[tex]x+2[/tex] is a factor of [tex]x^5+32[/tex] because (by the remainder theorem) the remainder upon dividing [tex]x^5+32[/tex] by [tex]x+2[/tex] is [tex](-2)^5+32=0[/tex].
There's also the sum of fifth powers formula,
[tex]a^5+b^5=(a+b)(a^4-a^3b+a^2b^2-ab^3+b^4)[/tex]
ANSWER
The correct answer is A
EXPLANATION
The given polynomial is
[tex]p(x) = {x}^{5} + 32[/tex]
According to the remainder theorem, if p(x) is divided by x+2 the remainder is p(-2).
If the remainder is zero then x+2 is a factor of f(x).
We plug in x=-2 into the function to obtain;
[tex]p( - 2) = { (- 2)}^{5} + 32[/tex]
[tex]p( - 2) = - 32 + 32[/tex]
[tex]p( - 2) = 0[/tex]
Since the remainder is zero, x+2 is a factor.
The correct answer is A
Use The function f(x) is graphed below.
the graph of the function to find, f(6).
-2
-1
1
2
Answer:
f(6) = 2
Step-by-step explanation:
Since y is a function of x, that is y = f(x), f(6) implies that we shall be evaluating the value of y when the value of x is 6.
To do this we shall draw a vertical line, x = 6 and check where this line intersects with the graph of the function f(x)
The vertical line x = 6 intersects with the graph of the function f(x) on the horizontal line y = 2. The function f(x) assumes the value 2 for values of x between 4 and 8. Therefore, f(6) = 2
Answer: Last option.
Step-by-step explanation:
We know that input values of a function are the values of the variable "x" and output values of a function are the values of the variable "y".
By definition, in functions each input value have one and only one output value.
Then, find [tex]f(6)[/tex] you can see that the input value is [tex]x=6[/tex] and you need to find the corresponding ouput value (or "y")
You can observe in the figure attached that the value of "y" for [tex]x=6[/tex] is [tex]y=w[/tex], obtaining the point (6,2)
Therefore:
[tex]f(6)=2[/tex]
This matches with the last option.
The population of Oak Forest is increasing at a rate of 2% per year. If the population is 53,768 today, what will it be in three years?
Answer:
56,994
Step-by-step explanation: multiply the population by 0.02, round it to the nearest whole number, and then multiply that number by 3 and add it onto 53,768
The population of Oak Forest in three years will be approximately 57,091.
Explanation:To find the population of Oak Forest in three years, we can use the formula for exponential growth. The formula is: P = P0 * (1 + r)t, where P is the final population, P0 is the initial population, r is the growth rate, and t is the number of years. In this case, P0 is 53,768, r is 0.02 (2% as a decimal), and t is 3. Plugging these values into the formula, we get:
P = 53,768 * (1 + 0.02)3
Simplifying the expression inside the parentheses:
P = 53,768 * (1.02)3
Calculating (1.02)3:
P = 53,768 * 1.0604
Calculating the final population:
P ≈ 57,091
Therefore, the population of Oak Forest in three years will be approximately 57,091.
Learn more about Population growth here:https://brainly.com/question/18415071
#SPJ2
READ ATTACHED FILE qwq
Answer:
r = 2.5
Step-by-step explanation:
The equation given says y = r * x
So, the y value would be an unknown times the given x value.
To solve for r, all you have to do is divide.
25 ÷ 10 = 2.5
12.5 ÷ 5 = 2.5
10 ÷ 4 = 2.5
2.5 is the constant of proportionality.
Can some one explain to me what substitution is and how to use it to solve equations?
Answer:
Step-by-step explanation:
Say that your equation is 2x+4=8, x=2
you would plug in the 2 where your x is so, 2(2) +4=8
then you'd solve regularly.
Hope my answer has helped you!
Please help I will mark BRAINLIEST
Answer:
55
Step-by-step explanation:
20×22=440 8 ' 55
PLEASE HELP ASAP!!! I NEED THIS TOMORROW!!! You have to look for division problems, I have already found 19, and I need 20. PLEASE FIND THE LAST ONE!!!!!
Answer:
3rd last row, 4th from the left (132) diagonally left upwards. 132, 11, 12
Step-by-step explanation:
132 ÷ 11 =12
HELP PLEASE DEADLINE
Reason 1: Given.
Reason 2: Vertical angles
Reason 3: Angle, Side, Angle(ASA)
Two lines intersecting at a right angle
form a line.
are parallel.
are perpendicular.
form a ray.
Answer: THIRD OPTION
Step-by-step explanation:
We need to remember that a right angle is an angle that measures 90 degrees.
By definition, when two or more lines intersect (or cross one another ) at a 90-degree angle, then these lines are called "Perpendicular".
Therefore, in this case, we know that these two lines intersects at a right angle (angle of 90 degrees), then, we can conclude that these lines are Perpendicular.
This matches with the third option.
Answer:
Perpendicular lines
Step-by-step explanation:
Two or more lines are called intersecting lines.That point would be on each of these lines.
a circle with center (4 -3) contain the point (9,-3). what is an equation of the circle
Answer:
[tex]\large\boxed{(x-4)^2+(y+3)^2=25}[/tex]
Step-by-step explanation:
The equation of a circle:
[tex](x-h)^2+(y-k)^2=r^2[/tex]
(h, k) - center
r - radius
We have the center (4, -3) and the point on the circle (9, -3).
The length of radius is equal to the distance between a center and an any point on a circle.
The formula of a distance between two points:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Susbtitute:
[tex]r=\sqrt{(9-4)^2+(-3-(-3))^2}=\sqrt{5^2+0^2}=\sqrt{5^2}=5[/tex]
The center (4, -3) → h = 4, k = -3.
Finally we have:
[tex](x-4)^2+(y-(-3))^2=5^2\\\\(x-4)^2+(y+3)^2=25[/tex]
John ran the 100-m dash with a time of 9.87sec. If this pace could be maintained for an entire 26-mi marathon, what would his time be? (Notice that 1 m ≈ 3.281 ft and 1 mi = 5280 ft.)
Hr____
Minutes____
Seconds____
Answer:
1 hour
8 min
49 sec
Step-by-step explanation:
we know that
1 m=3.281 ft
1 mi=5,280 ft
Convert 26 mi to ft
26 mi=26*5,280=137,280 ft
Convert 137,280 ft to m
137,280 ft=137,280/3.281=41,840.90 m
using proportion
9.87/100=x/41,840.90
x=41,840.90*(9.87)/100
x=4,129.70 sec
Remember that
1 hour=3,600 sec
1 hour=60 min
1 min=60 sec
4,129.70 sec=4,129.70/3,600= 1.147 h
0.147*60=8.82 min
0.82*60=49 sec
therefore
1 hour
8 min
49 sec
John could maintain his 100-m dash pace for an entire 26-mi marathon, his time would be 1 hour, 8 minutes, and approximately 50 seconds.
First, we need to convert John's 100-meter dash time into a pace that can be extrapolated over the marathon distance. Given that John ran a 100-m dash in 9.87 seconds, we need to find out how many meters he runs per second. This would be 100 m / 9.87 s = 10.13 meters per second.
Next, we convert the marathon distance from miles to meters. As there are 5280 feet in a mile and 3.281 feet in a meter, there are 5280 / 3.281 = 1609.34 meters in a mile. The marathon distance is therefore 26 miles * 1609.34 meters/mile = 41842.84 meters.
Using John's pace, we can calculate the time it would take to run the marathon: 41842.84 meters / (10.13 meters/second) = 4129.64 seconds.
Finally, we convert the total seconds to hours, minutes, and seconds. There are 3600 seconds in an hour and 60 seconds in a minute:
Hours: 4129.64 sec / 3600 sec/hr = 1.147 hours (1 hour)Minutes: (4129.64 sec - 1 hour × 3600 sec) / 60 sec/min = 8.827 minutes (8 minutes)Seconds: 4129.64 sec - 1 hour × 3600 sec - 8 minutes × 60 sec = 49.64 seconds (approximately 50 seconds)Therefore, if John could maintain his 100-m dash pace for an entire 26-mi marathon, his time would be 1 hour, 8 minutes, and approximately 50 seconds.
4n − 3 = −2 n + 9n = 2 Is 2 the solution? yes or no, how do you know?
[tex]
4n-3=-2n+9n \\
6n-3=9n \\
3n=-3 \\
n=\boxed{-1}
[/tex]
2 is not a solution but -1.
ANSWER
No, n=2 is not a solution.
EXPLANATION
The given equation is
[tex]4n - 3 = - 2n + 9n[/tex]
If n=2 is a solution, then it must satisfy this equation.
We substitite n=2 into the equation to get:
[tex]4(2)- 3 = - 2(2)+ 9(2)[/tex]
[tex]8- 3 = - 4+ 18[/tex]
[tex]5 = 14[/tex]
This statement is false
Therefore n=2 us not a solution.
Consider the function f(x)=x^2−6x−2 . Which equation shows function f written in vertex form? f(x)=(x−3)^2−5 f(x)=(x+3)^2−11 f(x)=(x+3)^2−5 f(x)=(x−3)^2−11
Answer:
f(x) = (x − 3)² − 11
Step-by-step explanation:
To convert to vertex form, complete the square.
f(x) = x² − 6x − 2
f(x) = x² − 6x + 9 − 9 − 2
f(x) = (x − 3)² − 11
We need to complete the square: if we add and subtract 11 from the expression, we have
[tex]f(x)=x^2-6x-2=x^2-6x-2+11-11=x^2-6x+9-11=(x-3)^2+11[/tex]
What is the function graphed below?
graph in attachment
y = |x| + 1
y = |x| - 1
y = |x + 1|
y = |x - 1|
Answer: Third option
[tex]y = |x + 1|[/tex]
Step-by-step explanation:
The main function
[tex]f (x) = | x |[/tex]
has its vertex in the point (0, 0)
The function shown in the graph has its vertex in the point (-1, 0)
The transformation made to f (x) that moves its vertex one unit to the left is:
[tex]y = f (x + 1)[/tex]
After this transformation the new function is:
[tex]f (x) = | x + 1 |[/tex] Note that this function corresponds to the function plotted in the image.
Therefore the answer is the third option
If VX is the bisector of V, find the perimeter of VUW.
A 35
B. 46
C. 58
D. 70
Answer:
D. 70
Step-by-step explanation:
If VX is the bisector of V, then UX=WX.
This implies that:
[tex]3z-4=z+6[/tex]
Group similar terms:
[tex]3z-z=4+6[/tex]
[tex]2z=10[/tex]
z=5
WU=2(z+6)
WU=2(5+6)
WU=2(11)=22 units
VW=VU=5z-1
Put z=5 to get;
VW=VU=5(5)-1
VW=VU=25-1
VW=VU=24
The perimeter of VWU=24+24+22=70 units
Answer:
Perimeter of triangle VUW = 70.
Step-by-step explanation:
Since VX is angle bisector and VX is perpendicular to UW then triangle UVX is congruent to triangle WVX using ASA property.
then UV=WV...(i) {corresponding sides of congruent triangle are equal.}
and UX=WX ...(ii) {corresponding sides of congruent triangle are equal.}
then 3z-4=z+6
3z-z=6+4
2z=10
z=5
then UW=(3z-4)+(z+6)=3(5)-4+(5)+6=22
WV=5z-1=5(5)-1=24
UV=WV=24
Then perimeter of triangle VUW is
UV+WV+UW=24+24+22=70
Hence final answer is:
Perimeter of triangle VUW = 70.
98 points if you solve for me
Given: m∠ABC = m∠CBD
Prove: BC bisects ∠ABD.
Justify the steps in the flowchart proof
a.
1)definition of congruent
2)definition of bisect
3)given
4)reflexive property
b.
1)definition of congruent
2)definition of bisect
3)given
4)reflexive property
c.
1)definition of congruent
2)definition of bisect
3)given
4)reflexive property
Answer: A) given
B) definition of congruent
C) definition of bisect
Step-by-step explanation:
The leg of a right triangle is 2 units and the hypotenus is 3 units. What is the length, in units, of the other leg?
ANSWER
[tex]x = \sqrt{5} [/tex] units
EXPLANATION
Let the other leg be x units.
According to the Pythagoras Theorem, the sum of the squares of the two shorter legs should add up to the square of the hypotenuse.
This implies that,
[tex] {x}^{2} + {2}^{2} = {3}^{2} [/tex]
[tex]{x}^{2} + 4=9[/tex]
Group the constant terms,
[tex]{x}^{2}=9 - 4[/tex]
[tex]{x}^{2}=5[/tex]
Take square root.
[tex]x = \sqrt{5} [/tex]
Rewrite 4x = y +6 in slope-intercept form.
Answer:
y = 4x - 6.
Step-by-step explanation:
Slope-intercept form is y = mx + c where m = the slope and c = the y-intercept.
4x = y +6
Subtract 6 from both sides:
4x - 6 = y
we would write it as y = 4x - 6.
Answer:
Slope intercept form
y = 4x - 6
Step-by-step explanation:
Slope intercept form y = mx + b
In this case 4x = y +6
Re-write
y + 6 = 4x
Subtract 6 from both sides
y = 4x - 6 <-------Slope intercept form
Evaluate this expression for the given value of the variable 4 (d+7);d=-2
Exact Form:
d
=
−
7
−
√
47
2
,
−
7
+
√
47
2
d
=
-
7
-
47
2
,
-
7
+
47
2
Decimal Form:
d
=
−
0.07217269
…
,
−
6.92782730
…
Answer: 20
Step-by-step explanation:
d=-2
Plug in to get 4(-2+7)
Do what's in () -2+7=5
Then multiply 4(5)=20
subtract: (2x^2-7x+5)-(-6x^2-4x-2)
A. -4x^2-11x+3
B. -4x^2-5x+3
C. 8x^2-13x+7
D. 8x^2-3x+7
Answer:
[tex]\large\boxed{D.\ 8x^2-3x+7}[/tex]
Step-by-step explanation:
[tex](2x^2-7x+5)-(-6x^2-4x-2)\\\\=2x^2-7x+5-(-6x^2)-(-4x)-(-2)\\\\=2x^2-7x+5+6x^2+4x+2\qquad\text{combine like terms}\\\\=(2x^2+6x^2)+(-7x+4x)+(5+2)\\\\=8x^2-3x+7[/tex]
Answer:
8x^2-3x+7
Step-by-step explanation:
By simplifying the expression.
Please help!
What is the vertex of the parabola?
y+1=−14(x−2)2
[tex]\bf \textit{parabola vertex form with focus point distance} \\\\ \begin{array}{llll} 4p(x- h)=(y- k)^2 \\\\ 4p(y- k)=(x- h)^2 \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ y+1=-14(x-2)^2\implies -\cfrac{1}{14}[y-(\stackrel{k}{-1})]=[x-\stackrel{h}{2}]^2~\hfill \stackrel{center}{(-2~,~-1)}[/tex]
(15 points ) PLEASE HELP ASAP! Also please show your work! Solve.
Use the quadratic formula. Write solutions in simplist radical form. 2x^2+2x-1=0
Answer:
Step-by-step explanation:
ax^2+bx+c
-b +- sqaure root of b^2 -4ac/2a
-2 +- square root (2)^2-4(2)(-1)/2(2)
-2 +- square root 4+8 /4
-2 +- 2 square root 3 /4
reduce
-1 +- square root 3/2
Answer:
[tex]\large\boxed{x=\dfrac{-1-\sqrt3}{2}\ or\ x=\dfrac{-1+\sqrt3}{2}}[/tex]
Step-by-step explanation:
The quadratic formula of a quadratic equation:
[tex]ax^2+bx+c=0[/tex]
Discriminant of a Quadratic is [tex]\Delta=b^2-4ac[/tex]
If Δ < 0, then an equation has no real solution (has two complex solutions)
If Δ = 0, then an equation has one real solution [tex]x=\dfrac{-b}{2a}[/tex]
If Δ >0, then an equation has two real solutions [tex]x=\dfrac{-b\pm\sqrt{\Delta}}{2a}[/tex]
==========================================
We have the equation:
[tex]2x^2+2x-1=0\\\\a=2,\ b=2,\ c=-1[/tex]
Substitute:
[tex]\Delta=2^2-4(2)(-1)=4+8=12>0\\\\\sqrt\Delta=\sqrt{12}=\sqrt{4\cdot3}=\sqrt4\cdot\sqrt3=2\sqrt3[/tex]
[tex]x=\dfrac{-2\pm2\sqrt3}{(2)(2)}=\dfrac{-2\pm2\sqrt3}{4}[/tex] simplify by 2
[tex]x=\dfrac{-1\pm\sqrt3}{2}[/tex]
Which decimal is equivalent to 8/11?
Answer:
.72 or .73 which ever one is on your sheet
Step-by-step explanation:
Answer:
0.72 or 0.73
Step-by-step explanation:
8/11 expressed as a decimal is 0.72 or 0.73
In the coordinate plane choose the grap with the conditions given.
x+y=10
Click on the graphic to choose the correct answer.
Answer:
(1,9),(3,7),(5,5) (7,2)
Answer with explanation:
The sum of two distinct variables is 10.
x + y=10
It is linear equation in two variables.
To plot this graph in two dimensional plane find two distinct points satisfying the equation.
x=0, gives , y=10 or , y=0 gives , x=10.
x=1, gives ,y=10 -1,→y=9
So,two ordered pairs lying in the coordinate system are , (0, 10) and (1, 9) or (10,0) and (1,9), you will get the equation of line.
Otherwise , you can Draw the graph of this function by writing the equation in Slope Intercept form which is as:
[tex]\frac{x}{10}+\frac{y}{10}=1[/tex]
By writing the slope intercept form of line shows that , the line passes through , (10,0) and (0,10) means cutting x axis and y axis at these two points.
What is the 100th term of a sequence with a1=222 and d=-5
Answer:
- 273
Step-by-step explanation:
The n th term of an arithmetic sequence is
• [tex]a_{n}[/tex] = a₁ + (n - 1)d ← substitute in values
[tex]a_{100}[/tex] = 222 + (99 × - 5 ) = 222 - 495 = - 273
I don't get how to do this ration help me I need this finished
answer part A and B
For part two using what we already know can you figure out the length of the segment?
answer D) 24
Can someone help me from 18-21
#18 answer is 52
#19 answer is 152,100
and I cant make out the rest can you please write them in the comments of this answer?
This one is so hard what I supposed to do with on number???
It's actually very simple. Semicircle is a half of a circle. So the area and perimeter is also divided by 2. Also the radius is a half of diameter so 130.
[tex]Area=\frac{\pi130^2}{2}\approx\frac{53092.92}{2}=\boxed{26546.46ft^2}[/tex]
Hope this helps.
r3t40
Specify the domain for the function !!! Math problem. 10 points - Help needed !
ANSWER
[tex]( - \infty , + \infty )[/tex]
EXPLANATION
The given function is
[tex]f(x) = 2 {x}^{4} + 4 {x}^{3} + 2{x}^{2} [/tex]
This is a polynomial function.
The domain refers to all real values for which the function is defined.
Polynomial functions are defined everywhere.
The domain is all real numbers.
Or
[tex]( - \infty , + \infty )[/tex]
approximate 0.0032876 to 3 significant figure
Answer:
0.00329
This is rounded to three significant figures.
The zeros before 32876 will not count as significant since they are before the non-zero numbers.
Answer:
0.00329
Step-by-step explanation:
The leading zero's are not significant, only there for place value.
The significant digits are 32876 ← 5 significant figures
which rounds to 329 ← 3 significant figures
0.0032876 ≈ 0.00329
The midpoint of the line segment with end points (-3,1) and (1,-4) is (-1,-1.5)
Yes or no?
Answer:
Answer: yes.
Step-by-step explanation:
x: (x1 + x2)/2 = (-3 + 1)/2 = -2/2 = - 1 So far so good.
y: (y1 + y2)/2 = (1 - 4 )/2 = (-3/2) = -1.5
The midpoint is (-1 , - 1.5)
True