Use the stem-and-leaf plot below to match the terms with the correct value. Round to the nearest whole number.

Mean
Median
Mode

Use The Stem-and-leaf Plot Below To Match The Terms With The Correct Value. Round To The Nearest Whole

Answers

Answer 1

Answer:

The mean is 5

the median is also 5

and the mode is 1

Step-by-step explanation:

Answer 2

Answer:60,61,73,75,79,81,81,81,92,96,98

Step-by-step explanation: Mean:80

                                             Median:81

                                            Mode:81


Related Questions

Identify the horizontal asymptote of f(x) =x2+5x-3/4x-1

Answers

since the numerator is x² + 5x - 3, and therefore has a degree of 2, whilst the denominator, 4x¹ - 1, has a degree of 1, therefore, there's no horizontal asymptote.

recall, we only get a horizontal asymptote if the denominator's expression degree is equals or greater than that of the numerator's.

The function [tex]f(x) = (x^2+5x-3)/(4x-1)[/tex] does not have a horizontal asymptote because the degree of the numerator is higher than the degree of the denominator.

To identify the horizontal asymptote of the function

[tex]f(x) = \frac{{x^2+5x-3}}{{4x-1}}[/tex], you can examine the degrees of the polynomial in the numerator and the polynomial in the denominator. Since the degree of the numerator (which is 2) is higher than the degree of the denominator (which is 1), this function does not have a horizontal asymptote. However, for functions like

[tex]f(x) = \frac{{x^2+3}}{{x^2+4}}[/tex], where the degrees of the numerator and denominator are the same, the horizontal asymptote is determined by the leading coefficients of the numerator and denominator. Specifically, the horizontal asymptote is

[tex]y = \frac{{1}}{{1}}[/tex] = 1,

since the coefficients of the x^2 terms are both 1.

If a given data point is (1,4) and the line of best fit is y = 1.5x + 3.25, what's the residual value?

Answers

Answer:

The residual value is -0.75

Step-by-step explanation:

we know that  

The residual value is the observed value minus the predicted value.

RESIDUAL VALUE=[OBSERVED VALUE-PREDICTED VALUE]

where

Predicted value.--> the predicted value given the current regression equation

Observed value. --> The observed value for the dependent variable.

in this problem

we have the point (1,4)

so

The observed value is 4

Find the predicted value  for x=1

[tex]y =1.5(1)+3.25=4.75[/tex]

predicted value is 4.75

so

RESIDUAL VALUE=(4-4.75)=-0.75

Answer:

-0.75

Step-by-step explanation:

i have to finish this! please help!

Answers

1) look for parallel lines for example the bottom one is 6 and 3, from here you will know the size is 2x. So what you do is 10 = 2(2x -5)

10 = 4x-10

20 = 4x

x = 5

2) (i cant see, the image is not clear :()

Which should you use to find the length of a?

Question 1 options:

Pythagorean Theorem


Law of Sines


Law of Cosines100


Soh-Cah-Toa

Answers

♫ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ♫

Pythagoras' theorem is only suitable for right triangles, which this isn't.

The Sine rule would not be applicable as there isn't any side and paired angle given

The best option for this would be the Law of Cosines as it is suitable for when you are given two sides and an angle between the.

Hope This Helps You!

Good Luck (:

Have A Great Day ^-^

↬ ʜᴀɴɴᴀʜ

Answer:  Third option is correct.

Step-by-step explanation:

Since we have given that

ABC is triangle with its dimensions:

AB = 11

AC = 13

∠A = 108°

BC = a

We need to find the length of 'a'.

So, we can use "Law of cosines" as we have given two sides and one angle.

So, it becomes,

[tex]\cos A=\dfrac{b^2+c^2-a^2}{2bc}\\\\\cos 108^\circ=\dfrac{11^2+13^2-a^2}{2\times 13\times 11}\\\\-0.3=\dfrac{121+169-a^2}{286}\\\\-0.3\times 286=290-a^2\\\\-85.8=290-a^2\\\\-85.8-290=-a^2\\\\375.8=a^2\\\\a=\sqrt{375.8}\\\\a=19.38[/tex]

Hence, Third option is correct.

Which equation yields the solutions x=−2 and x=5?

Answers

Answer:

 x² - 3x - 10 = 0

Step-by-step explanation:

Given there are 2 solutions then the equation is a quadratic.

Since the solutions are x = - 2 and x = 5 then

the factors are (x + 2) and (x - 5) and

f(x) = (x + 2)(x - 5) ← expand factors

     = x² - 3x - 10, hence the equation is

x² - 3x - 10 = 0

Final answer:

The equation that yields the solutions x = -2 and x = 5 is: x^2 + 0.00088x - 0.000484 = 0. We can solve this equation using the quadratic formula.

Explanation:

The equation that yields the solutions x = -2 and x = 5 is:

x^2 + 0.00088x - 0.000484 = 0

To solve this equation, we can use the quadratic formula:

x = (-b +/- sqrt(b^2 - 4ac))/(2a)

Plugging in the values from the equation, we get:

x = (-0.00088 +/- sqrt((0.00088)^2 - 4(1)(-0.000484)))/(2(1))

Simplifying further, we have:

x = (-0.00088 +/- sqrt(0.0000007744 + 0.001936))/0.002

Continuing to simplify, we get:

x = (-0.00088 +/- sqrt(0.0027104))/0.002

Finally, we have the two possible solutions:

x = (-0.00088 + sqrt(0.0027104))/0.002 and x = (-0.00088 - sqrt(0.0027104))/0.002

Find the area of a parallelogram with vertices at A(–9, 5), B(–8, 10), C(0, 10), and D(–1, 5).


A) 40 square units


B) 30 square units


C) 20 square units


D) none of these

Answers

Answer:

It would be A. 40 square units (:

Step-by-step explanation:

Length of the rug is 15 feet and the width of the rug is 3 feet. What is the area of the rug?

Answers

Answer:

Step-by-step explanation:

56 ft is the answer

Divide. Write the quotient in lowest terms. 3\dfrac{1}{8} \div 1\dfrac23 = 3 8 1 ? ÷1 3 2 ? =3, start fraction, 1, divided by, 8, end fraction, divided by, 1, start fraction, 2, divided by, 3, end fraction, equals

Answers

By writing the quotient in lowest terms, 3 and 1/8 divided by 1 and 2/3 equals 5 and 5/24.

How to divide the equation

To divide 3 and 1/8 by 1 and 2/3, we can follow these steps:

Step 1: Convert the mixed numbers to improper fractions.

3 and 1/8 = (3 * 8 + 1) / 8 = 25 / 8

1 and 2/3 = (1 * 3 + 2) / 3 = 5 / 3

Step 2: Invert the divisor (the second fraction) and multiply.

25/8 ÷ 3/5 = 25/8 * 5/3

Step 3: Simplify the fractions if possible.

The numerator of 25/8 and the denominator of 5/3 have a common factor of 5.

25/8 * 5/3 = (5 * 25) / (8 * 3) = 125/24

Step 4: Express the improper fraction as a mixed number (if necessary).

125/24 can be expressed as 5 and 5/24.

Therefore, 3 and 1/8 divided by 1 and 2/3 equals 5 and 5/24.

Read on quotient on https://brainly.com/question/11418015

#SPJ3

The solution to [tex]\(3\dfrac{1}{8} \div 1\dfrac23\) is \(\frac{15}{8}\),[/tex] expressed as a fraction in its simplest form after converting the mixed numbers to improper fractions and performing division.

Let's solve [tex]\(3\dfrac{1}{8} \div 1\dfrac23\)[/tex]

convert the mixed numbers into improper fractions:

[tex]\(3\dfrac{1}{8} = \frac{3 \times 8 + 1}{8} = \frac{24 + 1}{8} = \frac{25}{8}\)[/tex]

[tex]\(1\dfrac23 = \frac{1 \times 3 + 2}{3} = \frac{3 + 2}{3} = \frac{5}{3}\)[/tex]

Now, we have:

[tex]\(\frac{25}{8} \div \frac{5}{3}\)[/tex]

To divide by a fraction, we multiply by its reciprocal:

[tex]\(\frac{25}{8} \times \frac{3}{5}\)[/tex]

Multiply the numerators and denominators:

Numerator:[tex]\(25 \times 3 = 75\)[/tex]

Denominator: [tex]\(8 \times 5 = 40\)[/tex]

Therefore, [tex]\(3\dfrac{1}{8} \div 1\dfrac23 = \frac{75}{40}\)[/tex]

Reduce the fraction to its simplest form by dividing both the numerator and denominator by their greatest common divisor, which is 5:

[tex]\(\frac{75}{40} = \frac{75 \div 5}{40 \div 5} = \frac{15}{8}\)[/tex]

Hence,[tex]\(3\dfrac{1}{8} \div 1\dfrac23 = \frac{15}{8}\).[/tex]

At a certain vineyard it is found that each grape vine produces about 10 lb of grapes in a season when about 500 vines are planted per acre. for each additional vine that is planted, the production of each vine decreases by about 1 percent. so the number of pounds of grapes produced per acre is modeled by

Answers

Final answer:

The question is about the mathematical modeling of a vineyard's grape production. As the number of vines increases, the individual yield of each vine decreases by 1%. An equation, such as P = 5000 - 50(n-500), is a possible mathematical model to represent this situation.

Explanation:

This question appears to require a detailed understanding of mathematical modeling and percentage decrease concept. The problem presented describes the decrease in grape production per vine as the number of vines planted per acre increases. It's an example of an inverse relationship, when one variable increases the other variable decreases.

The initial production quantity is 10 lb of grapes per vine when there are 500 vines per acre. However, for every additional vine planted, there is a subsequent 1% drop per vine. This means that if 501 vines are planted, each vine then produces only 99% of 10 lbs, or 9.9 lbs, and so on.

To model this mathematically, an equation could possibly be P = 5000 - 50(n-500), where P is the production of grapes in pounds, and n is the number of vines. This formula might help to calculate the maximum yield that could be obtained according to the number of vines.

Learn more about Mathematical Modeling here:

https://brainly.com/question/30517381

#SPJ12

he mean incubation time of fertilized eggs is 23 days. Suppose the incubation times are approximately normally distributed with a standard deviation of 1 day. ​(a) Determine the 17th percentile for incubation times. ​(b) Determine the incubation times that make up the middle 97​%. LOADING... Click the icon to view a table of areas under the normal curve. ​(a) The 17th percentile for incubation times is nothing days. ​(Round to the nearest whole number as​ needed.) ​(b) The incubation times that make up the middle 97​% are nothing to nothing days. ​(Round to the nearest whole number as needed. Use ascending​ order.)

Answers

I think a but I’m not quite sure

Find the inverse of the matrix [tex]\left[\begin{array}{ccc}9&-2\\-10&9\\\end{array}\right][/tex] , if it exist.

Answers

Answer:

The answer is (b)

Step-by-step explanation:

* Lets check how to find the inverse of the matrix,

 its dimensions is 2 × 2

* To know if the inverse of the matrix exist find the determinant

- If its not equal 0, then it exist

* How to find the determinant

- It is the difference between the multiplication of

 the diagonals of the matrix

Ex: If the matrix is [tex]\left[\begin{array}{ccc}a&b\\c&d\end{array}\right][/tex]

     its determinant = ad - bc

- After that lets swap the positions of a and d, put negatives

 in front of b and c, and divide everything by the determinant

- The inverse will be [tex]\left[\begin{array}{ccc}\frac{d}{ad-bc} &\frac{-b}{ad-bc}\\\frac{-c}{ad-bc} &\frac{a}{ad-bc}\end{array}\right][/tex]

* Lets do that with our problem

∵ The determinant = (9 × 9) - (-2 × -10) = 81 - 20 = 61

- The determinant ≠ 0, then the inverse is exist

∴ The inverse is [tex]\frac{1}{61}\left[\begin{array}{ccc}9&2\\10&9\end{array}\right][/tex]=

   [tex]\left[\begin{array}{ccc}\frac{9}{61}&\frac{2}{61}\\\frac{10}{61} &\frac{9}{61}\end{array}\right][/tex]

* The answer is (b)

Bakersfield California was founded in 1859 when colonel Thomas baker planted ten acres of alfalfa for travelers going from Visalia to Los Angeles to feel their animals. The citys population can be modeled by the equation y=3340e^0.0397 where t is th number of years since 1950

Answers

Answer: option c.

Step-by-step explanation:

To solve the exercise you must apply the formula given in the problem, which is the following:

[tex]y=33,430e^{0.0397t}[/tex]

The problem asks for the projected population of Bakersfield in 2010.

Therefore, keeping on mind that  t is th number of years since 1950, you have that:

[tex]t=2010-1950\\t=60[/tex]

Substitute the value of t into the formula.

Therefore, you obtain:

 [tex]y=33,430e^{0.0397(60)}=361,931[/tex]

PLEASE HELP!! TIMED QUESTION!!!!! WILL AWARD BRAINLIEST!!!!!

If f(x) = x^2 + 3x + 5 , what is f (a + h) ?

A. (a+h)^2 + 3(a+h) + 5(a+h)
B. a^2 + 2ah + h^2 + 3a + 3h + 5
C. h^2 + 3a + 3h + 5
D. (x^2 + 3ax + 5) (a + h)

Answers

the answer is A, what they changed is the (x) with (a+h), so the right side equation should be changed the same way just like A.

Suppose a homeless shelter provides meals and sleeping cots to those in need. A rectangular cot measures 6 feet long by 3 ½ feet wide. Find the cot's diagonal distance from corner to corner. Round your answer to the nearest hundredth foot. 6.95 feet 9.64 feet 9.65 feet 6.94 feet

Answers

Answer:

6.95 feet

Step-by-step explanation:

The shape of the cot is rectangular. A diagonal of the rectangle divides the rectangle into two Congruent Right Angled triangles. The length and width of the rectangle become the legs of the right triangle and the diagonal is the hypotenuse of the right triangle.

In order to find the length of the hypotenuse which is the diagonal in this case we can use the Pythagoras Theorem. According to the theorem, square of hypotenuse is equal to the sum of square of its legs. So for the given case, the formula will be:

[tex]\textrm{(Diagonal)}^{2}=\textrm{(Length)}^{2}+\textrm{(Width)}^{2}\\\\ \textrm{(Diagonal)}^{2}=6^{2}+3.5^{2}\\\\ \textrm{(Diagonal)}^{2}=48.25\\\\ \textrm{(Diagonal)}=\sqrt{48.25}=6.95[/tex]

Thus, rounded of to nearest hundredth foot, the diagonal distance from corner to corner is 6.95 feet

Determine two pairs of polar coordinates for the point (5, 5) with 0° ≤ θ < 360°.

A (5 square root 2, 225°), (-5 square root 2, 45°)

B (5 square root 2, 315°), (-5 square root 2, 135°)

C (5 square root 2, 135°), (-5 square root 2, 315°)

D (5 square root 2, 45°), (-5 square root 2, 225°)

Answers

Answer:

 the answer is B (5 square root 2, 315°), (-5 square root 2, 135°)

Step-by-step explanation:

1) Let A be the point (x, y) = (5, - 5)  

=> x = 5 and y = - 5  

r = √(x² + y²) = √(25 + 25) = √50 = ± 5√2  

tan Θ = - 5/5 = - 1  

=> Θ = (i) 315º or - 45º ; (ii) 135º or - 225  

Hence, the Polar Coordinates of A are (i) (5√2, 315º) (ii) (- 5√2, 135º)

Two pairs of polar coordinates for the point is option b,

Calculation of two pairs:

Here we assume that A be the point (x, y) = (5, - 5)  

So,

x = 5 and y = - 5  

Now

[tex]r = \sqrt(x^2 + y^2) = \sqrt(25 + 25) = \sqrt50 = \pm 5\sqrt2[/tex]

tan Θ = - 5/5 = - 1  

Now

(i) 315º or - 45º ; (ii) 135º or - 225  

So, the polar coordinates should be (5 square root 2, 315°), (-5 square root 2, 135°)

learn more about the point here: https://brainly.com/question/24598035

Solve the equation. Round to the nearest hundredth. Show work.

[tex]1.2[/tex] · [tex]10x{4x} - 4.2 = 9.9[/tex]

Answers

Answer:

x=0.27

Step-by-step explanation:

We are given the equation;

[tex]1.2*10^{4x}-4.2=9.9[/tex]

The first step is to add 4.2 on both sides of the equation;

[tex]1.2*10^{4x}=14.1[/tex]

The next step will be to divide both sides of the equation by 1.2;

[tex]10^{4x}=11.75[/tex]

Next we take natural logs on both sides of the equation;

[tex](4x)ln10=ln11.75[/tex]

Finally, we divide both sides by 4*ln10 and simplify to determine x;

[tex]x=\frac{ln11.75}{4ln10}=0.27[/tex]

What is the domain of the function f(x)=x−16? f(x)=x−16?
The function is defined when f(x) is greater than or equal to 0, therefore the domain is f(x)≥0.
The function is defined only when x−16 is greater than 0, therefore the domain is x>16.
The function is defined for any value of x, therefore the domain is all real numbers.
The function is defined only when x is greater than or equal to 0, therefore the domain is x≥0.

Answers

Answer:

C

Step-by-step explanation:

f(x)=x-16 is just a straight line with a slope of one at a y intercept of -16. Therefore, x can hit all numbers in the x axis making the domain x is in the element of all real numbers.

Answer:

all real numbers

Step-by-step explanation:

literally the domain can be anything but the range is limited because of the vertical line check

Find the vertices and foci of the hyperbola with equation quantity x plus 4 squared divided by 9 minus the quantity of y minus 5 squared divided by 16 = 1

Answers

Answer:

Vertices at (-7, 5) and (-1, 5).

Foci at (-9, 5) and (1,5).

Step-by-step explanation:

(x + 4)²/9 - (y - 5)²/16 = 1

The standard form for the equation of a hyperbola with centre (h, k) is

(x - h²)/a² - (y - k)²/b² = 1

Your hyperbola opens left/right, because it is of the form x - y.

Comparing terms, we find that

h = -4, k = 5, a = 3, y = 4

In the general equation, the coordinates of the vertices are at (h ± a, k).

Thus, the vertices of your parabola are at (-7, 5) and (-1, 5).

The foci are at a distance c from the centre, with coordinates (h ± c, k), where c² = a² + b².

c² = 9 + 16 = 25, so c = 5.

The coordinates of the foci are (-9, 5) and (1, 5).

The Figure below shows the graph of the hyperbola with its vertices and foci.

When 9^2/3 is written in simplest radicsl form, which value remains under the radical? 3 6 9 27

Answers

[tex]\bf ~\hspace{7em}\textit{rational exponents} \\\\ a^{\frac{ n}{ m}} \implies \sqrt[ m]{a^ n} ~\hspace{10em} a^{-\frac{ n}{ m}} \implies \cfrac{1}{a^{\frac{ n}{ m}}} \implies \cfrac{1}{\sqrt[ m]{a^ n}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ 9^{\frac{2}{3}}\implies (3^2)^{\frac{2}{3}}\implies 3^{2\cdot \frac{2}{3}}\implies 3^{\frac{4}{3}}\implies \sqrt[3]{3^4}\implies \sqrt[3]{3^3\cdot 3^1}\implies 3\sqrt[3]{\stackrel{\textit{this one}}{3}}[/tex]

Answer:

\bf ~\hspace{7em}\textit{rational exponents} \\\\ a^{\frac{ n}{ m}} \implies \sqrt[ m]{a^ n} ~\hspace{10em} a^{-\frac{ n}{ m}} \implies \cfrac{1}{a^{\frac{ n}{ m}}} \implies \cfrac{1}{\sqrt[ m]{a^ n}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ 9^{\frac{2}{3}}\implies (3^2)^{\frac{2}{3}}\implies 3^{2\cdot \frac{2}{3}}\implies 3^{\frac{4}{3}}\implies \sqrt[3]{3^4}\implies \sqrt[3]{3^3\cdot 3^1}\implies 3\sqrt[3]{\stackrel{\textit{this one}}{3}}

Step-by-step explanation:

Earth's equator is about 24,902 mi long. What is the approximate surface area of Earth?

Answers

Answer:

197 million square miles

Step-by-step explanation:

Remark

What the equator is telling you is that the circumference around the earth is approximately 24902 miles. So before you can find the surface area, you need to find the radius of that circumference.

Equations

C = 2*pi*r

Area = 4pi*r^2

Solution

Radius

C = 24902

pi = 3.14

r = ?

24902 = 2 * pi * r

r = 24902 / (2 * pi)

r = 3965.29

==========

Surface Area

Area = 4 * pi * r^2

Area = 4 * 3.14 * 3965.29^2

Area = 4 * 3.14 * 15,723,498

Area = 197 000 000 square miles

Final answer:

The approximate surface area of the Earth, an oblate spheroid, is calculated using the mean radius derived from the average of the equatorial and polar radii, resulting in an estimated surface area of around 197 million square miles.

Explanation:

Calculating Earth's Surface Area

To approximate the surface area of the Earth, we will use the formula for the surface area of a sphere, which is 4πr². Since the Earth is not a perfect sphere but rather an oblate spheroid, we will use the mean radius. The equatorial radius is approximately 3963.296 miles, and the polar radius is 3949.790 miles. Thus, the mean radius would be the average of these two measurements.

First, we calculate the mean radius:

(3963.296 + 3949.790) / 2 = 3956.543 miles

Now, plug the mean radius into the formula for the surface area of a sphere:

Surface Area = 4π(3956.543)² ≈ 197,000,000 square miles

This calculation provides an approximation of the Earth's surface area, taking into account its oblate spheroid shape.

Liam has 2 quarts of apple juice. He wants to pour the juice into 1/5-quarts servings. How many servings can he pour?

Answers

Answer:

10 servings

Step-by-step explanation:

Divide the total juice available, 2 quarts, by the serving size, (1/5) quart per serving:

 2 quarts                     2        5

--------------------------- = ----  ·  ------ servings = 10 servings

(1/5) quart/serving       1         1

The height of a cylinder with a fixed radius of 6 cm is increasing at the rate of 3 cm/min. What is the rate of change of the volume of the cylinder when the height is 20cm.

Answers

Answer:

108π cm^3/min

Step-by-step explanation:

At a time of t min, let the height be h cm

The volume of a cylinder;

V = π r^2 h

   = 36π h

differentiating both sides with respect to t;

dV/dt = 36π dh/dt

but dh/dt = 3 cm/min

dV/dt = 36π(3) = 108π cm^3/min

Answer:

The rate of change of the volume of the cylinder when the height is 20 cm is [tex]\frac{dV}{dt}=108\pi \:{\frac{cm^3}{min} }[/tex]

Step-by-step explanation:

This is a related rates problem. In this problem, you need to find a relationship between the quantity whose rate of change you want to find, the volume in this case, and the quantity whose rates of change you know, the height of the cylinder.

We know that the volume of the cylinder is

[tex]V=\pi r^2h[/tex]

We also know that the radius is a constant, 6 cm and thus

[tex]V=\pi (6)^2h=36\pi h[/tex]

V and h both vary with time so you can differentiate both sides with respect to time, t, to get

[tex]\frac{dV}{dt}=36\pi \frac{dh}{dt}[/tex]

Now use the fact that [tex]\frac{dh}{dt}=3 \:{\frac{cm}{min}[/tex] to find [tex]\frac{dV}{dt}[/tex].

[tex]\frac{dV}{dt}=36\pi (3)=108\pi[/tex]

Simplify √ 25 please

Answers

Answer:

the answer is 5

Step-by-step explanation:

25/5=5 & 5*5=25

Answer:

The Answer Is 5 because every square number has to equal the number by multiplying by 2 to get your Answer 5 x 5 = 25 which 5 is multiplied 2 times 5 and 5 which gives you your answer 25.

Step-by-step explanation:

Plz Mark Brainliest

Solve by taking the square root of both sides

Answers

Answer:

option B

x = 1 + 3√6  or x = 1 - 3√6

Step-by-step explanation:

Given in the question an equation,

3(x-1)² - 162 = 0

rearrange the x terms to the left and constant to the right

3(x-1)² = 162

(x-1)² = 162/3

(x-1)² = 54

Take square root on both sides

√(x-1)² = √54

x - 1 = ±3√6

x = ±3√6 + 1

So we have two values for x

x = 3√6 + 1    OR  x = -3√6 + 1

Answer:

b.x = 1+3√6, 1-3√6

Step-by-step explanation:

We have given a quadratic equation.

3(x-1)²-162  = 0

We have to find the solution of given equation by taking the square root of both sides.

Simplifying above equation, we have

3(x-1)² = 162

Dividing above equation by 3, we have

(x-1)² =  54

Taking square root to both sides of equation, we have

x-1 = ±√54

x = ±√54+1

x = ±√(9×6)+1

x = ±3√6+1

x = 1+3√6, 1-3√6  which is the solution of given equation.

A bathtub in the shape of a rectangular prism is 20 feet long, 10 feet wide, and 5 feet deep. How much water could the tub hold?

Answers

Answer:

Step-by-step explanation:

Volume = length * width * height.

Volume = 20 * 10 * 5

The tub can hold 1000 cubic feet of water.

The amount of water tub hold is 28316.8 liters.

What is Volume?

Space is used by every three-dimensional object. The volume of this space is used as a measurement. The volume of an object in three-dimensional space is the amount of space it occupies within its boundaries. The capacity of the object is another name for it.

An object's volume can help us figure out how much water is needed to fill it, like how much water is needed to fill a bottle, aquarium, or water tank.

Given shape of bath tub is rectangular prism

which is  20 feet long, 10 feet wide, and 5 feet deep

length = 20 feet

width = 10 feet

height = 5 feet

to find the capacity of tub we need to calculate volume of tub

volume for rectangular prism = l x b x h

V = 20 x 10 x 5 = 1000 cubic feet

and 1 cubic feet = 28.3168 liter

1000 cubic feet = 28316.8 liter

Hence, the capacity of tub is 28316.8 liters.

Learn more about Volume;

https://brainly.com/question/13338592

#SPJ5

algebra2 help please ​

Answers

Answer:

continuously

Step-by-step explanation:

The more compounding you have, the greater the yield.  Obviously of the three, compounding continuously is the largest.  In math, we used the mathematical constant "e" to compute continuous compounding.

A bag contains a white, a red, and a blue marble. If one marble is drawn randomly from a bag, not replaced, and a second marble is drawn, display all possible outcomes as an organized list.

Answers

Final answer:

To answer the student's question, we list each possible pair of marble colors drawn without replacement from a bag with a white, red, and blue marble: White-Red, White-Blue, Red-White, Red-Blue, Blue-White, and Blue-Red.

Explanation:

The question asks for the display of all possible outcomes when two marbles are drawn from a bag containing a white, a red, and a blue marble, without replacement. To show all possible outcomes, we can list them in an organized manner, considering each color once it is drawn, is not put back into the bag. The first marble drawn can be any one of the three colors. Once a marble is drawn, there are only two colors left for the second draw.

White, RedWhite, BlueRed, WhiteRed, BlueBlue, WhiteBlue, Red

A table is 4 ft high. A model of the table is 6 in. high. What is the ratio of the height of the actual table to the height of the model table?
1/8

8/1

2/3

3/2

Answers

2/3 is the answer because 6 in is the model and 4 ft is the actual

Answer:

The  ratio of the height of the actual table to the height of the model table is [tex]\frac{8}{1}[/tex] .

Step-by-step explanation:

As given

A table is 4 ft high. A model of the table is 6 in. high.

As

1 foot = 12 inch

Now convert 4 ft into inches .

4 ft = 4 × 12

     = 48 inches

Height of the actual table = 48 inches

Now the ratio of the height of the actual table to the height of the model

table .

[tex]Ratio\ of\ the\ height\ of\ the\ actual\ table\ to\ the\ height\ of\ the\ model\ table =\frac{48}{6}[/tex]

[tex]Ratio\ of\ the\ height\ of\ the\ actual\ table\ to\ the\ height\ of\ the\ model\ table =\frac{8}{1}[/tex]

Therefore the  ratio of the height of the actual table to the height of the model table is [tex]\frac{8}{1}[/tex] .

Karli produces organic cheese from milk supplied by an organic dairy. Karli pays an average of $8.00 for 10 gallons of the organic milk. The direct labor charge of her helper who converts the milk to cheese is $13.00 an hour. Her helper prepares a 5-pound wheel of cheese from 5 gallons of milk, working about 3 hours over several days. To the nearest cent, what is Karli's prime cost of manufacturing a wheel of cheese?

A.34.00
B.17.00
C.48.00
d.43.00

Answers

Answer:

d. $43.00

Step-by-step explanation:

Karli's total cost is ...

total cost = material cost + labor cost

= ($8.00/10 gal)·(5 gal) + ($13.00/h)·(3 h)

= $4.00 + $39.00

= $43.00

If r = 11 units and h = 8 units, then what is the volume of the cylinder shown above?

Answers

Answer:

  968π ≈ 3041 . . . cubic units

Step-by-step explanation:

The usual formula for the volume of a cylinder is ...

  V = πr²h

For your given dimensions, the volume is found by putting the values into the formula and doing the arithmetic.

  V = π(11²)(8) = 968π . . . . cubic units

 V ≈ 3041 cubic units

Other Questions
What pastime did Jane enjoy? A) spending time reading B) spending time with Bessie Eliminate C) spending time with Mrs. Reed D) spending time with Georgiana, Eliza, and John Axums adoption of Christianity shows its connection to How much will Kasey pay in Medicare if she makes $42,300 next year? $613.35 $2,678.40 $3,291.75 $4,320.00 A cone-shaped paper cup is 2.5 inches high and has a radius of 1.5 inches. What is its volume to the nearest hundredth?Plz Help Which answer is correct? If you invest your money early and often when you are young Find the area of the triangle with the given measurements. Round the solution to the nearest hundredth if necessary. B = 103, a = 12 cm, c = 22 cm Which of the following is not an activity promoted through environmental activism? a. conservation b. corrective justice c. pollution prevention d. waste regulation Please select the best answer from the choices provided A B C D If you help me U will be my HERO what term is best used to describe this passage that repeats throughout the poem the wind? O wind, a-blowing all day long,O wind, that sings so loud a song!A verseB refrain C StanzaD Hyperbole What is 35.77 rounded off to the nearest whole number Solve for x: (2/5)(x-4)=2x PLEASE HELP I'M TIMED Everyone has done something that he or she will always remember. Think about a time you did something special that you will always remember. Now write a story about the time you did something special that you will always remember. Find the area of the parallelogram. HELP ASAP!! show that 9a + 3b has a greater value than 3x + 4y (photo provided) 7922 3284 4487 9105 6093 A 50-year-old male purchased a 20-Year Endowment insurance policy at the age of 40.The face value of the policy was $85,000. He asks his insurance agent for a reduced paid up insurance nonforfeiture option. Given the table below and the permanent insurance amount of $48.20 per thousand, determine the reduced paid up insurance value and the annual premium. connor went to new york for vacation. he spent 3 nights at a hotel and rented a car for 4 days. jillian stayed at the same hotel, but spent 4 nights and rented a car for 5days from the same company. if connor spent $675 and jillian spent $875 how much did one night at the hotel cost ? A.$75B.$100C.$125D.$150 Which plot element is repeated in "The Catch? A.Ethane laughs. B.Lewess smiles. C.Leondril rescues Ethane. D.Rohan helps Ethane. A circle has a radius of 4/9 units and is centered at (-6.2,5.8). Write an equation of this circle