Use Newton's method with initial approximation x1 = −2 to find x2, the second approximation to the root of the equation x3 + x + 7 = 0. (Round your answer to four decimal places.)

Answers

Answer 1

Answer:

[tex]x_2 \approx -1.769[/tex]

Step-by-step explanation:

Let [tex]f(x)=x^3+x+7[/tex]

So [tex]f'(x)=3x^2+1[/tex]

[tex]x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}[/tex]

Let [tex]x_1=-2[/tex]

We are going to find [tex]x_2[/tex]

So we are evaluating [tex]-2-\frac{f(-2)}{f'(-2)}[/tex]

First step find f(-2)

Second step find f'(-2)

Third step plug in those values and apply PEMDAS!

[tex]f(-2)=(-2)^3+(-2)+7=-8-2+7=-10+7=-3[/tex]

[tex]f'(-2)=3(-2)^2+1=3(4)+1=12+1=13[/tex]

So

[tex]x_2=-2-\frac{-3}{13} \\\\ x_2=\frac{-26+3}{13} \\\\ x_2=\frac{-23}{13} \\\\ x_2 \approx -1.769[/tex]

Answer 2
Final answer:

The second approximation x2 using Newton's method for the equation x3 + x + 7 = 0 with an initial approximation of x1 = -2 is -2.2764.

Explanation:

In order to find the second approximation x2 using

Newton's method

, we need to use the definition of Newton's method, which states that: x

n+1

= x

n

- f(x

n

)/f'(x

n

). Here, our function f(x) is x

3

+ x + 7. The derivative, f'(x), is 3x

2

+ 1. If our initial approximation, x1, is -2, we can substitute these values into our method to find x2. So, x2 = x1 - f(x1)/f'(x1) = -2 - ((-2)^3 + (-2) + 7) / (3*(-2)^2 + 1) = -2.2764 (rounded to four decimal places).

Learn more about Newton's Method here:

https://brainly.com/question/31910767

#SPJ2


Related Questions


Suppose a man is 25 years old and would like to retire at age 60. ?Furthermore, he would like to have a retirement fund from which he can draw an income of ?$100,000 per yearlong dash?forever! How can he do? it? Assume a constant APR of 8?%.

He can have a retirement fund from which he can draw ?$100,000 per year by having ?$ ______ in his savings account when he retires.

Answers

Answer:

$1314.37

Step-by-step explanation:

We have to calculate final value i.e. balance to earn $100,000 annually from interest.

= [tex]\frac{100,000}{0.08}[/tex] = $1,250,000

Now, N = n × y  = 12 × 25 = 300

         I  = 8% =  APR = 0.08

        PV = 0  = PMT = 0

        FV = 1,250,000 = A

[tex]A=\frac{PMT\times [(1+\frac{apr}{n})^{ny}-1]}{\frac{apr}{n}}[/tex]

[tex]PMT=\frac{A\times (\frac{APR}{n})}{[(1+\frac{APR}{n})^{ny}-1]}[/tex]

[tex]PMT=\frac{1,250,000\times (\frac{0.08}{12})}{[(1+\frac{0.08}{12})^{12\times 25}-1]}[/tex]

[tex]PMT=\frac{1,250,000\times (0.006667)}{[(1+\frac{0.08}{12})^{12\times 25}-1]}[/tex]

[tex]PMT=\frac{1,250,000\times (0.006667)}{[(1+0.006667)^{300}-1]}[/tex]

[tex]PMT=\frac{\frac{25000}{3}}{[1.006667^{300}-1]}[/tex]

[tex]PMT=\frac{\frac{25000}{3}}{6.340176}[/tex]

Monthly payment (PMT) = $1314.369409 ≈ $1314.37

$1314.37 is required monthly payment in order to $100,000 interest.

What is the sign of 4.3 .(-3.2) .0 ? Is it positive or negative

Answers

Answer:

Zero

Step-by-step explanation:

We are given the following expression and we are to determine what is the sign of its product:

[tex] 4 . 3 . ( - 3 . 2 ) . 0 [/tex]

One of the three terms in the expression is positive while one is negative. So if we start multiplying the two terms from the left side. we will get a negative number.

But when we will multiply it with zero, the whole product will become zero as anything times zero is always zero. Therefore, answer will be zero.

Answer:

it is negative

Step-by-step explanation:

a positive times a negative is a negative.

What is the possible solution?

Answers

[tex]\sin(3x+13)=\cos(4x)\\\sin(3x+13)=\cos(90-4x)\\3x+13=90-4x\\7x=77\\x=11[/tex]

A ball is thrown upward from the top of a building. The function below shows the height of the ball in relation to sea level, f(t), in feet, at different times, t, in seconds: f(t) = −16t2 + 48t + 100 The average rate of change of f(t) from t = 3 seconds to t = 5 seconds is _____feet per second.

Answers

Answer:

The average rate of change of f(t) from t = 3 seconds to t = 5 seconds is __-80___feet per second.

Step-by-step explanation:

The average change rate m is calculated using the following formula

[tex]m=\frac{f(t_2)-f(t_1)}{t_2-t_1}[/tex]

In this case [tex]f(t) = -16t^2 + 48t + 100[/tex],  [tex]t_2 = 5\ s\ \ , t_1=3\ s[/tex]

Then

[tex]f(t_2) = f(5) =-16(5)^2 + 48(5) + 100[/tex]

[tex]f(t_2) = -60[/tex]

[tex]f(t_1) = f(3) =-16(3)^2 + 48(3) + 100[/tex]

[tex]f(t_1) = 100[/tex]

Finally

[tex]m=\frac{(-60)-100}{5-3}[/tex]

[tex]m=-80[/tex]

Polygon ABCDE and polygon FGHIJ are similar. The area of polygon ABCDE is
40. What is the area of FGHIJ?

Answers

Answer: 640

Step-by-step explanation:

Since the two triangles are similar we can simply multiply the lesser triangle's area by a constant to get our answer.

Polygon FGHIJ is ABCDE with a scale change of 4

For the reason that we are dealing with area, we will multiply 40 by 4² in stead of just 4.

40 * 16 = 640

Answer:

B. 640

Step-by-step explanation:

got it right 2021

Explain how each of the following rates satisfies the definition of ratio. Given an example of how each is used.
A. 1580 people/square mile
B. 360 kilowatt-hour/4 months
C. 450 people/year
D. 355 calories/6 ounces

Answers

Answer:

Step-by-step explanation:

A ratio is defined as a comparison of two amounts by division.It is of the form of [tex]\frac{p}{q}[/tex] where p and q are the quantities.

A. 1580 people/square mile in division form

1580[tex]\frac{people}{\text{square mile}}[/tex]

This satisfies ratio definition as this compares two quantities People and Square mile and is of the form   [tex]\frac{p}{q}[/tex]

Where,

p: People, q:  Square mile

Example,

[tex]\frac{1580\times people}{1\times squaremile}[/tex]

expresses that per 1 square mile there are 1580 people. Thus rate satisfies the ratio definition.

B. 360 kilowatt-hour/4 months

in division form [tex]\frac{\text{360 kilowatt-hour}}{\text{4months}}[/tex]

This satisfies ratio definition as this compares two quantities kilowatt-hour and months and is of the form   [tex]\frac{p}{q}[/tex]

where, p: kilowatt-hour and q: people

Example,

[tex]\frac{\360\times kilowatt-hour}{4\times months}[/tex]

expresses that per 4 months there are 360 kilowatt-hour. Thus, rate satisfies the ratio definition.

C. 450 people/year

In division form 450[tex]\frac{people}{year}[/tex]

This satisfies ratio definition as this compares two quantities people and year and is of the form   [tex]\frac{p}{q}[/tex]

where, p: people and q: year

Example,

[tex]\frac{450\times people}{1\times\text{year}}[/tex]

expresses that per year there are 450 people. Thus, rate satisfies the ratio definition.

D. 355 calories/6 ounces

In division form [tex]\frac{355clories}{6ounces}[/tex]

This satisfies ratio definition as this compares two quantities calories and ounces and is of the form   [tex]\frac{p}{q}[/tex]

where p: calories and q: ounces

Example,

[tex]\frac{355\times calories}{6\times\text{ounces}}[/tex]

expresses that per 6 ounces there are 355 calories. Thus, rate satisfies the ratio definition.

Please solve and show work.

Answers

Answer:

63.16 in approx.

Step-by-step explanation:

Let the shorter leg be S.  Then the longer leg is L = 3S + 3.

The formula for the area of a triangle is A = (1/2)(base)(height).  Here, that works out to A = 84 in^2 = (1/2)(S)(3S + 3).

Simplifying, we get 168 in^2 = S(3S + 3), or

3S^2 + 3S - 168 = 0, or

 S^2  +  S  - 56   = 0.  This factors as follows:  (S - 8)(S + 7) = 0, so the positive root is S = 8.  We discard the negative root.

Thus, the shorter leg length is 8 and the longer leg length is 3(8) + 3, or 27.

According to the Pythagorean Theorem, the hypotenuse length is given by

L^2 = 8^2 + 27^2, or

L^2 = 64 + 729 = 793.

L = hypotenuse length = √793, or approx. 28.2 in.

Then the perimeter of the triangle is 8 + 27 + 28.2 in, or approx. 63.16 in

Camille Uses a 20 % Off Coupon When Buying a Sweater That Costs $ 47.99 .If, She Also pays 6 % Sales tax on the Purchase , How Many does She Paid For ???? ​

Answers

40.69. 47.99*.2=9.598. Round it to 9.6 and then subtract from 47.99. Equals 38.39. 38.39*1.06 equals 40.69.

Answer:

take 47.99 x .20 = 9.598

$9.60 off

then take 47.99 - 9.60 = $ 38.39

take 38.39 x .06 = 2.3034

$ 2.30 (tax)

add 38.39 + 2.30 = $40.69 or $40.70 is the final purchase price

(the two amounts depends on your choice answer or how it is rounded)

Step-by-step explanation:

The claim is that the IQ scores of statistics professors are normally​ distributed, with a mean greater than 135. A sample of 23 professors had a mean IQ score of 140 with a standard deviation of 13. Find the value of the test statistic.

Answers

Answer: 1.8446

Step-by-step explanation:

Given claim : [tex]\mu>\mu_0,\text{ where }\mu_0=135[/tex]

Sample size : [tex]n=23[/tex]

Sample mean : [tex]\overline{x}=140[/tex]

Standard deviation : [tex]\sigma = 13[/tex]

The test statistic for population mean is given by :-

[tex]z=\dfrac{x-\mu_0}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

[tex]\Rightarrow\ z=\dfrac{140-135}{\dfrac{13}{\sqrt{23}}}\\\\\Rightarrow\ z=1.84455058589\approx1.8446[/tex]

Hence, the value of test statistic =  1.8446

What is the solution of the equation 4^(x + 1) = 21? Round your answer to the nearest ten-thousandth.

Answers

For this case we must solve the following equation:

[tex]4 ^ {x + 1} = 21[/tex]

We find Neperian logarithm on both sides:

[tex]ln (4 ^ {x + 1}) = ln (21)[/tex]

According to the rules of Neperian logarithm we have:

[tex](x + 1) ln (4) = ln (21)[/tex]

We apply distributive property:

[tex]xln (4) + ln (4) = ln (21)[/tex]

We subtract ln (4) on both sides:

[tex]xln (4) = ln (21) -ln (4)[/tex]

We divide between ln (4) on both sides:

[tex]x = \frac {ln (21)} {ln (4)} - \frac {ln (4)} {ln (4)}\\x = \frac {ln (21)} {ln (4)} - 1\\x = 1,19615871[/tex]

Rounding:

[tex]x = 1.1962[/tex]

Answer:

x = 1.1962

Answer: [tex]x[/tex]≈[tex]1.196[/tex]

Step-by-step explanation:

Given the equation [tex]4^{(x + 1)} = 21[/tex] you need to solve for the variable "x".

Remember that according to the logarithm properties:

[tex]log_b(b)=1[/tex]

[tex]log(a)^n=nlog(a)[/tex]

Then, you can apply  [tex]log_4[/tex] on both sides of the equation:

[tex]log_4(4)^{(x + 1)} = log_4(21)\\\\(x + 1)log_4(4) = log_4(21)\\\(x + 1) = log_4(21)[/tex]

Apply the Change of base formula:

 [tex]log_b(x) = \frac{log_a( x)}{log_a(b)}[/tex]

Then you get:

[tex]x =\frac{log(21)}{log(4)}-1[/tex]

[tex]x[/tex]≈[tex]1.196[/tex]

1 -For what value of x is line a parallel to line b
2-For what value of x is line a parallel to line b

Answers

Answer:

1) x = 17,  line a parallel to line b

2) x = 18,  line a parallel to line b

Step-by-step explanation:

If line a parallel to line b then (10x - 40) + 50 = 180

Solve for x

10x - 40 + 50 = 180

Combine like terms

10x + 10 = 180

10x = 170

  x = 17

x = 17,  line a parallel to line b

-------------------------------------------------

If line a parallel to line b then 5x - 16 = 74

Solve for x

5x - 16 = 74

5x = 90

  x = 18

x = 18,  line a parallel to line b

 

Final answer:

The value of x which makes line a parallel to line b can be found by equating the slopes of the two lines and solving for x.

Explanation:

In mathematics, two lines a and b are parallel if and only if their slopes are equal. When we are given the equations of the lines and are asked to find the value of x that make the lines parallel, we start by setting the slopes of the two lines equal to each other. Let's assume now that line a is represented by y = mx + b1 and line b by y = nx + b2. In order for line a to be parallel to line b, m must be equal to n. Therefore, you solve for x from the equation m=n.

Learn more about Parallel Lines here:

https://brainly.com/question/29762825

#SPJ12

When are two distinct non vertical lines parallel

Answers

Answer:

Two lines are parallel when they share the same slope.

Step-by-step explanation:

Two lines are parallel when they share the same slope.

The slope-intercept form of the equation of a line is: y=mx + b, where 'm' is the slope and 'b' the y-intercept.

If two equations have the same value for 'm', then those lines are parallel, for example:

y = 3x + 8 (Red line)

y = 3x + 5 (Blue line)

y = 3x - 10 (Green line)

All the equations stated above are parallel, to show that, I'm attaching the graph of the equations :).

Use the Taylor series you just found for sinc(x) to find the Taylor series for f(x) = (integral from 0 to x) of sinc(t)dt based at 0. a.Give your answer using summation notation. b.Give the interval on which the series converges.

Answers

In this question (https://brainly.com/question/12792658) I derived the Taylor series for [tex]\mathrm{sinc}\,x[/tex] about [tex]x=0[/tex]:

[tex]\mathrm{sinc}\,x=\displaystyle\sum_{n=0}^\infty\frac{(-1)^nx^{2n}}{(2n+1)!}[/tex]

Then the Taylor series for

[tex]f(x)=\displaystyle\int_0^x\mathrm{sinc}\,t\,\mathrm dt[/tex]

is obtained by integrating the series above:

[tex]f(x)=\displaystyle\int\sum_{n=0}^\infty\frac{(-1)^nx^{2n}}{(2n+1)!}\,\mathrm dx=C+\sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{(2n+1)^2(2n)!}[/tex]

We have [tex]f(0)=0[/tex], so [tex]C=0[/tex] and so

[tex]f(x)=\displaystyle\sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{(2n+1)^2(2n)!}[/tex]

which converges by the ratio test if the following limit is less than 1:

[tex]\displaystyle\lim_{n\to\infty}\left|\frac{\frac{(-1)^{n+1}x^{2n+3}}{(2n+3)^2(2n+2)!}}{\frac{(-1)^nx^{2n+1}}{(2n+1)^2(2n)!}}\right|=|x^2|\lim_{n\to\infty}\frac{(2n+1)^2(2n)!}{(2n+3)^2(2n+2)!}[/tex]

Like in the linked problem, the limit is 0 so the series for [tex]f(x)[/tex] converges everywhere.

Final answer:

The Taylor series for the function f(x) = ∫ sinc(t)dt based at 0 is derived from the Taylor series of sinc(x) by integrating it term by term, given in summation notation as ∑ (-1)ⁿ * xⁿ⁺¹ / (n+1)! for n=0 to n=∞. The series converges for all real numbers (-∞, ∞).

Explanation:

In order to find the Taylor series for the function f(x) = ∫ sinc(t)dt based at 0, one can use the Taylor series for sinc(x) and integrate term by term. We know the Taylor series for sinc(x) is x - x³/3! + x⁵/5! - ..., so the Taylor series for f(x) can be written as x²/2 - x⁴/4*3! + x⁶/6*5! - ... . In summation notation, this is ∑ (-1)ⁿ * xⁿ⁺¹ / (n+1)! for n=0 to n=∞.

The Taylor series for any function converges to the function itself within a certain interval called the radius of convergence. For the Taylor series of sinc(x), due to the nature of sine being bounded between -1 and 1, the series will converge for all real numbers (-∞, ∞).

Learn more about Taylor series here:

https://brainly.com/question/32235538

#SPJ3

The concept of determining which reactant is limiting and which is in excess is akin to determining the number of sandwiches that can be made from a set number of ingredients. Assuming that a cheese sandwich consists of 2 slices of bread and 3 slices of cheese, determine the number of whole cheese sandwiches that can be prepared from 44 slices of bread and 75 slices of cheese.

Answers

Answer: There are 22 whole cheese sandwiches that can be prepared.

Step-by-step explanation:

Since we have given that

Number of slices of bread = 44

Number of slices of cheese = 75

According to question, a cheese sandwich consists of 2 slices of bread and 3 slices of cheese.

So, we need to find the number of whole cheese sandwiches that can be prepared.

Number of sandwich containing only slice of bread is given by

[tex]\dfrac{44}{2}=22[/tex]

Number of sandwich containing only slice of cheese is given by

[tex]\dfrac{75}{3}=25[/tex]

As we know that each sandwich should contain both slice of bread and slice of cheese.

So, Least of (22, 25) = 22

Hence, there are 22 whole cheese sandwiches that can be prepared.

Find f if f ''(x) = 12x2 + 6x − 4, f(0) = 9, and f(1) = 1.

Answers

Answer:

  f(x) = x^4 +x^3 -2x^2 -8x +9

Step-by-step explanation:

You know that the anitderivative of ax^b is ax^(b+1)/(b+1). The first antiderivative is ...

  f'(x) = 4x^3 +3x^2 -4x +p . . . . . where p is some constant

The second antiderivative is ...

  f(x) = x^4 +x^3 -2x^2 +px +q . . . . where q is also some constant

Then the constants can be found from ...

  f(0) = q = 9

  f(1) = 1 + 1 - 2 +p + 9 = 1

  p = -8

The solution is ...

  f(x) = x^4 +x^3 -2x^2 -8x +9

_____

The graphs verify the results. The second derivative is plotted against the given quadratic, and they are seen to overlap. The function values at x=0 and x=1 are the ones specified by the problem.

Final answer:

To find f(x) given f''(x) = 12x² + 6x − 4, one must integrate twice and use the initial conditions f(0) = 9 and f(1) = 1 to solve for the constants. The final function is f(x) = x⁴ + x³ - 2x² - 8x + 9.

Explanation:

The question asks to find the antiderivative f(x) given its second derivative f''(x) =  12x² + 6x − 4, and two initial conditions, f(0) = 9, and f(1) = 1. To solve for f(x), we first integrate the second derivative twice to get the original function.

Integrating f''(x), we get:

f'(x) = ∫( 12x² + 6x - 4)dx = 4x³ + 3x² - 4x + C

We then integrate f'(x) to find f(x):

f(x) = ∫(4x³ + 3x² - 4x + C)dx = x⁴ + x³ - 2x² + Cx + D

Using the initial conditions:

For f(0) = 9, we substitute x = 0 and determine D = 9.For f(1) = 1, we substitute x = 1: 1 + 1 - 2 + C + 9 = 1, solving for C gives us C = -8.

Therefore, the original function is f(x) =  x⁴ + x³ - 2x² - 8x + 9.

Assume that the red blood cell counts of women are normally distributed with a mean of 4.577 million cells per microliter and a standard deviation of 0.382 million cells per microliter. Find the value closest to the probability that a randomly selected woman has a red blood cell count above the normal range of 4.2 to 5.4 million cells per microliter. Round to four decimal places.

Answers

Final answer:

The likelihood of a randomly chosen woman having a red blood cell count higher than the typical range of 4.2 to 5.4 million cells per microliter, given that the counts are normally distributed with a mean of 4.577 and a standard deviation of 0.382 million cells, is approximately 0.0158 or 1.58% when expressed as a percentage.

Explanation:

The subject matter here is the use of statistics to understand biological phenomena, specifically the distribution of red blood cell counts in women. The question asks for the probability that a randomly selected woman has a red blood cell count above the normal range of 4.2 to 5.4 million cells per microliter, given that the counts are normally distributed with a mean of 4.577 million cells per microliter and a standard deviation of 0.382 million cells.

Firstly, to answer this question, we must establish the z-scores for the boundaries of our range. The z-score formula is Z = (X - μ) / σ, where X is the value we are evaluating, μ is the mean, and σ is the standard deviation. The upper boundary of our range is 5.4 million cells, so to find the z-score for this we substitute into the formula: Z = (5.4 - 4.577) / 0.382, which gives us a Z-score of approximately 2.15.

However, we are interested in the probability of a woman having a count above the normal range, so we need the area of the curve beyond this z-score. You can find this probability using standard normal distribution tables or a calculator, which suggests that the probability of having a count above 5.4 is approximately 0.0158, or 1.58% when expressed as a percentage and rounded to four decimal places.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

Suppose that 45% of all adults regularly consume coffee, 40% regularly consume carbonated soda, and 55% regularly consume at least one of these two products. (a) What is the probability that a randomly selected adult regularly consumes both coffee and soda? (b) What is the probability that a randomly selected adult doesn't regularly consume at least one of these two products?

Answers

Answer: a) 30% and b) 45%

Step-by-step explanation:

Since we have given  that

Probability that adults regularly consume coffee P(C) = 45% = 0.45

Probability that adults regularly consume carbonated soda P(S) = 40% = 0.40

Probability that adults regularly consume atleast one of these two products P(C∪S) = 55% = 0.55

a) What is the probability that a randomly selected adult regularly consumes both coffee and soda?

As we know that

P(C∪S ) = P(C) +P(S)-P(C∩S)

[tex]0.55=0.45+0.40-P(C\cap S)\\\\0.55=0.85-P(C\cap S)\\\\0.55-0.85=-P(C\cap S)\\\\-0.30=-P(C\cap S)\\\\P(C\cap S)=0.30=30\%[/tex]

b) What is the probability that a randomly selected adult doesn't regularly consume at least one of these two products?

P(C∪S)'=n(U)-P(C∪S)

[tex]\\P(C\cup S)'=100-55=45\%[/tex]

Hence, a) 30% and b) 45%

(a + 8)(b + 3)

ab + 8a + 3b + 24
ab + 3a + 8b + 24
11ab
24ab

Answers

The answer is ab+3a+8b+24.

Answer:

ab + 3a + 8b + 24

Step-by-step explanation:

(a + 8)(b + 3)

a(b + 3) + 8(b + 3)

ab + 3a + 8b + 24

Which is an equation for the nth terms of the sequence 12,15,18,21

Answers

[tex]\bf 12~~,~~\stackrel{12+3}{15}~~,~~\stackrel{15+3}{18}~~,~~\stackrel{18+3}{21}~\hspace{10em}\stackrel{\textit{common difference}}{d=3} \\\\[-0.35em] ~\dotfill\\\\ n^{th}\textit{ term of an arithmetic sequence} \\\\ a_n=a_1+(n-1)d\qquad \begin{cases} a_n=n^{th}\ term\\ n=\textit{term position}\\ a_1=\textit{first term}\\ d=\textit{common difference}\\ \cline{1-1} a_1=12\\ d=3 \end{cases} \\\\\\ a_n=12+(n-1)3\implies a_n=12+3n-3\implies a_n=3n+9[/tex]

Answer:

tₙ = 3(3 + n)

Step-by-step explanation:

Points to remember

nth term of an AP

tₙ = a + (n - 1)d

Where a - first term of AP

d - Common difference of AP

To find the nth term  

The given series is,

12,15,18,21 .....

Here a = 12 and d = 15 - 12 = 3

tₙ = a + (n - 1)d

  = 12 + (n - 1)3

  =12 + 3n - 3

  = 9 + 3n

  = 3(3 + n)

Therefore tₙ = 3(3 + n)

Two boys can paint a fence in 5 hours. How many hours would it take 3 boys to paint the same fence? 3 (A) 2 (B) 3 (C) 31 3 2:3=X (D) 4 IS 2/3 3

Answers

Final answer:

Two boys working together can paint a fence in 5 hours with a work rate of 0.2 fences per hour. Adding one more boy increases this work rate to 0.3 fences per hour. This would allow them to complete the painting of the fence in approximately 3.3 hours.

Explanation:

This problem can be solved using the concept of work rate. The work rate is defined as the amount of work done per unit time.

In this case, two boys can paint a fence in 5 hours. So, their combined work rate is 1 fence per 5 hours, or 0.2 fences per hour.

When we add another boy to the group, we increase the total work rate by 50% as now there are 3 boys. So, their combined work rate becomes 0.2 fences/hour + (0.2 fences/hour) * 50% = 0.3 fences/hour.

To find out how long it would take these three boys to paint the fence, we divide the total work (1 fence) by the total work rate (0.3). So, 1 fence divided by 0.3 fences/hour = approximately 3.3 hours. That's how long it would take three boys to paint the fence.

Learn more about Work Rate here:

https://brainly.com/question/14305692

#SPJ2

Assume that 1400 births are randomly selected and 1378 of the births are girls. Use subjective judgment to describe the number of girls as significantly​ high, significantly​ low, or neither significantly low nor significantly high. Choose the correct answer below. A. The number of girls is neither significantly low nor significantly high. B. The number of girls is significantly high. C. The number of girls is significantly low. D. It is impossible to make a judgment with the given information.

Answers

Answer: Hence, Option 'B' is correct.

Step-by-step explanation:

Since we have given that

Number of births = 1400

Number of birth of girls = 1378

Number of birth of boys is given by

[tex]1400-1378\\\\=22[/tex]

so, the number of girls is significantly higher than the number of boys.

So, the number of births of girls is significantly high.

Hence, Option 'B' is correct.

B. The number of girls is significantly high.

When evaluating whether the number of girl births in a sample is significantly high or low, we can reference the expected natural ratio of girls to boys, which is typically 100:105. Given that in the scenario 1378 out of 1400 births were girls, this significantly deviates from the expected natural ratio. For comparison, an article in Newsweek states that the natural ratio is 100:105, and in China, it is 100:114, which equals 46.7 percent girls. If we consider a sample where out of 150 births, there are 60 girls (or 40%), this is lower than the expected percentage based on China's statistics but not implausible. However, in the case of the scenario with 1378 girls out of 1400 births, the proportion of girls is approximately 98.43%, which seems very unlikely given the natural ratio, suggesting an unusual or non-random process may be involved.

Therefore, based on subjective judgment and without applying more precise statistical tests, the number of girls being 1378 out of 1400 births is significantly high compared to natural birth rates or the stated birth rate in China. This leads us to select the correct answer: B. The number of girls is significantly high.

Three boxes contain red and green balls. Box 1 has 5 red balls* and 5 green balls*, Box 2 has 7 red balls* and 3 green balls* and Box 3 contains 6 red balls* and 4 green balls*. The respective probabilities of choosing a box are 1/4, 1/2, 1/4. What is the probability that the ball chosen is green?

Answers

Final answer:

The probability of choosing a green ball from the three boxes, given their individual selection probabilities and color distributions, is calculated using the law of total probability. The overall probability of selecting a green ball is found to be 29/80, or roughly 36.25%.

Explanation:

The question asks for the probability of choosing a green ball from three different boxes, given their individual probabilities of being chosen and the distribution of red and green balls in each box. To solve this, we employ the law of total probability which combines the probability of each event (selecting a box) with the conditional probability of finding a green ball within that selected box.

Box 1: Probability of green ball = 5 green balls / (5 red + 5 green) = 1/2

Box 2: Probability of green ball = 3 green balls / (7 red + 3 green) = 3/10

Box 3: Probability of green ball = 4 green balls / (6 red + 4 green) = 2/5

The overall probability is calculated as: P(Green) = P(Box 1) * P(Green|Box 1) + P(Box 2) * P(Green|Box 2) + P(Box 3) * P(Green|Box 3) = (1/4) * (1/2) + (1/2) * (3/10) + (1/4) * (2/5) = 1/8 + 3/20 + 1/10 = 29/80.

Therefore, the probability that the ball chosen is green is 29/80 or approximately 36.25%.

Which complete bipartite graphs Km, are trees? (b) Let T be a full 8-ary tree with 201 vertices. (ii) How many internal vertices does T have? (iii) How many leaves does T have?

Answers

Answer:

the answer is a

Step-by-step explanation:

i just know

3.17 Scores on stats final. Below are final exam scores of 20 Introductory Statistics students. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 57, 66, 69, 71, 72, 73, 74, 77, 78, 78, 79, 79, 81, 81, 82, 83, 83, 88, 89, 94 (a) The mean score is 77.7 points. with a standard deviation of 8.44 points. Use this information to determine if the scores approximately follow the 68-95-99.7% Rule. (b) Do these data appear to follow a normal distribution? Explain your reasoning using the graphs provided below.

Answers

Answer:

Yes they do.

And yes they do follow a normal distribution.

Percentages are close to 68-95-99.7%, we can declare that yes, the 68-95-99.7% rule is roughly followed and yes data appear to follow a normal distribution.

What is a normal distribution?

It's the probability curve of a continuous distribution that's most likely symmetric around the mean. On the Z curve, at Z=0, the chance is 50-50. A bell-shaped curve is another name for it.

We have a data of final exam scores of 20 Introductory.

a) Range of 1 standard deviation:

(77.7 – 8.44, 77.7 + 8.44)                [69.3, 86.1]

Range of 2 standard deviation:

(77.7 – 2(8.44), 77.7 + 2(8.44))            [60.8, 94.6]

Range of 3 standard deviation:

(77.7 – 3(8.44), 77.7 + 3(8.44))           [52.4, 103.0]

Number of data points lie within 1 standard deviation = 14

Percent of data points lie within 1 SD = (14/20)×100 = 70%

Number of data points lie within 2 SD = 19

Percent of data points lie within 1 SD = (19/20)×100 = 95%

Number of data points lie within 3 SD = 20

Percent of data points lie within 1 SD = (20/20)×100 = 100%

Because these percentages are close to 68-95-99.7%, we can declare that yes, the 68-95-99.7% rule is roughly followed.

b)

Because the histogram in the graph is symmetric, and the normal probability plot reveals that the points are very close to a straight line, the data appears to follow a normal distribution.

Thus, percentages are close to 68-95-99.7%, we can declare that yes, the 68-95-99.7% rule is roughly followed and yes data appear to follow a normal distribution.

Learn more about the normal distribution here:

brainly.com/question/12421652

#SPJ2

(a + 3)(a - 2)


hurry helpppp asapppp

Answers

(a+3)(a-2)

Multiply the two brackets together

a^2-2a+3a+3*-2

a^2+a-6

Answer is a^2+a-6

ANSWER

[tex]{a}^{2} + a - 6[/tex]

EXPLANATION

The given expression is

[tex](a + 3)(a - 2)[/tex]

We expand using the distributive property to obtain:

[tex]a(a - 2) + 3(a - 2)[/tex]

We multiply out the parenthesis to get:

[tex] {a}^{2} - 2a + 3a - 6[/tex]

Let us now simplify by combining the middle terms to obtain;

[tex]{a}^{2} + a - 6[/tex]

What are the solutions of the following system?

Answers

Answer:(-6,312), (6,312)

Step by Step explanation:

Solve the first equation for y.

10x^2-y=48

y=-48+10x^2

Substitute the given value of y into the equation 2y=16x^2+48

2(-48+10x^2)=16x^2+48

Solve the equation for x.

x=-6

x=6

Substitute the given value of x into the equation y=-48+10(-6)^

y=-48+10(-6)^2

y=-48+10×6^2

Solve the equation for y

y=312

y=312

(1 point) The players on a soccer team wear shirts, with each player having one of the numbers 1, 2, ..., 11 on their backs. The set A contains players with even numbers on their shirts. The set B comprises players wearing an odd number less than 7. The set C contains the defenders, which are those wearing numbers less than 6. Select the correct set that corresponds to each of the following. Part a) A∩(B∪C) A. {1,2,3,4,5} B. ∅ C. {1,3,5} D. {2,4} E. {2} Part b) (A∩Bc)∪(B∩C)c A. {6,7,8,9,11} B. {2,4,6,7,8,9,10,11} C. {2,3,4,5,6,8,10} D. {1,2,3,4,5,6,8,10} E. {6,7,8,10,11}

Answers

Final answer:

This question involves operations on sets to identify specific members based on conditions. Part a) resolves to D. {2,4}, while part b) finds the solution to be B. {2,4,6,7,8,9,10,11}, highlighting the application of intersection, union, and complement operations in set theory.

Explanation:

To solve these problems, we need to understand the operations on sets such as intersection (A∩B), union (A∪B), and the complement of a set (Bc). For part a), we identify set A as {2,4,6,8,10}, B as {1,3,5}, and C as {1,2,3,4,5}. A∩(B∪C) means we're looking for the intersection of A with the union of B and C. Since B∪C = {1,2,3,4,5}, intersecting this with A gives us D. {2,4} as the answer.

For part b), (A∩Bc)∪(B∩C)c means we're looking at elements in A but not in B, combined with elements not in both B and C. Since Bc = {6,7,8,9,10,11} and (B∩C)c = {6,7,8,9,10,11}, union these two gives us answer B. {2,4,6,7,8,9,10,11}, by including A∩Bc = {2,4,6,8,10} and excluding duplicates when union with (B∩C)c.

A weather forecasting website indicated that there was a 90​% chance of rain in a certain region. Based on that​ report, which of the following is the most reasonable​ interpretation? Choose the correct answer below. A. 90​% of the region will get rain today. B. There is a 0.90 probability that it will rain somewhere in the region at some point during the day. C. In the​ region, it will rain for 90​% of the day. D. None of the above interpretations are reasonable.

Answers

Final answer:

The most B. reasonable interpretation of a 90% chance of rain is that there is a 0.90 probability that it will rain somewhere in the region.

Explanation:

The most reasonable interpretation of a 90% chance of rain, according to the given weather forecasting website, is option B: There is a 0.90 probability that it will rain somewhere in the region at some point during the day. This means that there is a high likelihood that rain will occur in the region, but it does not guarantee that every part of the region will experience rain. It indicates that out of 100 instances, rain is expected in approximately 90 of them.

It is important to note that options A, C, and D are not reasonable interpretations because option A assumes that 100% of the region will get rain, option C assumes that it will rain for 90% of the day, and option D states that none of the interpretations are reasonable, which is not accurate.

Final answer:

The most reasonable interpretation of a 90% chance of rain in a weather forecast is that there is a 0.90 probability of rainfall somewhere in the specified region at some point during the day.

Explanation:

When a weather forecast indicates a 90% chance of rain, it means there is a 0.90 probability that it will rain somewhere in the specified region at some point during the day. Therefore, the correct interpretation based on the given options is B. There is a 0.90 probability that it will rain somewhere in the region at some point during the day. Interpretation A, suggesting that 90% of the region will get rain, is not accurate because the percentage given in a forecast refers to probability, not an area's coverage. Interpretation C, suggesting it will rain for 90% of the day, is also incorrect because the percentage does not refer to the duration of rain but to the probability of occurrence. Statement D is incorrect because B provides a reasonable interpretation.

What is the value of x? In this figure
A:53
B:43
C:57
D:47

Answers

Answer:

should be 53 if im right

Answer is D
It is given that PQ is tangent to the circle at Q. That means that angle OQP is 90 degrees.
Since all angles in a triangle add up to 180deg,
X = 180 - 90 - 43 = 47deg

Please help someone

Answers

Answer:

1. Y

2. N

3. N

4. N

Step-by-step explanation:

Let's use the second equation, since it seems to be easier to use.

To check if an ordered pair is a solution, plug it in to the equation.

1. [tex]-10+18=8[/tex] --> Y

2. [tex]25-12=13[/tex] --> N

3. [tex]0-9=-9[/tex] --> N

4. [tex]35-27=8[/tex] --> N

Edit : The 4th equation doesn't work for the first equation, whereas the first one still does.

Answer:

(-2,-6)

Step-by-step explanation:

-9x +2y = 6

5x - 3y = 8

1) Make one of the coefficients the same - y.

-9x +2y = 6 * 3

5x - 3y = 8 * 3

-27x +6y = 18

10x - 6y = 16

2) Add the new equations.

(-27x +6y = 18) + (10x - 6y = 16)

(-27x +6y) + (10x - 6y) = 18 + 16

-17x = 34

3) Divide to find the value of x

-17x = 34

x = 34/-17

x = -2

4) Substitute x into either equation to find the value of y.

-9(-2) +2y = 6

18 +2y = 6

2y = -12

y = -12/2

y = -6

5(-2) - 3y = 8

-10 - 3y = 8

-3y = 18

y = 18/-3

y = -6

Your answer is (-2,-6).

Other Questions
Which statement is false ? Read these sentences. In a democracy, people rule through elected representatives. It is not a government that is run by the ideas of one leader. This is an example of a formal definition. an informal definition. an extended definition. a dictionary definition. Please help me out brainiest and 30 pointsMatch each of the four lines with a line that is perpendicular to it.Choices to pair with the equations are y=74x+2 y=65x+1y=74x+9y=56x5y=65x5y=47x+2y=47x+9y=56x+1 Social stratification is a system that:ranks society members into categoriesdestroys competition between society membersallows society members to choose their social standingreflects personal choices of society members Acceleration involves a change in speed or what? The following drug reference book is written specifically for medical transcriptionists by a certifiedmedical transcriptionist and lists generic and brand name drugs, as well as how they are used andprescribed M radio station KRTH in Los Angeles broadcasts on an assigned frequency of 101 MHz with a power of 50,000 W. (a) What is the wavelength of the radio waves produced by this station? Answer 1 m (b) Estimate the average intensity of the wave at a distance of 8.70 km from the radio transmitting antenna. Assume for the purpose of this estimate that the antenna radiates equally in all directions, so that the intensity is constant over a hemisphere centered on the antenna. Answer 2 W/m2 (c) Estimate the amplitude of the electric field at this distance. While flying at an altitude of 1.5 km, a plane measures angles or depression to opposite ends of a large crater, shown in the image below. Find the width of the crater Given the following functions f(x) and g(x), solve f over g (5) and select the correct answer below:f(x) = 2x 20g(x) = x 1 5 5 one sixth 30 2(n-1)+4n=2(3n-1)n=0no solutioninfinitely many solutions n= - 4HELP PLEASE!!!!!!! What net external force is exerted on a 1100-kg artillery shell fired from a battleship if the shell is accelerated at 2.40104 m/s2? What is the magnitude of the force exerted on the ship by the artillery shell? FIRST REAL ANSWER GETS BRAINLIEST!!! match the following terms with their definitions:1-Magellan ?-the man for whom the New World was named2-Genoa ?-ruler of the aztecs3-Pizarro ?-discovered the pacific ocean4-Montezuma ?-first to sail around the world5-Cortes ?-conquered the Aztecs of Mexico6-Vespucci ?-conquered the Incas of Peru7-crusaders ?-king of spain8-Balboa ?-attempted to free jerusalem9-Ferdinand ?-hometown of columbus On January 22, 1943, in Spearfish, South Dakota, the temperature rose from 4.00F to 45.0F over the course of two minutes (the current world record for the fastest recorded temperature change). By how much did the temperature change on the Kelvin scale? HINT Select the correct text in the passage.Which two pairs of lines in this excerpt from "The Raven" by Edgar Allan Poe best show that the speaker is still haunted by the memories of Lenore?But the Raven still beguiling all my sad soul into smiling,Straight I wheeled a cushioned seat in front of bird and bust and door;Then, upon the velvet sinking, I betook myself to linkingFancy unto fancy, thinking what this ominous bird of yore What this grim, ungainly, ghastly, gaunt, and ominous bird of yoreMeant in croaking Nevermore.This I sat engaged in guessing, but no syllable expressingTo the fowl whose fiery eyes now burned into my bosom's core;This and more I sat divining, with my head at ease recliningOn the cushion's velvet lining that the lamp-light gloated o'er,But whose velvet violet lining with the lamp-light gloating o'er,She shall press, ah, nevermore!Then, methought, the air grew denser, perfumed from an unseen censerSwung by seraphim whose foot-falls tinkled on the tufted floor"Wretch," I cried, "thy God hath lent theeby these angels he hath sent theeRespiterespite and nepenthe from thy memories of Lenore!Quaff, oh quaff this kind nepenthe, and forget this lost Lenore!"Quoth the Raven, "Nevermore." Liesl grew 7/12 of a foot in one year. Her little sister grew 1/3 of a foot during that same year. How much more did Liesl grow than her little sister did Choose the correct reason for each algebraic statement. A. Subtraction Property of Equality B. Combine like terms C. Distributive Property D. Division Property of Equality 3.__ 4.__ 5.__ 6.__ A spring has a natural length of 8 m. If a 12-N force is required to keep it stretched to a length of 10 m, how much work W is required to stretch it from 8 m to 16 m? (Round your answer to two decimal places.) PLEASE HELP ME!!!Find p(5) and p(3) for the function p(x) = 2x5 9x4 2x2 + 12x 2. Question 8 options: 11,915; 251 4,487; 551 11,985; 225 11,987; 227 PLEASE HELP WILL GIVE BRAINLYIST TO FIRST PERSONWhich would have a lower pH, a 0.1 M solution of a strong base or a weak base? Why?Which would have a higher pH, a 0.1 M solution of a strong acid, or a weak acid? Why? Read the excerpt below and answer the question.SHE dwelt among the untrodden waysBeside the springs of Dove,A Maid whom there were none to praiseAnd very few to love:A violet by a mossy stoneHalf hidden from the eye!Fair as a star, when only oneIs shining in the sky.She lived unknown, and few could knowWhen Lucy ceased to be;But she is in her grave, and, oh,The difference to me! (Wordsworth, "She Dwelt Among the Untrodden Ways")Which option best explains how the choice of the word oh in the final stanza contributes to the poem's meaning?It was selected to create a regular end rhyme.It was selected to establish assonance in the line.It was selected to maintain the line's iambic structure.It was selected to stress the poet's sense of loss.