Two insulated current-carrying straight wires of equal length are arranged in the lab so that Wire A carries a current northward and Wire B carries a current eastward, the wires crossing at their midpoints separated only by their insulation. Which of the statements below is true?

a. There are no forces in this situation.
b. The net force on Wire B is southward.
c. There are forces, but the net force on each wire is zero.
d. The net force on Wire A is westward.

Answers

Answer 1

Since there is a meeting of the cables at their midpoints, it is therefore understood that the force on them is the same but in the opposite direction, this to maintain the static balance between the two.

This can also be corroborated by applying the right hand rule for the force, at which depends of the magnetic field. The net force is zero because the cable segment to the left of the vertical cable feels an opposite force in the direction of the cable segment to the right.

Then the forces cancel.

Therefore the correct answer is C. Therefore the net force on each wire is zero


Related Questions

Find the intensity in decibels [i(db)] for each value of i. normal conversation: i = 106i0 i(db) = power saw a 3 feet: i = 1011i0 i(db) = jet engine at 100 feet: i = 1018i0 i(db) =

Answers

Answer:

Normal Conversation: i=106i0

i(dB)=60

Power saw a 3 feet: i=1011i0

i(dB)=110

Jet engine at 100 feet: i=1018i0

i(dB)=180

Explanation:

if these are the same as edge, then these are the answers! :)

Normal Conversation: i=106i0

The intensity in decibels is 60,110,180, respectively.

What is sound intensity in decibels?

The intensity of a legitimate is the power of the sound in Watts divided by means of the place the sound covers in square meters. The loudness of a valid relates the intensity of any given sound to the intensity at the brink of hearing. its miles are measured in decibels (dB). the brink of human hearing has a depth of approximately.

⇒ normal conversation: i =60(dB)

⇒power saw 3 feet: i =110(dB)

⇒jet engine at 100 feet: i = 180(dB)

Learn more about Sound intensity here:-https://brainly.com/question/17062836

#SPJ2

A straight wire of length 0.62 m carries a conventional current of 0.7 amperes. What is the magnitude of the magnetic field made by the current at a location 2.0 cm from the wire

Answers

Answer:

Magnetic field at point having a distance of 2 cm from wire is 6.99 x 10⁻⁶ T

Explanation:

Magnetic field due to finite straight wire at a point perpendicular to the wire is given by the relation :

[tex]B=\frac{\mu_{0}I }{2\pi R }\times\frac{L}{\sqrt{L^{2}+R^{2} } }[/tex]      ......(1)

Here I is current in the wire, L is the length of the wire, R is the distance of the point from the wire and μ₀ is vacuum permeability constant.

In this problem,

Current, I = 0.7 A

Length of wire, L = 0.62 m

Distance of point from wire, R = 2 cm = 2 x 10⁻² m = 0.02 m

Vacuum permeability, μ₀ = 4π x 10⁻⁷ H/m

Substitute these values in equation (1).

[tex]B=\frac{4\pi\times10^{-7}\times 0.7 }{2\pi \times0.02 }\times\frac{0.62}{\sqrt{(0.62)^{2}+(0.02) ^{2} } }[/tex]

B = 6.99 x 10⁻⁶ T

For a demonstration, a professor uses a razor blade to cut a thin slit in a piece of aluminum foil. When she shines a laser pointer (λ=680nm) through the slit onto a screen 5.5 m away, a diffraction pattern appears. The bright band in the center of the pattern is 7.8 cm wide. What is the width of the slit?

Answers

Answer:

    a = 4.8 10⁻⁵ m

Explanation:

The diffraction phenomenon is described by the expression

        a sin θ = m λ

How the pattern is observed on a distant screen

        tan θ = y / L = sin θ / cos θ

Since the angle is very small in these experiments ’we can approximate the tangent function

    tan θ = sin θ = y / L

We substitute

           a y / L = m λ

The first minimum occurs for m = 1

        a = λ L / y

        a = 680 10⁻⁹ 5.5 / 0.078

        a = 4.8 10⁻⁵ m

An Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. Assume that the rope and pulley are massless and that there is no friction in the pulley. If the masses have the values m 1 = 17.7 kg m1=17.7 kg and m 2 = 11.1 kg, m2=11.1 kg, find the magnitude of their acceleration a a and the tension T T in the rope. Use g = 9.81 m/s 2 .

Answers

Explanation:

According to Newton's second law of motion,

            [tex]m_{1}g - T = m_{1}a[/tex] ......... (1)

and,    [tex]T - m_{2}g = m_{2}a[/tex] ......... (2)

When we add both equations, (1) and (2) then the expression obtained for "a" is as follows.

             a = [tex]\frac{m_{1} - m_{2}}{m_{1} + m_{2}} \times g[/tex]

                = [tex]\frac{17.7 - 11.1}{17.7 + 11.1} \times 9.8[/tex]

                = [tex]\frac{6.6}{28.8} \times 9.8[/tex]

                = 2.24 [tex]m/s^{2}[/tex]

Now, putting the value of "a" in equation (1) then we will calculate the tension as follows.

              [tex]m_{1}g - T = m_{1}a[/tex]

              [tex]17.7 \times 9.8 - T = 17.7 \times 2.24[/tex]

                   173.46 - T = 39.648

                       T = 133.812 N

Thus, we can conclude that the magnitude of their acceleration is 2.24 [tex]m/s^{2}[/tex] and the tension T is 133.812 N in the rope.

Answer:

Explanation:

m1 = 17.7 kg

m2 = 11.1 kg

Let a be the acceleration and T be the tension in the string.

use Newton's second law

m1 g - T = m1 x a ....(1)

T - m2 g = m2 x a ..... (2)

Adding both the equations

(m1 - m2) g = ( m1 + m2 ) x a

(17.7 - 11.1 ) x 9.8 = (17.7 + 11.1) x a

64.68 = 28.8 a

a = 2.25 m/s²

Put the value of a in equation (1)

17.7 x 9.8 - T = 17.7 x 2.25

173.46 - T = 39.825

T = 133.64 N

Suppose you are on a cart, initially at rest, which rides on a frictionless horizontal track. You throw a ball at a vertical surface that is firmly attached to the cart. If the ball bounces straight back as shown in the picture, will the cart be put into motion after the ball bounces back from the surface?
A.Yes, and it moves to the right.
B.Yes, and it moves to the left.
C.No, it remains in place

Answers

Yes, the cart will move to the left after the ball bounces back from the surface. Thus, option (B) is correct.

When you throw the ball at the vertical surface attached to the cart, the ball's momentum changes due to the collision. Initially, both you and the cart are at rest, so the total momentum of the system (you + cart + ball) is zero.

As the ball collides with the vertical surface and bounces back, it changes its direction and gains momentum in the opposite direction. This change in momentum is due to the impulse imparted to the ball during the collision.

According to the law of conservation of momentum, when the ball bounces back from the vertical surface, it exerts a backward force on the cart due to the change in momentum.

Since momentum is conserved, the cart will experience an equal and opposite forward force, causing it to move to the left.

Thus, option (B) is correct.

Learn more about momentum here:

https://brainly.com/question/30677308

#SPJ12

Final answer:

The cart will move due to conservation of momentum. When the ball bounces back the cart moves to the left following Newton's Third Law of Motion.

Explanation:

This question relates to the law of conservation of momentum in the realm of physics. When you throw a ball towards a vertical surface on the cart, both the ball and the cart will experience a change in momentum. As the ball bounces back (with momentum in the opposite direction the law of conservation of momentum applies the total momentum before the event (throwing the ball) must equal the total momentum after the event (ball bouncing back).

The answer to the scenario is B. Yes and it moves to the left. When the ball hits the surface and bounces back it applies a force to the cart and due to Newton's third law the cart will move in the opposite direction hence to the left assuming the ball was thrown to the right.

Learn more about Conservation of Momentum here:

https://brainly.com/question/33316833

#SPJ3

24 A uniform electric field of magnitude 1.1×104 N/C is perpendicular to a square sheet with sides 2.0 m long. What is the electric flux through the sheet?

Answers

Answer:

[tex]44,000 Nm^2/C[/tex]

Explanation:

The electric flux through a certain surface is given by (for a uniform field):

[tex]\Phi = EA cos \theta[/tex]

where:

E is the magnitude of the electric field

A is the area of the surface

[tex]\theta[/tex] is the angle between the direction of the field and of the normal to the surface

In this problem, we have:

[tex]E=1.1\cdot 10^4 N/C[/tex] is the electric field

L = 2.0 m is the side of the sheet, so the area is

[tex]A=L^2=(2.0)^2=4.0 m^2[/tex]

[tex]\theta=0^{\circ}[/tex], since the electric field is perpendicular to the surface

Therefore, the electric flux is

[tex]\Phi =(1.1\cdot 10^4)(4.0)(cos 0^{\circ})=44,000 Nm^2/C[/tex]

The electric flux through the sheet will be "44,000 Nm²/C".

Electric field:

An electric field seems to be an area of space that surrounds an electrically charged particle as well as object whereby an electric charge will indeed experience attraction.

According to the question,

Magnitude of electric field, E = 1.1 × 10⁴ N/C

Length, L = 2.0 m

We know,

The area will be:

→ A = L²

By substituting the value,

      = (2.0)²

      = 4.0 m²

hence,

The electric flux will be:

→ [tex]\Phi[/tex] = EA Cosθ

By substituting the values,

      = [tex](1.1.10^4)(4.0)(Cos 0^{\circ})[/tex]

      = 44,000 Nm²/C

Thus the above answer is appropriate.  

Find out more information about electric field here:

https://brainly.com/question/14372859

What is the correct filing order for the following four names? (1) Washington Savings Bank (2) Washington State Credit Union (3) Bank of Washington (4) Washington Cherry Farm​ courseheo

Answers

Answer:

3,4,1,2

Explanation:

The filing procedure involves Filing in terms of the first letter.If the first letters are common, file in terms of the second letter then File in terms of surnames.If the surnames are common, file in terms of the initial. If the surname is more than one then file under the first surname etc.

Two objects are made of the same material, but they have different masses and temperatures.

Part A

If the objects are brought into thermal contact, which one will have the greater temperature change?

a. The one with the lesser mass.
b. The one with the lower initial temperature.
c. The one with the higher initial temperature.
d. The one with the higher specific heat.
e. The one with the greater mass.
f. Not enough information

Answers

Final answer:

c. The object with the higher initial temperature will have a greater temperature change when brought into thermal contact with another object.

Explanation:

The object with the higher initial temperature will have a greater temperature change when brought into thermal contact with another object. This is because energy transfers from the object with the higher temperature to the object with the lower temperature until they reach thermal equilibrium.

Mass and specific heat do not directly affect the temperature change. The mass only affects the amount of energy transferred, while the specific heat determines how much energy is needed to raise the temperature.

Therefore, the correct answer is c. The one with the higher initial temperature.

Learn more about Thermal contact here:

https://brainly.com/question/24591871

#SPJ3

A 6.93 µF capacitor charged to 94 V and a 1.76 µF capacitor charged to 81 V are connected to each other, with the two positive plates connected and the two negative plates connected. What is the final potential difference across the 1.76 µF capacitor? Answer in units of V.

Answers

Answer:

225.56V

Explanation:

Q=cv

6.93 µF capacitor was charged to 94 V, therefore Q₁ =6.93 *10^-6 x 94 =651.42µC

1.76 µF capacitor charged to 81 V, therefore Q₂ =1.76 *10^-6 x 81 =142.56µC

When the capacitor are brought together, the charges on them move to maintain equilibrum, so therefore, each capacitor has 0.5(142.56µC + 651.42µC )= 396.99µC

The final potential difference across the 1.76 µF capacitor =  Q/c = 396.99µC/1.76 µF = 225.56V

Final answer:

To find the final potential difference across the 1.76 µF capacitor, use charge conservation by equating the total charge before and after connection. After calculating the charges on each capacitor, rearrange the equation to solve for the final potential difference across the 1.76 µF capacitor.

Explanation:

In order to find the final potential difference across the 1.76 µF capacitor, we can use the concept of charge conservation.

First, let's calculate the total charge on the capacitors before they are connected. The charge on a capacitor is given by Q = CV, where Q is the charge, C is the capacitance, and V is the potential difference across the capacitor.

For the 6.93 µF capacitor, the charge is Q1 = (6.93 µF)(94 V) = 650.42 µC. For the 1.76 µF capacitor, the charge is Q2 = (1.76 µF)(81 V) = 142.56 µC.

After connecting the capacitors, the total charge remains the same. So, we have Q1 + Q2 = Qf, where Qf is the final charge on the capacitors. Rearranging the equation, we can find the final potential difference across the 1.76 µF capacitor:

Vf = (Qf - Q1) / C2 = (142.56 µC - 650.42 µC) / (1.76 µF).

Calculating this expression will give us the final potential difference across the 1.76 µF capacitor.

Learn more about capacitor here:

https://brainly.com/question/33613155

#SPJ12

A certain parallel-plate capacitor is filled with a dielectric for which k ???? 5.5. The area of each plate is 0.034 m2, and the plates are separated by 2.0 mm. The capacitor will fail (short out and burn up) if the electric field between the plates exceeds 200 kN/C. What is the maximum energy that can be stored in the capacitor?

Answers

Answer:

The maximum energy that can be stored in the capacitor is  6.62 x 10⁻⁵ J

Explanation:

Given;

dielectric constant k = 5.5

the area of each plate, A = 0.034 m²

separating distance, d =  2.0 mm = 2 x 10⁻³ m

magnitude of the electric field =  200 kN/C

Capacitance of the capacitor is calculated as follows;

[tex]C = \frac{k \epsilon A}{d} = \frac{5.5*8.85*10^{-12}*0.034}{2*10^{-3}} = 8.275 *10^{-10} \ F[/tex]

Maximum potential difference:

V = E x d

V = 200000 x 2 x 10⁻³ = 400 V

Maximum energy that can be stored in the capacitor:

E = ¹/₂CV²

E = ¹/₂ x 8.275 x 10⁻¹⁰ x (400)²

E = 6.62 x 10⁻⁵ J

Therefore, the maximum energy that can be stored in the capacitor is  6.62 x 10⁻⁵ J

Calculate the centripetal force on the end of a 100 m (radius) massless cable that is rotating at 0.5 rev/s. Assume the mass on the end of the cable is 4 kg.

Answers

Answer:

[tex]F_{cp}=3947.84N[/tex]

Explanation:

From the formula for centripetal force and acceleration we can deduce that:

[tex]F_{cp}=ma_{cp}=m\frac{v^2}{r}=m\frac{(r\omega)^2}{r}=mr\omega^2=mr\omega^2[/tex]

Since one revolution is [tex]2\pi\ rad[/tex], 0.5 revolutions are [tex]\pi\ rad[/tex], so we have:

[tex]F_{cp}=(4kg)(100m)(\pi\ rad/s)^2=3947.84N[/tex]

A very long thin wire carries a uniformly distributed charge, which creates an electric field. The electric field is (2300 N/C , toward the wire) 4.10 cm from the wire Consider a 1.00-cm-long segment of the wire. How much charge (in nC) is on this segment ?

Answers

Answer:

λ= 5.24 × 10 ⁻² nC/cm

Explanation:

Given:

distance r = 4.10 cm = 0.041 m

Electric field intensity E = 2300 N/C

K = 9 x 10 ⁹ Nm²/C

To find λ = linear charge density = ?

Sol:

we know that E= 2Kλ / r

⇒ λ = -E r/2K         (-ve sign show the direction toward the wire)

λ = (- 2300 N/C × 0.041 m) / 2 ×  9 x 10 ⁹ Nm²/C

λ = 5.24 × 10 ⁻⁹ C/m

λ = 5.24 nC/m = 5.24 nC/100 cm

λ= 5.24 × 10 ⁻² nC/cm

The intensity level of a "Super-Silent" power lawn mower at a distance of 1.0 m is 100 dB. You wake up one morning to find that four of your neighbors are all mowing their lawns using identical "Super-Silent" mowers. When they are each 20 m from your open bedroom window, what is the intensity level of the sound in your bedroom? You can neglect any absorption, reflection, or interference of the sound. The lowest detectable intensity is 1.0 × 10 -12 W/m 2.

Answers

Answer: The intensity level of sound in the bedroom is 80dB

Explanation:

Intensity of lawn mower at r=1m is 100dB

Beta1= 10dBlog(I1/Io)

100dB= 10dB log(I1/Io)

10^10= I1/Io

I1= Io(10^10)

10^12)×(10^10)= I1

I1=10^-2w/m^2

Intensity of lawn mower at r=20m

I2/I1=(r1/r2)^2 =(1/20)^2

I2= I1(1/400)

I2=2.5×10^-3W_m^2

Intensity of 4 lown mowers at 20m fro. Window

= 10dBlog(4I2/Io)

= 10^-4/10^-12

=80dB

The battery for a certain cell phone is rated at 3.70 V. According to the manufacturer it can produce math]3.15 \times 10^{4} J[/math] of electrical energy, enough for 5.25 h of operation, before needing to be recharged. Find the average current that this cell phone draws when turned on.

Answers

Answer:

The average current that this cell phone draws when turned on is 0.451 A.

Explanation:

Given;

voltage of the phone, V = 3.7 V

electrical energy of the phone battery, E = 3.15 x 10⁴ J

duration of battery energy, t = 5.25 h

The power the cell phone draws when turned on, is the rate of energy consumption, and this is calculated as follows;

[tex]P = \frac{E}{t}[/tex]

where;

P is power in watts

E is energy in Joules

t is time in seconds

[tex]P = \frac{3.15*10^4}{5.25*3600s} = 1.667 \ W[/tex]

The average current that this cell phone draws when turned on:

P = IV

[tex]I = \frac{P}{V} =\frac{1.667}{3.7} = 0.451 \ A[/tex]

Therefore, the average current that this cell phone draws when turned on is 0.451 A.

The average current that the cell phone draws when turned on is approximately [tex]\(0.450 \, \text{A}\)[/tex].

To find the average current drawn by the cell phone, we need to use the relationship between power, voltage, and current. Let's go step by step.

Step 1: Calculate the power consumed by the cell phone

We already have:

- The total energy provided by the battery: [tex]\( \Delta W = 3.15 \times 10^4 \, \text{J} \)[/tex]

- The total time of operation: [tex]\( \Delta t = 5.25 \, \text{hours} \)[/tex]

First, convert the operation time from hours to seconds:

[tex]\[\Delta t = 5.25 \, \text{hours} \times 3600 \, \text{seconds/hour} = 5.25 \times 3600 = 18900 \, \text{s}\][/tex]

Now, calculate the power P using the energy and time:

[tex]\[P = \frac{\Delta W}{\Delta t} = \frac{3.15 \times 10^4 \, \text{J}}{18900 \, \text{s}} \approx 1.666 \, \text{W}\][/tex]

Step 2: Use the power to find the average current

We know that power P, voltage V, and current I are related by the equation:

[tex]\[P = VI\][/tex]

We can solve for the current I

[tex]\[I = \frac{P}{V}\][/tex]

Given the battery voltage [tex]\(V = 3.70 \, \text{V}\)[/tex] and the power [tex]\(P \approx 1.666 \, \text{W}\)[/tex], we can calculate the current:

[tex]\[I = \frac{1.666 \, \text{W}}{3.70 \, \text{V}} \approx 0.450 \, \text{A}\][/tex]

The complete question is this:

The battery for a certain cell phone is rated at 3.70 V. According to the manufacturer it can produce 3.15 x 104 J of electrical energy, enough for 5.25 h of operation, before needing to be recharged. Find the average current that this cell phone draws when turned on.

Ok, so what I did so far was convert time into seconds and found Power:

t = 18900 s

P = ΔW/Δt =student submitted image, transcription available below= 1.6666 W

I think you have to use the problem : P = VabI = I2R = εI - I2R

Launch the simulation, then answer the question Which statement is not correct regarding the deformation of a circular shaft in torsion?

Cross sections remain flat.
Longitudinal lines remain straight.
Circular sections remain circular.
Radial lines on the sections remain straight.

Answers

Answer:

correct answer is (b)  Longitudinal lines remain straight

Explanation:

solution

As we know that Deformation of circular shaft in the torsion is associate with twisting of  shaft more than an specify with the yielding limit.

so when any angle of twist is obtain in the torsion and that is beyond the specified safety limit of shaft

than that shaft will be fail.

but it does not regain its original shape and it will cause permanent deformation

so that we can say longitudinal lines which is twist, they will not regain to original back position as straight

but they will remain in curved shape.

so here incorrect statement is b Longitudinal lines remain straight

Final answer:

Though torsion theory assumes that cross sections of a torsionally loaded shaft remain flat, in reality, under heavy loading, they can warp and so this statement is not entirely accurate.

Explanation:

When a circular shaft deforms under torsion, certain assumptions are made about its deformation according to the torsion theory. These assumptions include:

1) cross sections remain flat and perpendicular to the axis of the shaft,

2) longitudinal lines remain straight,

3) circular sections remain circular, and

4) radial lines on the sections remain straight. However, the statement that is not entirely accurate is that cross sections remain flat. In reality, under severe torsional loading, the cross sections might warp and not remain entirely flat.

Learn more about Torsion Deformation here:

https://brainly.com/question/34758680

#SPJ12

The tip of one prong of a tuning fork undergoes SHM of frequency L000 Hz and amplitude 0.40 mm. For this tip, what is the magnitude of the (a) maximum acceleration, (b) maxi- mum velocity, (c) acceleration at tip displacement 0.20 ffiffi, and (d) velocity at tip displacement 0.20 mm

Answers

Corrected Question:

The tip of one prong of a tuning fork undergoes SHM of frequency 1000 Hz and amplitude 0.40 mm. For this tip, what is the magnitude of the

(a) maximum acceleration,

(b) maximum velocity,

(c) acceleration at tip displacement 0.20 mm, and

(d) velocity at tip displacement 0.20 mm?

Answer:

(a) 15795.5m/s²

(b) 2.5m/s

(c) 7897.7 m/s²

(d) 2.2m/s

Explanation:

The displacement, y, of a body undergoing simple harmonic motion (SHM) is given by

y = A sin (ωt + φ)             ------------------(i)

Where;

A = maximum displacement or amplitude of the body

ω = angular frequency of the body

t = time taken for the displacement

φ = phase constant

The velocity, v, of the body can be found by differentiating equation (i) as follows;

v = Aω cos (ωt + φ)          ------------------(ii)

Where;

Aω = maximum velocity or amplitude of the velocity of the body

Also, the acceleration of the body can be found by differentiating equation (ii) as follows;

a = -Aω² sin(ωt + φ)                  --------------------(iii)

Where;

-Aω² = maximum acceleration or amplitude of the acceleration of the body

(a) From equation (iii), the magnitude of the maximum acceleration [tex]a_{max}[/tex] is given by;

[tex]a_{max}[/tex] = Aω²           ----------------(iv)

Where;

A = amplitude = 0.40mm = 0.00040m

ω = 2 π f            [Take π = 3.142. Also, f = frequency of the motion = 1000Hz]

=> ω = 2 x 3.142 x 1000 = 6284 rad/s

Substitute these values into equation (iv) as follows;

[tex]a_{max}[/tex] = 0.00040 x 6284² = 15795.5m/s²

Therefore, the magnitude of the maximum acceleration is 15795.5m/s²

========================================================

(b) From equation (ii), the magnitude of the maximum velocity [tex]v_{max}[/tex], is given by;

[tex]v_{max}[/tex] = Aω          ----------------(v)

Where;

A = amplitude = 0.40mm = 0.00040m

ω = 2 π f            [Take π = 3.142. Also, f = frequency of the motion = 1000Hz]

=> ω = 2 x 3.142 x 1000 = 6284 rad/s

Substitute these values into equation (v) as follows;

[tex]v_{max}[/tex] = 0.00040 x 6284 = 15795.5m/s²

Therefore, the magnitude of the maximum velocity is 2.5m/s

========================================================

(c) Comparing equations (i) and (iii),  equation (iii) can be written as;

a = -ω² y            -------------------(vi)

Therefore, to get the acceleration at tip displacement of 0.20mm, substitute y = 0.20mm = 0.00020m and ω = 6284rad/s into equation (vi) as follows;

a = - 6284² x 0.00020

a = - 7897.7 m/s²

Therefore, the magnitude of the acceleration at the tip displacement is 7897.7 m/s²

========================================================

(d) Recall that;

sin²θ + cos²θ = 1

=> cos²θ = 1 - sin²θ

=> cosθ = √(1 - sin²θ )

=> cos (ωt + φ)  = √(1 - sin² (ωt + φ))

Substitute this value into equation (ii) as follows;

v = Aω √(1 - sin² (ωt + φ))

v = ω√(A² - A²sin² (ωt + φ))              

Now, comparing the equation above and equation (i), the equation above can be written as;

v = ω√(A² - y²)           -------------(vii)

Therefore, to get the velocity at tip displacement of 0.20mm, substitute y = 0.20mm = 0.00020m, ω = 6284rad/s and A = 0.00040m into equation (vii) as follows;

v = 6284√(0.00040² - 0.00020²)

v = 6284√(0.00000060)

v = 2.2m/s

Therefore, the magnitude of the velocity at the tip displacement is 2.2 m/s

In a location in outer space far from all other objects, a nucleus whose mass is 3.969554 × 10−25 kg and that is initially at rest undergoes spontaneous alpha decay. The original nucleus disappears, and two new particles appear: a He-4 nucleus of mass 6.640678 × 10−27 kg (an alpha particle consisting of two protons and two neutrons) and a new nucleus of mass 3.902996 × 10−25 kg. These new particles move far away from each other, because they repel each other electrically (both are positively charged). Because the calculations involve the small difference of (comparatively) large numbers, you need to keep seven significant figures in your calculations, and you need to use the more accurate value for the speed of light, 2.9979246e8 m/s. Choose all particles as the system. Initial state: Original nucleus, at rest. Final state: Alpha particle + new nucleus, far from each other.

Answers

Answer:

The sum of the kinetic energies of the alpha particle and the new nucleus = (1.359098 × 10⁻¹²) J

Explanation:

We will use the conservation of energy theorem for extremely small particles,

Total energy before split = total energy after split

That is,

Total energy of the original nucleus = (total energy of the new nucleus) + (total energy of the alpha particle)

Total energy of these subatomic particles is given as equal to (rest energy) + (kinetic energy)

Rest energy = mc² (Einstein)

Let Kinetic energy be k

Kinetic energy of original nucleus = k₀ = 0 J

Kinetic energy of new nucleus = kₙ

Kinetic energy of alpha particle = kₐ

Mass of original nucleus = m₀ = (3.969554 × 10⁻²⁵) kg

Mass of new nucleus = mₙ = (3.902996 × 10⁻²⁵) kg

Mass of alpha particle = mₐ = (6.640678 × 10⁻²⁷) kg

Speed of light = (2.9979246 × 10⁸) m/s

Total energy of the original nucleus = m₀c² (kinetic energy = 0, since it was originally at rest)

Total energy of new nucleus = (mₙc²) + kₙ

Total energy of the alpha particle = (mₐc²) + kₐ

(m₀c²) = (mₙc²) + kₙ + (mₐc²) + kₐ

kₙ + kₐ = (m₀c²) - [(mₙc²) + (mₐc²)

(kₙ + kₐ) = c² (m₀ - mₙ - mₐ)

(kₙ + kₐ) = (2.9979246 × 10⁸)² [(3.969554 × 10⁻²⁵) - (3.902996 × 10⁻²⁵) - (6.640678 × 10⁻²⁷)]

(kₙ + kₐ) = (8.98755191 × 10¹⁶)(1.5122 × 10⁻²⁹) = (1.35909760 × 10⁻¹²) J

a camera with a 100mm lens can be used to focus objects from 6pm to infinity onto screen. how much must the lens be moved to focus on the extremities of this range

Answers

Answer:

i = f = 0.1 m until the lens moves towards the screen 0.1 m

Explanation:

For this exercise let's use the constructor equation

         1 / f = 1 / o + 1 / i

     

Where f is the focal distance, or the distance to the object and "i" the distance to the image

It indicates that the focal distance is 100 mm (f = 100 mm), when an object is at infinity the image is formed at its focal length

     1 / f = 1 / inf + 1 / i = 1 / i

      i = f = 100 mm

At this point the screen is placed

For the shortest distance the lens has to move a little so the distance to the image is

        f = 100 mm = 0.1 m

        o = 6 pm = 6 10⁻¹² m

        i = 100 + x

        1 / f = 1 / o + 1 / 100+ x

        1 /( 0.10 + x) = 1 / f - 1 / o

        1 / 0.100+ x = 1/0.100 - 1/6 10-12

        1 / 0.100 + x = 10 - 10¹¹ = -10¹¹

        0.100 + x = -10⁻¹¹

        x = -10⁻¹¹ -10⁻¹

        x = -10⁻¹

        x = - 0.1 m

This negative distance indicates that the lens moves towards the screen 0.1 m

4. Will a light bulb glow more brightly when it is connected to a battery as shownbelow, when it is connected to an ammeter on the left or to a voltmeter on the right?

Answers

Answer:

The diagram is in the attachment

Explanation:

An ammeter is use to know the current flowing in a circuit,

A voltmeter is use to know the potential difference across an element.

The ideal voltmeter and the ideal ammeter has zero internal resistance, so as to drop as little voltage as possible as current flows through it.

1. Let analyse the first circuit i.e the ammeter connection

The ammeter is connected rightly and all the current coming from the battery will flow into the bulb and the bulb will glow bright using only the current from the battery and the ammeter work in the circuit is only to measure the current from the battery.

Now let analyse the second circuit, the voltmeter connection.

This is a wrong connection and if this is done it will act has high resistance to the current flow. The connecting of voltmeter in series is equivalent to connecting a very high resistance in series with the circuit. By this only small insignificant amount of current flow through the circuit and nearly results in an open circuit.

Conclusion,

The first connection of ammeter bulb will glow brightly because it uses up all the current from the battery but for the voltmeter connection the current has been reduced due to the high resistance of voltmeter and thus reduces current.

For the tread on your car tires, which is greater: the tangential acceleration when going from rest to highway speed as quickly as possible or the centripetal acceleration at highway speed? For the tread on your car tires, which is greater: the tangential acceleration when going from rest to highway speed as quickly as possible or the centripetal acceleration at highway speed? The centripetal acceleration at highway speed is greater. The tangential acceleration when going from rest to highway speed as quickly as possible is greater. Under different realistic conditions the answer can be either acceleration.

Answers

Answer:

The centripetal acceleration at highway speed is greater.

Explanation:

We assume the motion of the car is uniformly accelerated. Let the highway speed be v.

By the equation of motion,

[tex]v=u+at[/tex]

[tex]a=\dfrac{v-u}{t}[/tex]

u is the initial velocity, a is acceleration and t is time

Because the car starts from rest, u = 0.

[tex]a_T=\dfrac{v}{t}[/tex]

This is the tangential acceleration of the thread of the tire.

The centripetal acceleration is given by

[tex]a_C=\dfrac{v^2}{r}[/tex]

r is the radius of the tire.

Comparing both accelerations and applying commonly expected values to r and t, the centripetal acceleration is seen to be greater. The radius of a tyre is, on the average, less than 0.4 m. Then the centripetal acceleration is about

[tex]a_C=\dfrac{v^2}{0.3}=2.5v^2[/tex]

The tangential acceleration can only be greater in the near impossible condition that the time to attain the speed is on the order of microseconds.

How fast do they need to push the mass at the beginning (now at a height equal to the top of the loop-the-loop) to get the mass around the loop-the-loop without falling off the track

Answers

Answer:

Check attachment for complete questions, the question is not complete

Explanation:

Check attachment for solution

Complete Question

The complete Question is shown on the first and second uploaded image

Answer:

The speed at which they need to push the mass is v = 13.1 m/s

Explanation:

In order to solve this problem we need to consider conservation of energy when the block is at the top of the inclined plane and also when it is on top of the loop

Now Applying the law of conservation of energy

        [tex]mg (2R) + \frac{1}{2} mv^2 = \frac{1}{2} mv_{top}^2 + mg(2R)[/tex]

  where   [tex]mg (2R)[/tex] is potential energy and [tex]\frac{1}{2} mv^2[/tex] is kinetic energy

  and [tex]v_{top}[/tex] is the velocity at the top inclined plane and the top of the loop

        Now considering the formula

                           [tex]\frac{1}{2} mv^2 = \frac{1}{2} mv_{top}^2[/tex]

                            [tex]v^2 = v_{top}^2[/tex]

                            [tex]v = v_{top}[/tex]

Now to obtain [tex]v_{top}[/tex]

   Looking at the question we can say that the centripetal force that made the block move around loop without leaving the track is q=equivalent to the centripetal force  so we have

            [tex]mg = \frac{mv_{top}^2}{R}[/tex]

The m would cancel out each other then cross- multiplying

             [tex]gR = v^2_{top}[/tex]

         [tex]v_{top} = \sqrt{gR}[/tex]

                 [tex]= \sqrt{(9.8 m/s^2)(17.4\ m)}[/tex]

                [tex]= 13.05 m/s[/tex]

                [tex]\approx 13.1 m/s[/tex]

           

A curve that has a radius of 100 m is banked at an angle of θ = 10.4 ∘ . If a 1200 kg car navigates the curve at 65 km / h without skidding, what is the minimum coefficient of static friction μ s between the pavement and the tires?

Answers

The minimum coefficient of static friction between the pavement and the tires is 0.156.

Minimum coefficient of static friction

The minimum coefficient of static friction is calculated by applying Newton's second law of motion in determining the net force.

[tex]F_c = Wsin(\theta) + \mu_s W cos(\theta)\\\\\frac{mv^2}{r} = mg sin(\theta) + \mu_s mg cos(\theta)\\\\\mu_s mg cos(\theta)\ = \frac{mv^2}{r} - mg sin(\theta) \\\\\mu _ s = \frac{mv^2 \ - \ mgr sin(\theta)}{mg rcos(\theta)}[/tex]

where;

m is the mass = 1200 kgv is the speed = 65 km/h = 18.1 m/sr is the radius = 100 mg is gravityθ = 10.4 ∘

[tex]\mu _ s = \frac{1200 \times 18.1^2 \ - \ 1200 \times 9.8 \times 100 sin(10.4)}{1200 \times 9.8 \times 100 \times cos(10.4)}\\\\\mu_s = 0.156[/tex]

Thus, the minimum coefficient of static friction between the pavement and the tires is 0.156.

Learn more about coefficient of static friction here: https://brainly.com/question/25050131

Two coils that are separated by a distance equal to their radius and that carry equal currents such that their axial fields add are called Helmholtz coils. A feature of Helmholtz coils is that the resultant magnetic field between the coils is very uniform. Let R = 11.0 cm, I = 17.0 A, and N = 300 turns for each coil. Place one coil in the y-z plane with its center at the origin and the other in a parallel plane at R = 11.0 cm. Calculate the resultant field Bx at x1 = 2.8 cm, x2 = 5.5 cm, x3 = 7.3 cm, and x4= 11.0 cm.

Answers

Final answer:

To calculate the resultant magnetic field at different points between the Helmholtz coils, use the formula B = (μ0 * N * I * R^2) / ((R^2 + x^2)^(3/2)). Plug in the given values to find the magnetic field at specific distances from the center of the coil.

Explanation:

To calculate the resultant magnetic field at different points, we can use the formula:

B = (μ0 * N * I * R^2) / ((R^2 + x^2)^(3/2))

Where B is the magnetic field, μ0 is the permeability of free space, N is the number of turns, I is the current, R is the radius of the coil, and x is the distance from the center of the coil.

Using this formula, we can calculate the magnetic field at x1 = 2.8 cm, x2 = 5.5 cm, x3 = 7.3 cm, and x4 = 11.0 cm by plugging in the given values.

Helmholtz coils create a uniform magnetic field using two identical coils with the same current. The formula for calculating the magnetic field at any position along the axis demonstrates this uniformity and the provided distances can be used to find specific magnetic field values.

A Helmholtz coil configuration consists of two identical circular coils, each having N turns, radius R, and carrying the same current I. The coils are separated by a distance equal to R. This setup creates a uniform magnetic field between the coils. Given data are R = 11.0 cm, I = 17.0 A, and N = 300 turns.

Using the formula for the magnetic field along the axis of Helmholtz coils:

x1 = 2.8 cm: Substitute x1 into the equation to find Bx at this position.x2 = 5.5 cm: Substitute x2 into the equation to find Bx at this position.x3 = 7.3 cm: Substitute x3 into the equation to find Bx at this position.x4 = 11.0 cm: Since x4 equals R, this will help in analyzing the boundary values.

This approach allows for the precise calculation of the magnetic field Bx at the given distances from the center, demonstrating the setup’s uniformity and reinforcement of the fields.

Complete Question : Two coils that are separated by a distance equal to their radius and that carry equal currents such that their axial fields add are called Helmholtz coils. A feature of Helmholtz coils is that the resultant magnetic field between the coils is very uniform. Let R = 11.0 cm, I = 17.0 A, and N = 300 turns for each coil. Place one coil in the y-z plane with its center at the origin and the other in a parallel plane at R = 11.0 cm. Calculate the resultant field Bx at x1 = 2.8 cm, x2 = 5.5 cm, x3 = 7.3 cm, and x4= 11.0 cm.

xperiments is conducted. In each experiment, two or three forces are applied to an object. The magnitudes of these forces are given. No other forces are acting on the object. In which cases may the object possibly remain at rest?

Answers

Answer:

a) b) d)

Explanation:

The question is incomplete. The Complete question might be

In an inertial frame of reference, a series of experiments is conducted. In each experiment, two or three forces are applied to an object. The magnitudes of these forces are given. No other forces are acting on the object. In which cases may the object possibly remain at rest? The forces applied are as follows: Check all that apply.

a)2 N; 2 N

b) 200 N; 200 N

c) 200 N; 201 N

d) 2 N; 2 N; 4 N

e) 2 N; 2 N; 2 N

f) 2 N; 2 N; 3 N

g) 2 N; 2 N; 5 N

h ) 200 N; 200 N; 5 N

For th object to remain at rest, sum of all forces must be equal to zero. Use minus sign to show opposing forces

a) 2+(-2)=0 here minus sign is to show the opposing firection of force

b) 200+(-200)=0

c) 200+(-201)[tex]\neq[/tex]0

d) 2+2+(-4)=0

e) 2+2+(-2)[tex]\neq[/tex]0

f) 2+2+(-3) [tex]\neq[/tex]0; 2+(-2)+3[tex]\neq[/tex]0

g) 2+2+(-5)[tex]\neq[/tex]0; 2+(-2)+5[tex]\neq[/tex]0

h)200 + 200 +(-5)[tex]\neq[/tex]0; 200+(-200)+5[tex]\neq[/tex]0

An object having a mass of 5 kg is thrown vertically upward from a 15 m tower with an initial velocity of 7 m/sec. Air resistance acting on the object is equal to 6 10v.(a) Set up the differential equation required to solve the problem. Carefully define any variables you are using (with units) and state all appropriate initial conditions (with units) in terms of those variables.(b) When does the object reach its maximum height?

Answers

Explanation:

The given data is as follows.

           mass (m) = 5 kg

       Height of tower = 15 m

        u = 7 m/s

    air resistance = 610 v

(a)   Now, differential equation for the given mass which is thrown vertically upwards is as follows.

              [tex]m \frac{d^{2}x}{dt^{2}}[/tex] = F

                  -bv = Fr

Here, mg is downwards due to the force of gravity.

              [tex]\frac{md^{2}x}{dt^{2}} = bv - mg[/tex]

       [tex]\frac{md^{2}x}{dt^{2}} + b \frac{dx}{dt} + mg[/tex] = 0

Hence, the differential equation required to solve the problem is as follows.

       [tex]\frac{md^{2}x}{dt^{2}} + b \frac{dx}{dt} + mg[/tex] = 0    

(b)   When final velocity of the object is equal to zero then the object will reach towards its maximum height and it will start to fall downwards.

              F = [tex]\frac{md^{2}x}{dt^{2}}[/tex]

                 = 0

Therefore, the object reach its maximum height at v = 0.

Compare waves on a pond and electromagnetic waves. 1. A wave on a pond is a mechanical wave which doesn’t require a medium to travel. 2. A wave on a pond is an electromagnetic wave which doesn’t require a medium to travel. 3. A wave on a pond is an electromagnetic wave which requires a medium to travel 4. A wave on a pond is a mechanical wave which requires a medium to travel.

Answers

Answer:

The correct answer is the number 4. A wave on a pond is a mechanical wave which requires a medium to travel.

Explanation:

Mechanical waves are those that need a material medium to propagate. The waves of the sea and the waves that we produce on a guitar string, the sound, are examples of mechanical waves. Electromagnetic waves are energetic pulses capable of propagating in a vacuum. This way, a wave on a pond is a mechanical wave which requires a medium to travel.

Final answer:

A wave on a pond is a mechanical wave requiring water to propagate, while electromagnetic waves, such as light, don't require a medium and can travel through a vacuum. Therefore, statement 4 is correct. This reflects fundamental differences in how mechanical and electromagnetic waves propagate and their need for a medium.

Explanation:

To compare waves on a pond with electromagnetic waves, we should understand that a wave on a pond is a mechanical wave which requires a medium to travel (option 4). This is because mechanical waves are disturbances that propagate through a material medium and the pond water serves as this medium. On the other hand, electromagnetic waves do not need a medium; they can travel through a vacuum because they consist of oscillating electric and magnetic fields.

So, the correct statement would be that a wave on a pond is a mechanical wave which requires a medium to travel. Therefore, the waves on a pond are similar to sound waves since both are mechanical and need a medium. In contrast, light waves are an example of electromagnetic waves, which means they can travel through the vacuum of space without any medium.

Furthermore, all electromagnetic waves move at the same speed in a vacuum, which is known as the speed of light. This is a fundamental difference between mechanical and electromagnetic waves since the speed of mechanical waves depends on the medium in which they are traveling. The discovery that electromagnetic waves do not require a medium led to the abandonment of the aether theory, which was invented to provide a medium for light and other electromagnetic wave propagation.

A 6-kg block slides down an incline with a 5-meter vertical drop over an 8-meter horizontal distance. If the block starts from rest and friction is negligible, then what is its kinetic energy at the bottom?

Answers

To solve this problem we will apply the concepts related to energy conservation. We know that potential energy is transformed into kinetic and vice versa energy. Since the energy accumulated in the upper part is conserved as potential energy, when the object is thrown all that energy will be converted into kinetic energy. Therefore we will have the following relation,

[tex]KE = PE[/tex]

[tex]KE = mgh[/tex]

Here,

m = mass

g = Gravitational acceleration

h = Height

Replacing,

[tex]KE = (6)(9.8)(5)[/tex]

[tex]KE = 294J[/tex]

Therefore the kinetic energy at the bottom is 294J

Rosalind mentions to Aliyeh the teacher's talking to Jeremy earlier about "escape speed." Aliyeh had never heard of it, either. Jeremy takes another hit of coffee and says, "Maybe that's what happens if we were to take a spaceship to Mars. We'd have to 'escape' from Earth. Yeah, maybe that's it. What speed does it take to escape from the surface of Earth?

Answers

Answer:

11.2 Km/Sec

Explanation:

Escape velocity is the velocity that one has to achieve to go out of the gravitational effect of a body. Here they are talking about escaping from the Earth's gravity. To travel to Mars, first we will have to go far enough so that the impact of Earth's gravity is negligible.

The escape velocity ([tex]v_{e}[/tex]) can be calculate using the given formula:

[tex]v_{e} = \sqrt{\frac{2GM}{r}}[/tex]

where,

G = Gravitational Constant

M = Mass of the object from which we need to escape (Here it is the mass of the Earth)

r = distance from the center of that object (In this case it is equal to the radius of Earth)

For Earth, this comes out to be 11.2 KM/Sec

A pig enjoys sliding down a ramp. The farmer who owns the pig discovers that if he greases the pig, there is no fiction and the pig enjoys the slide more (happy pig, better bacon). The time required for the pig to reach the bottom of the slide with friction is twice the time without friction. Assumed the pig starts from rest. Derive an expression for the coefficient of friction. (

Answers

Answer:

Explanation:

Acceleration without friction on an inclined plane = g sinθ

Acceleration with friction on inclined plane = g sinθ - μ g cosθ

s = 1/2 a t²

For motion on friction-less surface

s = 1/2 g sinθ t₁²

For motion on frictional surface

s = 1/2( g sinθ - μ g cosθ)  t₂²

t₂ = 2t₁

(  sinθ - μ  cosθ)  t₂² =  sinθ t₁²

(  sinθ - μ  cosθ)  4t₁² =  sinθ t₁²

(  sinθ - μ  cosθ)  4 =  sinθ

4sinθ - sinθ = 4μ  cosθ

3sinθ = 4μ  cosθ

3 / 4 tanθ =μ  

μ  = .75  tanθ

A charge −1.3 × 10−5 C is fixed on the x-axis at 7 m, and a charge 1 × 10−5 C is fixed on the y-axis at 4 m. Calculate the magnitude of the resultant electric field E~ at the origin. Answer in units of N/C.

Answers

Answer:

6104 N/C.

Explanation:

Given:

k = 8.99 × 10^9 Nm2/C^2

Qx = 1.3 × 10^-5 C

rx = 7 m

Qy = 1 × 10−5 C

ry = 4 m

E = F/Q

= kQ/r^2

Ex = (8.99 × 10^9 × 1.3 × 10^−5) ÷ 7^2

= 2385.1 N/C.

Ey = (8.99 × 10^9 × 1.0 × 10^−5) ÷ 4^2

= 5618.75 N/C

Eo = sqrt(Ex^2 + Ey^2)

= sqrt(3.157 × 10^7 + 5.69 × 10^6)

= 6104 N/C.

The magnitude of the electric field at the origin due to the charges fixed at (7 m, 0) and (0, 4 m) is approximately 6107.83 N/C. This was calculated by determining the electric fields from each charge and then using vector addition to find the resultant electric field. The calculation involved using the formula E = k |q| / r² for each charge, followed by determining the resultant using Pythagoras' theorem.

Let's determine the electric field at the origin due to two fixed charges. The first charge is -1.3 × 10⁻⁵ C located at (7 m, 0), and the second charge is 1 × 10⁻⁵C located at (0, 4 m).

The electric field due to a point charge q at a distance r is given by E = k |q| / r², where k = 8.99 × 10⁹ N·m²/C² is the Coulomb constant.

Step-by-Step Calculation

Calculate the distance from each charge to the origin:

Charge 1 at (7 m, 0): r₁ = 7 m

Charge 2 at (0, 4 m): r₂ = 4 m

Compute the electric field due to each charge:

For q₁ = -1.3 × 10⁻⁵ C:
E₁ = k |q₁| / r₁² = (8.99 × 10⁹ N·m²/C²) (1.3 × 10⁻⁵ C) / (7 m)² ≈ 2381.57 N/C along the negative x-direction.

For q₂ = 1 × 10⁻⁵ C:
E₂ = k |q₂| / r₂² = (8.99 × 10⁹ N·m²/C²) (1 × 10⁻⁵ C) / (4 m)² ≈ 5621.88 N/C along the positive y-direction.

Determine the resultant electric field at the origin using vector addition. Since the fields are perpendicular:

Resultant E = √(E₁² + E₂²)
≈ √((2381.57 N/C)² + (5621.88 N/C)²)
≈ √(5662179.6649 + 31643689.7344)
≈ √(37305869.3993)
Resultant E ≈ 6107.83 N/C

The magnitude of the resultant electric field at the origin is therefore approximately 6107.83 N/C.

Other Questions
Htc started as an original equipment manufacturing firm (oem) for brand-name mobile device companies. later, it started offering a line up of innovative and high-performance smartphones by acquiring one & co., a san francisco-based design firm. this strategic move of htc is known as___________. Which of the following characterizes a beta ray? Choose all that apply. is electromagnetic radiation is a product of natural radioactive decay is attracted to the positively charged plate in an electric field is attracted to the negatively charged plate in an electric field is composed of electrons A company's interest expense is $9,000. Its income before interest expense and income taxes is $38,250. Its net income is $11,850. The company's times interest earned ratio equals:(A) 0.235.(B) 0.76.(C) 3.23.(D) 4.25.(E) 0.31. You bought 1,000 shares of Tund Corp. stock for $60.59 per share and sold it for $82.35 per share after a few years. How will your gain or loss be treated when you file your taxes Can I get some help!Using the distance formula, d = (x2 - x1)2 + (y2 - y1)2, what is the distance between point (-10, 12) and point (5, 3) rounded to the nearest tenth?17.5 units10.29 units175 units13 units terry sees this offer : reburfished phone 35% off now only 78 , how much was the phone before the discount Which of the following numbers could be added to 3/14 to make a sum greater than 1/2 Rachelle has just returned from a military tour of duty in Japan, and her tuition is paid for by the GI bill. However, she learns that she did not get into the courses she planned on because the military did not send the school all of her paperwork. Where should Rachelle go to resolve her academic planning problem? Drag the tiles to the correct boxes to complete the pairs.Match the scenario to the type of professional each patient should visit.Maggie is expecting twins and wantsto make sure they are healthy.Sumi is feeling fatigued and needs tohave blood drawn and tested.Hazel has epilepsy and needs to haveher brain activity monitored.Brandon broke his ankle while rockclimbing and needs an X-ray.radiologic technologistsonographerphlebotomistelectroencephalogram technician Mary and her friends set out to sea on their annual fishing trip. Their distance from the shore in miles, y, increases by 3 miles each hour, x. write an equation to model this relationship.y=3xy=3/2xy=x+3y=2xy=x-4y=x+5 (Related to Checkpoint 18.3) (Evaluating trade credit discounts) Determine the annualized cost of forgoing the trade credit discount on the terms of 3/15, net 60 (assume a 360-day year). please help me i need help Translate this sentence into an equation. 48 is the product of Gregs score and 3. Use the variable g to represent Gregs score Molecular orbitals formation involved in the combination of same type atomic orbitals which also have same symmetry for diatomic molecules.So the correct combinations to the formation of molecular orbitals are,1s + 1s -----> 1s + *1s2s + 2s -----> 2s + *2s2pz + 2pz -----> 2pz + *2pz2py + 2py -----> 2py + *2py2px + 2px -----> 2px + *2px In preparing to shoot an arrow, an archer pulls a bow string back 0.424 m by exerting a force that increases uniformly from 0 to 223 N. What is the equivalent spring constant of the bow? How many cubic meters of material are there in a conical pile of dirt that has radius 11 meters and height 6 meters? Use 3.14 for pi. Conventional morality"" is the set of A. traditional principles that are widely shared within a culture or society. B. principles genuinely believed by a moral agent. C. true moral principles. D. laws of a particular government. Watches, an online watch store, recently adopted a new enterprise resource planning (ERP) system to help keep track of the company's inventory and to deliver customers' orders on time. The company's adoption of the new ERP system reflects a change in the area of _____. Your health care provider has advised you to lose weight. She encourages you to add fiber and complex carbohydrates to your diet and gives you a list of nutritious foods to look for at the grocery store. You stop at the prepared food section of the grocery store to pick up a healthy dinner. Which of these is the best choice to get you started on your "complex-carb" diet? broccoli & brown rice salad Yesterday, Carmen went on a bike ride. Her average speed was 8 miles per hour. Today, she went on another ride, this time averaging 13 miles per hour. In the two days, she biked for a combined total time of 9 hours.Let x be the number of hours she biked yesterday. Write an expression for the combined total number of miles she biked in the two days?