Answer:
c. 1 13/15
Step-by-step explanation:
The best way to find out how much more Tristan rode his bike would be to subtract both of his distances together.
Saturday = [tex]3\dfrac{2}{3}[/tex]
Sunday = [tex]1\dfrac{4}{5}[/tex]
Now we actually have two different fractions with different denominators.
We can solve this first by converting the mixed numbers into improper fractions.
[tex]3\dfrac{2}{3}=\dfrac{9+2}{3}[/tex]
[tex]3\dfrac{2}{3}=\dfrac{11}{3}[/tex]
Now how did I do that?
First we take the denominator and multiply it to our whole number, then add the product to the numerator.
Let's proceed to the next mixed fraction.
[tex]1\dfrac{4}{5}=\dfrac{5+4}{5}[/tex]
[tex]1\dfrac{4}{5}=\dfrac{9}{5}[/tex]
We are then left with:
[tex]\dfrac{11}{3}-\dfrac{9}{5}[/tex]
Since we cannot subtract them directly because they have different denominators, we need to find the LCD of both denominators.
[tex](\dfrac{5}{5}) \dfrac{11}{3}-\dfrac{9}{5}(\dfrac{3}{3})[/tex]
[tex]\dfrac{55}{15}-\dfrac{27}{15}[/tex]
Now that they have similar denominators, we can then proceed to subtract them to each other.
[tex]\dfrac{55}{15}-\dfrac{27}{15}=\dfrac{28}{15}or1\dfrac{13}{15}[/tex]
solve the inequality -5x<15
x > -3 divide by -5 on both sides and then switch the sign bc everytime u divide by a negative number u have to switch the sign
Answer:
x < -3
Step-by-step explanation:
All you have to do is divide -5 on both sides.
-5x < 15
------ ------
-5 -5
x < -3
Sometimes, you might have to flip the < sign. So it will be like:
x > -3
If you want to graph the inequality, here's how it will look:
(Graph shown on bottom of answer)
Mathematics is a great, beautiful, and important thing in life! With math, you can do anything when you out your mind to it!
- Jamal Josecite
8th Grade Student
(Please give me brainliest! I need to level up!)
Which is equivalent to 2 to the fourth power
Answer:
16
Step-by-step explanation:
2 times 2 is 4, 4 times 2 is 8, 8 times 2 is 16
This is the equation of a quadratic function. y−2x2=−3 Which statement describes the graph of the function? Question 2 options: The graph opens upward and has a maximum value of –3. The graph opens upward and has a minimum value of –3. The graph opens downward and has a minimum value of –3. The graph opens downward and has a maximum value of –3.
The graph opens upward and has a minimum value of –3
Which statement describes the graph of the function
From the question, we have the following parameters that can be used in our computation:
y - 2x² = -3
This can be expressed as
y = 2x² - 3
The above has a positive leading coefficient
This means that it opens up
And as such it has a minimum and no maximum
Using the above as a guide, we have the following:
The graph opens upward and has a minimum value of –3
URGENT!!! Which expression is equivalent to cos(2α)cosα−sinα for all values of α for which cos(2α)cosα−sinα is defined?
Select the correct answer below:
2
cosα+sinα
cot2α−2cos2α
2tanα1+tanα
2sinα1−tan2α
ANSWER
[tex] \cos( \alpha ) + \sin( \alpha ) [/tex]
EXPLANATION
The given expression is
[tex] \frac{ \cos(2 \alpha ) }{ \cos( \alpha ) - \sin( \alpha ) } [/tex]
Recall and use the double angle identity,
[tex] \cos(2 \alpha ) = { \cos}^{2} \alpha - { \sin}^{2} \alpha [/tex]
This implies that,
[tex]\frac{ \cos(2 \alpha ) }{ \cos( \alpha ) - \sin( \alpha ) } = \frac{ \ { \cos}^{2} \alpha - { \sin}^{2} \alpha }{ \cos( \alpha ) - \sin( \alpha ) } [/tex]
Recall again that: a²-b²=(a-b)(a+b)
We use difference of two squares to obtain,
[tex]\frac{ \cos(2 \alpha ) }{ \cos( \alpha ) - \sin( \alpha ) } = \frac{ (\ { \cos}\alpha - { \sin}\alpha )(\ { \cos}\alpha + { \sin}\alpha)}{ \cos( \alpha ) - \sin( \alpha ) } [/tex]
We cancel out the common factors to get,
[tex]\frac{ \cos(2 \alpha ) }{ \cos( \alpha ) - \sin( \alpha ) } = { \cos}\alpha + { \sin}\alpha[/tex]
The expression cos(2α)cosα−sinα is equivalent to the formula 2tanα / (1+tan^2α), reached by substituting cos(2α) with 1 - 2sin^2α and recognizing the resulting function as the derivative of the tangent function.
Explanation:In addressing your question on expressions equivalent to cos(2α)cosα−sinα, we will employ some trigonometric identities. The expression cos(2α)cosα−sinα is equivalent to the expression 2tanα / (1+tan^2α).
The way to reach this answer is to first know the identity cos(2α) = 1 - 2sin^2α and plug this into the equation. The result will be 2sin^2α cosα + sinα. Then, you recognize this is the derivative of the tangent function, and find that it equals 2 tanα / (1 + tan^2α).
Learn more about Trigonometric Identities here:https://brainly.com/question/3785172
#SPJ3
Use 12 x 5 = 60 and 12 x 2 = 24 to help you multiply 12 x 7.
Uh... 84 is correct. Add 60 & 24 and you get 84. Hopefully that helps
Answer:
84
Step-by-step explanation:
12*7=84
12*5=60
7-5=2
84-60=24
The figure shows two triangles on the coordinate grid:
What set of transformations is performed on triangle ABC to form triangle A’B’C’
Its the third option :)
Answer: the correct option is
(D) A translation 5 units to the right, followed by a 180-degree counterclockwise rotation about the origin.
Step-by-step explanation: We are given two triangles ABC and A'B'C' on the co-ordinate grid.
We are given to select the set of transformations is performed on triangle ABC to form triangle A’B’C’.
From the graph, we note that
the co-ordinate of the vertices of triangle ABC are A(-4, -1), B(-3, -1) and C(-4, -4).
And, the co-ordinates of the vertices of triangle A'B'C' are A'(-1, 1), B'(-2, 1) and C'(-1, 4).
We know that if a point (x, y) is translated 5 units right, followed by a rotation of 180-degrees clockwise about the origin, then its new co-ordinates becomes
(x, y) ⇒ (-x-5, -y).
So, after these two transformations, the co-ordinates of the vertices of triangle ABC will become
A(-4, -1) ⇒ (4-5, 1) = (-1, 1),
B(-3, -1) ⇒ (3-5, 1) = (-2, 1)
and
C(-4, -4) ⇒ (4-5, 4) = (-1, 4).
The new co-ordinates are the co-ordinates of the vertices of triangle A'B'C'.
Thus, the required set transformations is
A translation 5 units to the right, followed by a 180-degree counterclockwise rotation about the origin.
Thus, option (D) is CORRECT.
A person who needs a car for a few hours to pick a friend from an airport would most likely choose which of the following?
A. Car share
B. Car rental
C. Car lease
D. Carpool
A. Car share I hope this helps
The most likely choice for someone needing a car for a few hours to pick someone up from the airport is a car share, due to its convenience and cost-effectiveness for short-term use.
Explanation:A person who needs a car for just a few hours to pick up a friend from an airport would most likely choose car sharing. This option allows for the short-term use of a car, typically charged by the hour or mile, and is ideal for brief, one-time needs such as an airport pick-up. In contrast, car rental is more suitable for those who need a vehicle for a full day or longer. A car lease is a long-term arrangement, usually spanning several years, and therefore not practical for a few hours of use. Carpooling involves sharing a ride with others going in the same direction but does not provide the flexibility of going to the airport to pick someone up specifically.
When deciding on options like these, one must consider the economic choices and personal needs. Factors like fuel efficiency, car size, and whether all-wheel drive is necessary for local weather conditions should be taken into account for longer-term choices. However, for a few hours of need, car sharing emerges as the most convenient and economical option.
What are the roots of x in - 10x2 + 12x - 9 = 0?
SORRY FOR CUTTING AND HANDWRITING
HOPE THIS WILL HELP YOU
The roots of the quadratic equation [tex]\( -10x^2 + 12x - 9 = 0 \)[/tex] are [tex]\( \frac{{3 + i\sqrt{6}}}{{5}} \)[/tex] and [tex]\( \frac{{3 - i\sqrt{6}}}{{5}} \).[/tex]
To find the roots of the quadratic equation -10x^2 + 12x - 9 = 0 , we can use the quadratic formula:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}} \]Where:[/tex]
- a = -10
- b = 12
- c = -9
Substitute the values into the quadratic formula:
[tex]\[ x = \frac{{-12 \pm \sqrt{{12^2 - 4(-10)(-9)}}}}{{2(-10)}} \][/tex]
[tex]\[ x = \frac{{-12 \pm \sqrt{{144 - 360}}}}{{-20}} \][/tex]
[tex]\[ x = \frac{{-12 \pm \sqrt{{-216}}}}{{-20}} \][/tex]
[tex]\[ x = \frac{{-12 \pm 6i\sqrt{6}}}{{-20}} \][/tex]
[tex]\[ x = \frac{{3 \pm i\sqrt{6}}}{{5}} \][/tex]
So, the roots of the equation are [tex]\( \frac{{3 + i\sqrt{6}}}{{5}} \)[/tex] and [tex]\( \frac{{3 - i\sqrt{6}}}{{5}} \),[/tex] where i is the imaginary unit.
Twelve less than a number y is 8? Please help
Answer:
The answer is y = 20
Step-by-step explanation:
To find this, we need to turn it into an equation. Then we can follow the order of operations to solve.
y - 12 = 8
y = 20
Answer: Y = 20
Step-by-step explanation:
The equation to solve this problem is y - 12 = 8
In order to solve the equation you need to add 12 to each side -
Y = 20
You can then check your work - 12 less than 20 equals 8. This is correct, so you know that your answer is correct.
the sum of foir consecutive even integers is -28
(PLEASE HELP) The histogram shows the number of hours that 25 college students spent studying for their final exams. Which statement is true about this histogram?
The statement on the bottom left is correct. (6 students studied for 20 to 24 hours)
Answer:
Bottom right corner.
Step-by-step explanation:
They spent between 20 to 24 hours in stead of studying for exactly one of them.
how do u change inches into feet
Step-by-step explanation:
[tex]1\ ft=12\ in\to1\ in=\dfrac{1}{12}\ ft\\\\\text{Therefore, if you want to change inches to feet,}\\\text{you must divide the number of inches by 12.}\\\\\text{Examples:}\\\\36\ in=\dfrac{36}{12}\ ft=3\ ft\\\\120\ in=\dfrac{120}{12}\ ft=10\ ft[/tex]
What is the discriminant of 9x^2+2=10x^2
Answer:
8
Step-by-step explanation:
To find the discriminant, we need to get the equation in standard form
9x^2+2=10x^2
Subtract 10x^2 from each side
9x^2-10x^2+2=10x^2-10x^2
-x^2 +2 =0
This is in the form ax^2+bx +c =0
where a=-1 b=0 and c=2
The discriminant is
b^2 -4ac
0^2 -4*(-1)*2
0+8
The discriminant is 8
Which expression is equivalent to
Answer:
pq^9
Step-by-step explanation:
so this is basically multyplying the 2 variables
p there is 1
q there is 9
pq^9
Answer:
p q^9
Step-by-step explanation:
pqqqqqqqq
There is one p and 9 q's
That means raise p to the power of 1 and q to the power of 9
p^1 * q^9
Anything to the power of 1 is itself
p q^9
What value is equivalent to 23 · 34?
Answer:
782
Step-by-step explanation:
You have to multiplied 23 and 34
23 X 34 = 782
Answer:
782 is the answer
Step-by-step explanation:
Multiply 23 x 34 and that gives you 782.
Did I set up the equation right? Please help me.
Yes you did a little reminder for you from me is that c^2 will ALWAYS be across from the right angle(90 degree)
The following graph is a revenue function. It represents the amount of revenue a company generates for each $2 increase in price.
The company’s maximum revenue is:
The maximum revenue occurs when the price is increased by:
Answer:$1125.00 and $5.00 i think
Step-by-step explanation:
Answer:
The maximum revenue is roughly $1150 and the increase is $5.
Step-by-step explanation:
We can find this by looking for the highest point on the graph. The highest point on the graph occurs at x = 5, with the y value reaching roughly 1150.
Betsy is buying topsoil for the flower bed shown below.
One bag of topsoil covers 20 square meters.
How many bags of topsoil does Betsy need to cover her flower bed?
A 2 bags
B 3 bags
C 4 bags
D 5 bags
Answer:
The correct answer is B. 3 bags
Correct statement, question and image:
Betsy is buying topsoil for the flower bed shown below (image attached)
One bag of topsoil covers 20 square meters.
How many bags of topsoil does Betsy need to cover her flower bed?
A 2 bags
B 3 bags
C 4 bags
D 5 bags
Source:
Previous question that can be found at brainly
Step-by-step explanation:
1. Let's find the area of the triangle:
Area = (Base * Height)/2
Area = (20 * 6)/2
Area of the flower bed = 60 m²
2. Now, let's calculate the number of bags of topsoil Betsy needs to cover her flower bed:
Number of bags = Area of the flower bed/Area covered by a bag of topsoil
Number of bags = 60/20
Number of bags = 3
The correct answer is B. 3 bags
There are 3 bags of topsoil Betsy needs to cover her flower bed option (B) is correct.
What is the triangle?The triangle can be defined as a three-sided polygon in geometry, and it consists of three vertices and three edges. The sum of all the angles inside the triangle is 180°.
The figure is missing. Please refer to the attached picture.
As we know,
The area of the triangle = (1/2)base length×hieght
= (1/2)20×6
= 60 square m
One bag of topsoil covers 20 square meters.
Number of bags = 60/20 = 3 bags
Thus, there are 3 bags of topsoil Betsy needs to cover her flower bed option (B) is correct.
Learn more about the triangle here:
brainly.com/question/25813512
#SPJ5
Which table shows a no change linear relationship?Which table shows a no change linear relationship?
A)
x y
4 55
7 60
10 65
13 70
B)
x y
10 -16
15 -18
20 -20
25 -22
C)
x y
14 12
20 12
26 12
32 12
D)
x y
4 10
7 14
10 18
13 22
B
x y
10 -16
15 -18
20 -20
25 -22
Answer:
c
Step-by-step explanation:
The points (-2, -1), (5, -4), and (-2, -4) are vertices of a polygon. What is the best name for the polygon?
obtuse triangle
isosceles triangle
right triangle
acute triangle
Answer:
the answwee is right triangle
Step-by-step explanation:
Answer:
Right triangle,
Step-by-step explanation:
The points (-2,-1) and (-2,-4) joined make a vertical line.
Also the line between (-2,-4) and (5, -4) is horizontal.
The 3 points make a right triangle.
Given that (4,4) is on the graph of f(x), Find The Corresponding Point for the function f(x)+5
Answer:
(4,9)
Step-by-step explanation:
If f(x) is a function, the function f(x) + a is a function translated a units up vertically. Hence, all the y-coordinates of the coordinates of the points on the function will shift up by a.
For this problem, we need to find corresponding coordinate of (4,4) of f(x) + 5. This means that the y-coordinate of this coordinate will increase by 5 and x will stay the same.
Hence, corresponding point for f(x) + 5 for the point (4,4) would be (4,4+5) OR (4,9).
how much money must be deposited now in an account paying 7% annual interest compounded yearly to have a balance of $1000 after 6 years
To find out how much money must be deposited now in an account paying 7% annual interest compounded yearly to have a balance of $1000 after 6 years, we can use the formula for compound interest. Plugging in the values given, we get an approximate deposit of $665.58.
Explanation:To find out how much money must be deposited now, we can use the formula for compound interest:
A = P(1 + r/n)^(nt)
Where A is the future value, P is the principal (initial deposit), r is the annual interest rate (as a decimal), n is the number of times the interest is compounded per year, and t is the number of years.
In this case, we have A = $1000, r = 7% (or 0.07), n = 1 (compounded yearly), and t = 6 years. Plugging in these values, we can solve for P:
A = P(1 + r/n)^(nt)
$1000 = P(1 + 0.07/1)^(1 * 6)
$1000 = P(1 + 0.07)^6
$1000 = P(1.07)^6
$1000 = P(1.5037)
P ≈ 1000 / 1.5037
P ≈ 665.58
Therefore, approximately $665.58 must be deposited now to have a balance of $1000 after 6 years.
It would cost $81.61 to buy three tickets in Japan plus two tickets in Switzerland. Three tickets in Switzerland plus two tickets in Japan cost $77.44. How much does an average movie ticket cost in each of these countries?
The average cost of a movie ticket in Japan is $17.99 and in Switzerland is $13.82.
To solve the problem of determining the average cost of a movie ticket in Japan and Switzerland, we need to set up a system of equations based on the information given. If we let J represent the cost of a ticket in Japan and S represent the cost of a ticket in Switzerland, we can formulate the following equations from the scenario provided:
3J + 2S = $81.61 (Cost for three tickets in Japan and two in Switzerland)
3S + 2J = $77.44 (Cost for three tickets in Switzerland and two in Japan)
Now we solve the system of equations using substitution or elimination method. For simplicity, we'll use the elimination method:
Multiply the first equation by 3 and the second equation by 2 to make the coefficients of S the same:
9J + 6S = 3 x $81.61 = $244.83
6S + 4J = 2 x $77.44 = $154.88
Subtract the second new equation from the first to eliminate S:
9J + 6S - (6S + 4J) = $244.83 - $154.88
5J = $89.95
Divide by 5 to solve for J:
J = $89.95 / 5 = $17.99
Now substitute the value of J in either original equation to solve for S:
3(17.99) + 2S = $81.61
53.97 + 2S = $81.61
2S = $81.61 - 53.97
2S = $27.64
Divide by 2 to solve for S:
S = $27.64 / 2 = $13.82
Therefore, the average cost of a movie ticket in Japan is $17.99 and in Switzerland is $13.82.
pls anser correctly
Sarah bought 24 cupcakes for her birthday party. 25% of the cupcakes were chocolate. How many chocolate cupcakes did Sarah buy?
If 25% of the cupcakes were chocolate, she would have bought 6 chocolate cupcakes
Answer:
hello!!
the answer would be 6 cupcakes.
I have this question on my session rn
have a great day
-Chilly
a 24-ft. hallway is just 8in on the blueprint. what is the scale?
1 inch is to 3 feet
1 in. : 3 ft.
Let f(x) = 7x^2-5x+3 and g(x) = 2x^2+4x-6
Part A: f(x)+g(x)
Part B:f(x)-g(x)
Part C: g(x)-f(x)
***I need to find the simplfied answer, when everything is combinded
Answer:
[tex]\large\boxed{A.\ f(x)+g(x)=9x^2-x-3}\\\boxed{B.\ f(x)-g(x)=5x^2-9x+9}\\\boxed{g(x)-f(x)=-5x^2+9x-9}[/tex]
Step-by-step explanation:
[tex]f(x)=7x^2-5x+3,\ g(x)=2x^2+4x-6\\\\A:\\f(x)+g(x)=(7x^2-5x+3)+(2x^2+4x-6)\\f(x)+g(x)=7x^2-5x+3+2x^2+4x-6\qquad\text{combine like terms}\\f(x)+g(x)=(7x^2+2x^2)+(-5x+4x)+(3-6)\\f(x)+g(x)=9x^2-x-3[/tex]
[tex]B:\\f(x)-g(x)=(7x^2-5x+3)-(2x^2+4x-6)\\f(x)+g(x)=7x^2-5x+3-2x^2-4x+6\qquad\text{combine like terms}\\f(x)-g(x)=(7x^2-2x^2)+(-5x-4x)+(3+6)\\f(x)+g(x)=5x^2-9x+9[/tex]
[tex]C:\\g(x)-f(x)=(2x^2+4x-6)-(7x^2-5x+3)\\g(x)-f(x)=2x^2+4x-6-7x^2+5x-3\qquad\text{combine like terms}\\g(x)-f(x)=(2x^2-7x^2)+(4x+5x)+(-6-3)\\g(x)-f(x)=-5x^2+9x-9[/tex]
lenear programming equation
Answer: Its where the variable functions matches an output, for example *(modelvariable)=(output((x))
Step-by-step explanation:
Answer:
Linear programming
Linear programming is a method to achieve the best outcome in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming.
Step-by-step explanation:
I need help with 25-46 Can someone please help me with any of them or all? 50 POINTS
Answer:
firs
Step-by-step explanation:
Brice and Thomas are reading the same book. The graph shows the number of pages that Brice read in a week. The equation y = 21x + 33 shows the number of pages that Thomas read in a week with y representing the number of pages and x representing the number of days.
Which statements about the reading of the two boys are true?
Select each correct answer.
A. Thomas is reading at a faster rate than Brice.
B. Brice started the week with more pages read than Thomas.
C. Brice reads 33 pages each day.
D. Thomas reads 20 pages each day.
Answer:
A
Step-by-step explanation:
thomas read faster than brice!!! wheres the graph btw?
The correct statement of the given ones is that Thomas is reading at a faster rate than Brice.
What is the general equation of straight line? What is a mathematical function, equation and expression?straight line : The general equation of a straight line is -[y] = mx + c
function : In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function.expression : A mathematical expression is made up of terms (constants and variables) separated by mathematical operators.equation : A mathematical equation is used to equate two expressions.Given are Brice and Thomas who are reading the same book. The graph
shows the number of pages that Brice read in a week and the equation
y = 21x + 33 shows the number of pages that Thomas read in a week.
The given equation for Thomas that shows the number of pages that Thomas read in a week is -
y = 21x + 33
The slope of the line is -
m = 21
Thomas is reading 21 pages per week.
For the graph of Brice, it passes through the points (0, 43) and (6, 163). So, we can find the slope as -
m = (163 - 43)/(6 - 0)
m = 120/6
m = 20
Brice is reading 20 pages per week.
Therefore, the correct statement of the given ones is that Thomas is reading at a faster rate than Brice.
To solve more questions on functions, expressions and polynomials, visit the link below -
brainly.com/question/17421223
#SPJ3
{Complete question -
Brice and Thomas are reading the same book. The graph shows the number of pages that Brice read in a week. Graph in the coordinate plane with title pages read by Brice. Vertical axis goes from 0 to 250 in increments of 10 and is labeled number of pages read. Horizontal axis goes from 0 to 7 in increments of 1 and is labeled time in days. A ray on the graph starts at point begin ordered pair 0 comma 43 end ordered pair and goes through point begin ordered pair 6 comma 163 end ordered pair.
The equation y = 21x + 33 shows the number of pages that Thomas read in a week with y representing the number of pages and x representing the number of days.
Which statements about the reading of the two boys are true?
Select each correct answer.
Thomas reads 20 pages each day.
Thomas is reading at a faster rate than Brice.
Brice reads 33 pages each day.
Brice started the week with more pages read than Thomas.}
Quadrilateral LMNP has sides measuring 16,28,12 and 32 what could be the side lengths of a dilation of LMNP
The side lengths of a dilation of quadrilateral LMNP can be determined by multiplying the original side lengths by the dilation scale factor. For example, a scale factor of 2 would double the side lengths, resulting in a dilated quadrilateral with doubled dimensions.
Explanation:The question asks about the side lengths of a dilation of quadrilateral LMNP with original sides measuring 16, 28, 12, and 32. In mathematics, a dilation is a transformation that produces an image that is the same shape as the original, but is a different size. The scale factor of the dilation determines how much larger or smaller the dilated figure will be compared to the original.
For example, if a quadrilateral LMNP is dilated by a scale factor of 2, all side lengths would be twice as long as the original. Therefore, the dilated quadrilateral would have sides of 32 (16×2), 56 (28×2), 24 (12×2), and 64 (32×2). Conversely, if the dilation scale factor is 0.5, the sides would be half as long, resulting in lengths of 8, 14, 6, and 16 respectively.
To determine the side lengths of a dilated version of LMNP, simply multiply each of the original side lengths by the dilation scale factor. This property of similarity due to dilation applies to any polygon, maintaining the shape but altering the size proportionally in all dimensions.