-27}{2}+\frac{15}{2}=\frac{-27+15}{2}=-6[/tex]
[tex]\mid 4(-\frac{3}{2}\mid=6[/tex]
[tex]-6\neq 6[/tex]
Hence, [tex]\frac{-3}{2}[/tex] is not a solution of given equation.
Substitute x=[tex]-\frac{1}{2}[/tex] in the given equation
[tex]4(-\frac{1}{2})^3+\frac{5}{2}=-\frac{1}{2}+\frac{5}{2}=2[/tex]
[tex]\mid 4(-\frac{1}{2})\mid=2[/tex]
[tex]2=2[/tex]
Hence, [tex]-\frac{1}{2}[/tex] is a solution of given equation.
Substitute [tex]x=\frac{3}{2}[/tex] in the given equation
[tex]4(\frac{3}{2})^3-\frac{15}{2}=\frac{27-15}{2}=6[/tex]
[tex]\mid 4(\frac{3}{2})\mid =6[/tex]
[tex]6=6[/tex]
Hence, [tex]\frac{3}{2}[/tex] is a solution of given equation.
Answer:[tex]-\frac{1}{2},0,\frac{3}{2}[/tex]
Campus rentals rents 2 and 3 bedrooms apartments for $700 ans $900 a month respectively. Last month they had six vacant apartments and reported $4600 in lost rent. How many of each type of apartment were vacant?
Answer:
This should help you !!!
Four 2 bedroom apartments and two 3 bedroom apartments were vacant.
It is given that Campus rentals rents 2 and 3 bedrooms apartments for $700 and $900 a month respectively. Last month they had six vacant apartments and reported $4600 in lost rent.
We have to find out that how many of each type of apartment were vacant ?
What is algebra ?
Algebra is the branch of mathematics that deals with various symbols and the arithmetic operations and the symbols are called variables.
Let's assume that ;
Number of vacant 2 bedroom apartments = x
Number of vacant 3 bedroom apartments = y
∵ The total number of vacant apartments were 6 ; the equation will be ;
x + y = 6 -------- Equation 1
or
x = 6 - y
The loss reported is $4600.
We can write it as ;
x × 700 + 900 × y = 4600
700 × ( 6 - y ) + 900 × y = 4600
4200 - 700 y + 900 y = 4600
200 y = 400
y = 2
putting this in equation 1 we get ;
x = 6 - 2 = 4
Thus , four 2 bedroom apartments and two 3 bedroom apartments were vacant.
To learn more about algebra click here ;
https://brainly.com/question/11164534
#SPJ2
A line intersects the point (-11,4)and has a slope of -2. What are the inputs to the point -slope formula?
Answer:
The inputs to this formula are:
The x-coordinate of the point: [tex]x_0 = -11[/tex]; The y-coordinate of the point: [tex]y_0 = 4[/tex]; andThe slope of the line: [tex]m = -2[/tex].The equation of this line in point-slope form will be:
[tex]y - 4 = -2(x +11)[/tex].
Step-by-step explanation:
The general form of a 2D line in its point-slope form is:
[tex]l:\; y - y_0 = m(x - x_0)[/tex].
This form of the equation of a line takes two pieces of information:
The x-y coordinate of a point on the line [tex](x_0, y_0)[/tex], andThe slope (a.k.a. gradient) of that line.For this line, the point [tex](x_0, y_0)[/tex] is [tex](-11, 4)[/tex].
[tex]x_0 = -11[/tex], and[tex]y_0 = 4[/tex].The slope of this line is [tex]-2[/tex]. In other words,
[tex]m = -2[/tex].Apply the point-slope formula for a 2D line:
[tex]l:\; y - 4 = -2 (x - (-11))[/tex].
[tex]l:\; y - 4 = -2 (x +11 )[/tex].
Add, subtract, multiply, or divide the following fractions. Remember to find the LCD first.
1/5+1/7+3/21
lcd 210
1/5=42/210
1/7=30/310
3/21=30/210
42+30+30=102/210
reduced 51/105
The sum of the fractions 1/5, 1/7 and 3/21 is 17/35. This was achieved by finding the least common denominator (LCD), converting the fractions to have the LCD, adding them, and then simplifying the result.
Explanation:To add or subtract fractions, it's essential to find the least common denominator (LCD). The LCD in this case would be the least common multiple (LCM) of 5, 7, and 21, which is 105. Once we have the LCD, we can rewrite the fractions as an equivalent fraction with the LCD as the denominator:
For 1/5, multiply both numerator and denominator by 21, so it becomes 21/105.For 1/7, multiply both numerator and denominator by 15, so it becomes 15/105.For 3/21, multiply both numerator and denominator by 5, so it becomes 15/105.Now all the fractions have the same denominator, and we can combine the numerators: 21/105 + 15/105 + 15/105 = 51/105. However, this can be simplified to 17/35 by dividing both numerator and denominator by 3.
Learn more about Adding Fractions here:https://brainly.com/question/14503941
#SPJ3
Drako found an emerald in a cave at a depth between -1/2 and -1 2/3 meters which number could represent the depth which the emerald is located
Answer:
[tex]-\frac{3}{4}[/tex] meters
Step-by-step explanation:
From the answer choices, we basically need to find which of them is between [tex]-\frac{1}{2}[/tex] and [tex]-1\frac{2}{3}[/tex]
Converting all of them to decimals would make it really easier:
So we need to find number between -0.5 and -1.67
Answer choice A is -2.33
Answer choice B is -0.75
Answer choice C is -0.25
Answer chioce D is -1.83
So which number, from the choices, is between -0.5 & -1.67?
Clearly, it is -0.75, or, [tex]-\frac{3}{4}[/tex] meters
Which function is graphed below?
A) y=1/3(3)^x
B) y=3(1/3)^x
C)y=(1/2)^x+2
D) y=(2)^x-1
Answer:
B) y=3(1/3)^x
Step-by-step explanation:
Based on the graph, y intercept = 3
So you can plug in x =0 in each functions given in the options to see which one has y-intercept = 3
y= 3 (1/3)^x ; when x = 0, y = 3 * 3^0 = 3 * 1 = 3
Answer:
The correct option is B) [tex]y=3(\frac{1}{3})^{x}[/tex]
Step-by-step explanation:
Consider the provided graph:
The general formula for equation of exponential decay is: [tex]y=ab^{x}[/tex] where [tex]b<1[/tex]
The graph of exponential decay [tex]y=ab^{x}[/tex] where [tex]b<1[/tex] as shown in figure 1:
From the figure 1, it is clear that a represents the y intercept and the coordinates are (0,a).
Now, consider the provided Graph:
The y intercept is (0,3)
Therefore, the value of a must be 3.
Now, consider the provided options, only option B) has the value of a = 3.
Therefore, the correct option is: B) [tex]y=3(\frac{1}{3})^{x}[/tex] .
Kara swims almost twice as fast as Beth, and Natalie swims about the same speed as Beth. If Jenn swims faster than Kara, then who is faster, Natalie or Jenn?
Answer:
Jenn
Step-by-step explanation:
Natalie and Beth swim at about the same speed. Kara swims twice as fast as Beth so she also swims twice as fast as Natalie. So Kara is faster than Natalie and Jenn is faster than Kara. Therefore Jenn is faster than Natalie.
Hope This Helps :]
Final answer:
Jenn is faster than Natalie because she swims faster than Kara who swims almost twice as fast as Beth, and Natalie swims about the same speed as Beth.
Explanation:
The question pertains to comparing the speeds of different swimmers, which is a logical, rather than numerical comparison. Kara swims almost twice as fast as Beth, and Natalie swims about the same speed as Beth. Jenn swims faster than Kara.
Therefore, Jenn is the fastest swimmer among the four. Since the comparison is between Natalie and Jenn, and we have already established that Jenn swims faster than Kara, who in turn swims faster than Beth (and Natalie swims at the same speed as Beth), it is logical to conclude that Jenn is faster than Natalie.
Find the measure of x
Answer:
Step-by-step explanation:
The angle adjacent to the 106 degree angle is 180 degrees - 106 degrees, or 74 degrees. Next, the adjacent angle to the 145 degree angle is 35 degrees; in other words, the two bottom angles of this triangle are 35 degrees and 35 degrees. That means that a 35 degree angle is vertical angle to x, and so x is also 35 degrees.
The sum of the three interior angles is 35 degrees + 74 degrees and
Check the picture below.
let's recall that vertical angles, angles across a junction, are equal, namely the angle across the "x" is also "x".
Help me on these questions
Answer:
a) The equation is (y - 1)² = -8 (x - 4)
b) The equation is (x - 1)²/25 + (y - 4)²/16 = 1
c) The equation of the ellipse is (x - 3)²/16 + y²/4 = 1
Step-by-step explanation:
a) Lets revise the standard form of the equation of the parabola with a
horizontal axis
# (y - k)² = 4p (x - h), (h , k) are the coordinates of its vertex and p ≠ 0
- The focus of it is (h + p , k)
* Lets solve the problem
∵ The focus is (2 , 1)
∵ focus is (h + p , k)
∴ h + p = 2 ⇒ subtract p from both sides
∴ h = 2 - p ⇒ (1)
∴ k = 1
∵ It opens left, then the axis is horizontal and p is negative
∴ Its equation is (y - k)² = 4p (x - h)
∵ k = 1
∴ Its equation is (y - 1)² = 4p (x - h)
- The parabola contains point (2 , 5), substitute the coordinates of the
point in the equation of the parabola
∴ (5 - 1)² = 4p (2 - h)
∴ (4)² = 4p (2 - h)
∴ 16 = 4p (2 - h) ⇒ divide both sides by 4
∴ 4 = p (2 - h) ⇒ (2)
- Use equation (1) to substitute h in equation (2)
∴ 4 = p (2 - [2 - p]) ⇒ open the inside bracket
∴ 4 = p (2 - 2 + p) ⇒ simplify
∴ 4 = p (p)
∴ 4 = p² ⇒ take √ for both sides
∴ p = ± 2, we will chose p = -2 because the parabola opens left
- Substitute the value of p in (1) to find h
∵ h = 2 - p
∵ p = -2
∴ h = 2 - (-2) = 2 + 2 = 4
∴ The equation of the parabola in standard form is
(y - 1)² = 4(-2) (x - 4)
∴ The equation is (y - 1)² = -8 (x - 4)
b) Lets revise the equation of the ellipse
- The standard form of the equation of an ellipse with center (h , k)
and major axis parallel to x-axis is (x - h)²/a² + (y - k)²/b² = 1
- The coordinates of the vertices are (h ± a , k )
- The coordinates of the foci are (h ± c , k), where c² = a² - b²
* Now lets solve the problem
∵ Its vertices are (-4 , 4) and (6 , 4)
∵ The coordinates of the vertices are (h + a , k ) and (h - a , k)
∴ k = 4
∴ h + a = 6 ⇒ (1)
∴ h - a = -4 ⇒ (2)
- Add (1) and (2) to find h
∴ 2h = 2 ⇒ divide both sides by 2
∴ h = 1
- Substitute the value of h in (1) or (2) to find a
∴ 1 + a = 6 ⇒subtract 1 from both sides
∴ a = 5
∵ The foci at (-2 , 4) and (4 , 4)
∵ The coordinates of the foci are (h + c , k) , (h - c , k)
∴ h + c = 4
∵ h = 1
∴ 1 + c = 4 ⇒ subtract 1 from both sides
∴ c = 3
∵ c² = a² - b²
∴ 3² = 5² - b²
∴ 9 = 25 - b² ⇒ subtract 25 from both sides
∴ -16 = -b² ⇒ multiply both sides by -1
∴ 16 = b²
∵ a² = 25
∵ The equation of the ellipse is (x - h)²/a² + (y - k)²/b² = 1
∴ The equation is (x - 1)²/25 + (y - 4)²/16 = 1
c) How to identify the type of the conic
- Rewrite the equation in the general form,
Ax² + Bxy + Cy² + Dx + Ey + F = 0
- Identify the values of A and C from the general form.
- If A and C are nonzero, have the same sign, and are not equal
to each other, then the graph is an ellipse.
- If A and C are equal and nonzero and have the same sign, then
the graph is a circle
- If A and C are nonzero and have opposite signs, and are not equal
then the graph is a hyperbola.
- If either A or C is zero, then the graph is a parabola
* Now lets solve the problem
∵ x² + 4y² - 6x - 7 = 0
∵ The general form of the conic equation is
Ax² + Bxy + Cy² + Dx + Ey + F = 0
∴ A = 1 and C = 4
∵ If A and C are nonzero, have the same sign, and are not equal to
each other, then the graph is an ellipse.
∵ x² + 4y² - 6x - 7 = 0 ⇒ re-arrange the terms
∴ (x² - 6x ) + 4y² - 7 = 0
- Lets make x² - 6x completing square
∵ 6x ÷ 2 = 3x
∵ 3x = x × 3
- Lets add and subtract 9 to x² - 6x to make the completing square
x² - 6x + 9 = (x - 3)²
∴ (x² - 6x + 9) - 9 + 4y² - 7 = 0 ⇒ simplify
∴ (x - 3)² + 4y² - 16 = 0 ⇒ add 16 to both sides
∴ (x - 3)² + 4y² = 16 ⇒ divide all terms by 16
∴ (x - 3)²/16 + 4y²/16 = 1 ⇒ simplify
∴ (x - 3)²/16 + y²/4 = 1
∴ The equation of the ellipse is (x - 3)²/16 + y²/4 = 1
What is the best approximation for the circumference of a circle with a diameter of 400 inches? Use 3.14 to approximate pi.
Answer:
C≈1256.64in
Step-by-step explanation:
C=πd=π·400≈1256.63706in
Hope this helps!
what is 5! Equals to
Answer:
Step-by-step explanation: 5 times 4 then that times 3 then that times 2.
120
5! = 120.
5! equals 5 x 4 x 3 x 2 x 1 which is equal to 120.
The exclamation mark denotes a factorial, which is the product of all positive integers up to that number.
Determine algebraically whether the function is even, odd, or neither even nor odd.
f as a function of x is equal to -4x^3 + 4x.
Neither
Even
Odd
Answer:
odd
Step-by-step explanation:
Just so you know there are shortcuts for determining if a polynomial function is even or odd. You just to make sure you use that x=x^1 and if you have a constant, write it as constant*x^0 (since x^0=1)
THEN!
If all of your exponents are odd then the function is odd
If all of your exponents are even then the function is even
Now you have -4x^3+4x^1
3 and 1 are odd it is an odd function
This a short cut not the legit algebra way
let me show you that now:
For it to be even you have f(-x)=f(x)
For it be odd you have f(-x)=-f(x)
If you don't have either of those cases you say it is neither
So let's check
plug in -x -4(-x)^3+4(-x)=-4*-x^3+-4x=-4x^3+-4x
that's not the same so not even
with if we factor out -1 .... well if we do that we get -(4x^3+4x)=-f(x)
so it is odd.
A 15 in. windshield wiper makes a 150° arc across the windshield.
About how far does the end of the windshield wiper travel?
Answer:
[tex]\displaystyle \frac{25}{2}\pi \approx 39.3[/tex] inches.
Step-by-step explanation:
The question gives the central angle and radius of an arc and is asking for the length.
The radius is the same as the length of the windshield wiper: 15 inches.The central angle is 150°.An arc is part of a circle. What is the circumference of a circle with a radius 15 inches?
[tex]\text{Circumference} = \pi \times \text{Diameter} = 2\pi \times \text{Radius} = 30\pi[/tex] inches.
However, this wiper traveled only a fraction of the circle. A full circle is [tex]360^{\circ}[/tex]. The central angle of this arc is only [tex]150^{\circ}[/tex]. As a result,
[tex]\displaystyle \frac{\text{Length of this arc}}{\text{Circumference of the circle}} = \frac{150^{\circ}}{360^{\circ}} = \frac{5}{12}[/tex].
The length of the arc will thus be
[tex]\displaystyle \frac{5}{12} \times 30\pi = \frac{25}{2}\pi \approx 39.3[/tex].
In other words, the windshield wiper traveled approximately 39.3 inches.
To find the distance traveled by the end of the windshield wiper making a 150° arc, calculate the circumference of the circle swept and apply the formula to determine the distance traveled.
Distance traveled by the end of the windshield wiper:
Calculate the circumference of the circle swept by the windshield wiper: Circumference = 2πr = 2π(15 in).
Convert the circumference to inches: Multiply the circumference by the angle traversed (150°/360°) to find the distance traveled by the wiper's end.
Distance traveled = Circumference x (150/360) = 15π/2 inches or 23.56 inches.
Which table shows a proportional relationship between miles traveled and gas used?
Answer:
table d is the proportional relationship
Step-by-step explanation:
Can someone please help me out ??
(4 marks)
5. Solve the following equations:
a) x+5 = 7
b) 2x - 8 = 20
c) 4x - 6x = 200
d) x+1= 5
3
a) x + 5 = 7
x + 5 - 5 = 7 - 5 (Subtract 5 from both sides)
x = 2
b) 2x - 8 = 20
2x - 8 + 8 = 20 + 8 (Add 8 to each side)
2x = 28
2x/2 = 28/2 (Divide each side by 2)
x = 14
c) 4x - 6x = 200
-2x = 200
-2x/-2 = 200/-2 (Divide each side by -2)
x = -100 (Note that a negative number divided by a negative number is positive, whereas a positive number divided by a negative number is negative)
d) x + 1 = 5
x + 1 - 1 = 5 - 1 (Subtract 1 from each side)
x = 4
The width and length of a rectangle (in feet)are consecutive odd integers. If the length is increased by 5 feet, the area of the resulting rectangle is 60 square feet. What is the area of the original rectangle?
A. 25 ft^2
B. 30 ft^2
C. 35 ft^2
Answer:
Option C is correct.
Step-by-step explanation:
Let x be the original width
then x+2 will be the length (consecutive odd integer)
if length is increased by 5 feet , length will be: (x+2)+5 = x+7
Area = 60 square ft.
Area = length * width
60 = (x+7) *x
60 = x^2 +7x
Rearranging
x^2 + 7x -60 = 0
Solving quadratic equation to find the value of x
using Quadratic formula
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
a=1, b =7, c=-60
[tex]x=\frac{-7\pm\sqrt{(7)^2-4(1)(-60)}}{2(1)}\\x=\frac{-7\pm\sqrt{49+240}}{2}\\x=\frac{-7\pm\sqrt{289}}{2}\\x=\frac{-7\pm17}{2}\\x=5 \,\, and \,\, x = -12\\[/tex]
Since width can be positive so x=5
length of original rectangle = x+2 = 5+2 =7
Area of original rectangle = Length * Width
Area of original rectangle = 5 * 7
Area of original rectangle = 35 ft^2
So, Option C is correct.
Final answer:
The width of the original rectangle is 5 feet, and the length is 7 feet, making the area 35 square feet. We determined this by setting up an equation for the area of the enlarged rectangle and solving for the odd integer width.
Explanation:
We are given that a rectangle has dimensions of consecutive odd integers and if the length is increased by 5 feet, the resulting area is 60 square feet. Let's denote the width as w feet (an odd integer) and the length as w + 2 feet (the next consecutive odd integer), since consecutive odd integers are two units apart.
After increasing the length by 5 feet, the new dimensions are w feet and w + 7 feet. The area can be calculated as the product of these dimensions:
w × (w + 7) = 60
Solving this quadratic equation: w² + 7w = 60
Subtracting 60 from both sides gives: w² + 7w - 60 = 0. Factoring this, we get: (w + 12)(w - 5) = 0
Considering the positive value that fits the condition of being an odd integer, we find that w = 5 feet. This makes the width 5 feet and the length 7 feet (5 + 2) for the original rectangle.
Thus, the area of the original rectangle is 5 feet × 7 feet = 35 square feet.
Therefore, the correct answer is C. 35 ft².
helpppppp pleaseee its confusing
Use the formula to find the value of the remaining variable.
P = 2L+ 2W; L = 25. W= 105
[tex]
L=25,W=105 \\
P=2L+2W=2(L+W)\Rightarrow P=2(25+105) \\
P=2\cdot130=\boxed{260}
[/tex]
Hope this helps.
r3t40