Answer:
To cancel a term, it is necessary to add the opposite of the term to both sides of the equation
Step-by-step explanation:
Adding opposites creates a sum of zero. Zero added to anything else does not change the its value. So, adding the opposite of a term effectively removes it from (that side of) the equation.
Please help me out!!!!!!!!
The probability that an item is either Large or Blue, [tex]\( P(\text{Large or Blue}) \)[/tex], is 0.7 after simplification.
To find the probability [tex]\( P(\text{Large or Blue}) \)[/tex], we will use the principle of inclusion-exclusion. The formula for two events A and B is:
[tex]\[ P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \][/tex]
Let's define our events as:
- A = The event that an item is Large.
- B = The event that an item is Blue.
Looking at the table:
- The probability that an item is Large, [tex]\( P(\text{Large}) \)[/tex], is the sum of all Large items divided by the total number of items.
- The probability that an item is Blue, [tex]\( P(\text{Blue}) \)[/tex], is the sum of all Blue items divided by the total number of items.
- The probability that an item is both Large and Blue, [tex]\( P(\text{Large and Blue}) \)[/tex], is the number of items that are both Large and Blue divided by the total number of items.
From the table:
There are [tex]\( 17 + 8 = 25 \)[/tex] Large items.There are [tex]\( 17 + 3 = 20 \)[/tex] Blue items.There are [tex]\( 17 \)[/tex] items that are both Large and Blue.The total number of items is [tex]\( 17 + 3 + 8 + 12 = 40 \)[/tex].Now we can calculate the probabilities:
[tex]\[ P(\text{Large}) = \frac{25}{40} \][/tex]
[tex]\[ P(\text{Blue}) = \frac{20}{40} \][/tex]
[tex]\[ P(\text{Large and Blue}) = \frac{17}{40} \][/tex]
Using the inclusion-exclusion principle:
[tex]\[ P(\text{Large or Blue}) = P(\text{Large}) + P(\text{Blue}) - P(\text{Large and Blue}) \][/tex]
Let's do the calculations.
The probability of an item being Large or Blue is [tex]\( P(\text{Large or Blue}) = 0.7 \)[/tex], which is already in its simplest form.
A jet travels 430 miles in 5 hours. At this rate, how far could the jet fly in 9 hours? What is the rate of speed of the jet?
Answer:
430/5*9 = 774 miles
Step-by-step explanation:
Find the height of the tree if it casts a 28 foot shadow and the 6 foot 3 inch man casts a 7 foot shadow.
Answer:
25 ft
Step-by-step explanation:
The tree's shadow is 4 times the length of the man's shadow, so we presume the tree is 4 times the height of the man: 4 × (6 ft 3 in) = (24 ft 12 in) = 25 ft.
Find the value of y. Round your answer to the nearest tenth
ANSWER
9.6
EXPLANATION
The given trigonometric equation is:
[tex] \cos(21 \degree) = \frac{9}{y} [/tex]
We want to find y, so we multiply both sides by y to get,
[tex]y\cos(21 \degree) = \frac{9}{y} \times y[/tex]
Cancel out the common factors,
.
[tex]y\cos(21 \degree) = 9[/tex]
. Divide both sides by cos(21°)
[tex]y= \frac{9}{\cos(21 \degree)} [/tex]
[tex]y = 9.64[/tex]
To the nearest tenth, y=9.6
Factor the expression. 9b2 – 25
Answer: (3b + 5)(3b - 5)
Because both terms, 9b² and 25, are perfect squares, you can factor by taking the square roots of both terms.
The square root of 9b² is 3b (3b × 3b = 9b²).
The square root of 25 is 5 (5 × 5 = 25).
9b² - 25 has a negative, so the factored expression would be
(3b + 5)(3b - 5). The signs (+ and -) alternate in this case because the expression, 9b² - 25, has no middle term.
You can check your work by using FOIL. See the attachment below.
F irst
O utside
I nside
L ast
Answer:
(3b + 5)(3b - 5)
Step-by-step explanation:
(3b + 5)(3b - 5)
The triangles are similar. What is the value of x? Enter your answer in the box. X=
Answer:
x =16
Step-by-step explanation:
You can use Theorem Pythagoras method to solve this question.
The formula is a^2 + b^2 =c^2
In this question a=x , b=12, and c= 20
to find a which means x you should use this formula : c^2 - b^2=20^2-12^2
= 400 - 144
=√256
=16
You also can use another method by using the second diagram.
In that diagram you have to know that 12÷3 is 4, 20÷5 is 4, hence x÷4 is 4
so , x=16.
I hope this two ways for answering this question will be helpful for you.
Answer:
x = 16
Step-by-step explanation:
Since the triangles are similar then the ratios of corresponding sides are equal, that is
[tex]\frac{x}{4}[/tex] = [tex]\frac{20}{5}[/tex] ( cross- multiply )
5x = 4 × 20 = 80 ( divide both sides by 5 )
x = 16
Working together, it takes two computer 15 minutes to send out a company's email. If it takes the slower computer 45 minutes to do the job on its own, how long will it take the faster computer to do the job on its own?
It will take them 30 minutes
The faster computer will take approximately 22.5 minutes to do the job on its own.
Explanation:Let's assume that the faster computer can complete the job on its own in x minutes.
If the slower computer takes 45 minutes to complete the job on its own, it means that in 1 minute it completes 1/45th of the job.
Working together, the two computers can complete the entire job in 15 minutes. So in 1 minute, they can complete 1/15th of the job.
Therefore, 1/45 + 1/x = 1/15
Simplifying the equation, we get 1/x = 1/15 - 1/45
Substituting the numerator values with a common denominator, 1/x = (3/45) - (1/45) = 2/45
Now, solving for x, we get x = 45/2 = 22.5
So, it will take the faster computer approximately 22.5 minutes to do the job on its own.
Learn more about Working together to complete a task here:https://brainly.com/question/34743654
#SPJ3
98 POINTS!!!!! The two cones are congruent.
Determine the unknown measures of the cones.
A = ___ units
B = ___ units
C = ___ units
D = ___ units3
Congruent means they are the same. Match the letter with the corresponding dimension on the other cone.
A = 6.2/2 = 3.1 units
B = 4.2 units
C = 5.2 units
D = 42 units^3
The unknown measures of the cones are A = 3.1, B = 4.2, C = 5.22 and D = 42 units³
What are congruent figures?
Two figures are said to be congruent if they have the same shape and the their corresponding sides are the same.
Given that both cones are congruent. Hence:
A = 6.2 / 2 = 3.1
B = 4.2
Using Pythagoras:
C² = A² + B²
C² = 3.1² + 4.2²
C = 5.22
D = 42 units³
The unknown measures of the cones are A = 3.1, B = 4.2, C = 5.22 and D = 42 units³
Find out more on congruent figures at: https://brainly.com/question/2938476
Identify m∠JKL, given that JK is a tangent line. HELP PLEASE!!
Answer:
The measure of angle JKL is m∠JKL=35°
Step-by-step explanation:
step 1
Find the measure of the arc KL
we know that
arc KL+arc KN+arc NL=360° ----> by complete circle
arc KL+150°+140°=360°
arc KL=360°-290°=70°
step 2
Find the measure of angle JKL
we know that
The inscribed angle is half that of the arc it comprises.
so
m∠JKL=(1/2)[arc KL]
substitute
m∠JKL=(1/2)[70°]=35°
Does anyone know the answers to this test???OFFERING LOTS PF POINTS. Just Incase the picture isn’t loading it’s the parametric functions test Part 1 in pre calculus.
Answer:
The correct choice is C
Step-by-step explanation:
The given curve is described by the parametric equations:
[tex]x=4-t[/tex]
[tex]y=t^2-2[/tex]
Let us eliminate the parameter by making t the subject in the first equation and substitute into the second equation;
[tex]t=4-x[/tex]
We substitute this into the second equation to get:
[tex]y=(4-x)^2-2[/tex]
This is the equation of a parabola whose vertex is at (4,-2)
The correct choice is C
A storage compartment for a gym locker room can hold up to 7 folded towels. There are 22 compartements for towels. Katie has 150 towels to fold and put away. How many of the compartments will be filled? How many towels will be in a compartment that is not completely filled.
The 21 compartments will be fully filled and the last compartment will contain 3 towels.
The number of compartments that will be filled = total number of towels/ capacity of one compartment.
So we have 150 towels / 7 towels per compartment ≈ 21.43.
Since we can't have a fraction of a compartment, this means that 21 compartments will be fully filled.
The remaining towels can be found = the total number of towels - the number of towels that fit into the full compartments
Total no. of towels that fit into all compartments = 21 compartments × 7 towels each = 147 towels.
Therefore, we have 150 - 147 = 3 towels left, which will be in the compartment that is not completely filled.
There are 21 compartments filled with towels, and in the 22nd compartment, there will be 3 towels.
Number of compartments filled: 21 compartments
Towels in a partially filled compartment: 6 towels
To calculate the number of compartments filled, we need to divide the total number of towels by the maximum number of towels each compartment can hold:
[tex]\( \text{Number of compartments filled} = \frac{\text{Total number of towels}}{\text{Maximum towels per compartment}} \)[/tex]
[tex]\( \text{Number of compartments filled} = \frac{150}{7} = 21.4285 \)[/tex]
Since we can't have a fraction of a compartment, we round down to the nearest whole number, which is 21.
To find out how many towels will be in a compartment that is not completely filled, we subtract the total number of towels already placed in filled compartments from the total number of towels:
[tex]\( \text{Remaining towels} = \text{Total number of towels} - (\text{Number of compartments filled} \times \text{Maximum towels per compartment}) \)[/tex]
[tex]\( \text{Remaining towels} = 150 - (21 \times 7) = 150 - 147 = 3 \)[/tex]
So, there are 21 compartments filled with towels, and in the 22nd compartment, there will be 3 towels.
Complete question
A storage compartment for a gym locker room can hold up to 7 folded towels. There are 22 compartments for towels. Katie has 150 towels to fold and put away. How many of the compartments will be filled? How many towels will be in a compartment that is not completely filled?
HELP QUICK GIVING 50 POINTS!!!
The volume of a square prism is 64 cubic centimeters. What is the volume of a triangular pyramid with the same base area and height as the square prism? 64 cubic centimeters cubic centimeters 32 cubic centimeters
Answer:
64/3 cc or 64/3 cm³
Step-by-step explanation:
The formula for the volume of a triangular pyramid is
V = (1/3)(area of base)(height)
Here we have a square prism (actually, a cube), whose square base is 4 cm by 4 cm (4 cm is the cube root of 64 cc). The height of this cube is also 4 cm.
The volume of a triangular pyramid of base area (4 cm)² and height 4 cm is
V = (1/3)(base area)(height)
= (1/3)(16 cm²)(4 cm) = 64/3 cc
Answer:
64/3 cc or 64/3 cm³
Step-by-step explanation:
Need help with this please.
Choose the correct answers for (a) the total installment price, (b) the carrying charges, and (c) the number of months needed to save the money at the monthly rate to buy the item for its cash price a TV with a cash price of $600 at $59.00 per month for 12 months
A. the choices are
708.00
698.00
688.00
B. the choices are
88.00
108.00
98.00
C. the choices are
10
11
9
Answer:
a) 708.00
b) 108.00
c) 11
Step-by-step explanation:
a) The cost is $59 for each of 12 months, so the total cost is ...
12×$59 = $708
__
b) The "carrying charges" are the difference between what is paid and the cash price:
$708 -600 = $108
__
c) Saving at the rate of $59 per month, it will take ...
$600/($59/mo) ≈ 10.17 mo
to save the money. The amount saved will be $590, or $10 short of the required amount after 10 months, so it will take 11 months to save enough for the cash purchase.
Answer:
a) 708.00
b) 108.00
c) 11
Step-by-step explanation:
in the diagram below, O is circumscribed about quadrilateral ABCD. what is the value of x?
Answer:
(D)[tex]x=104^{\circ}[/tex]
Step-by-step explanation:
Given: It is given that circle O is circumscribed about quadrilateral ABCD such that ∠ABC=91° and ∠ADC=x-15°.
To find: the value of x.
Solution: It is given that circle O is circumscribed about quadrilateral ABCD such that ∠ABC=91° and ∠ADC=x-15°.
We know that the sum of opposite angles of the cyclic quadrilateral is 180°, therefore
[tex]{\angle}ABC+{\angle}ADC=180^{\circ}[/tex]
Substituting the given values, we have
[tex]91^{\circ}+x-15^{\circ}=180^{\circ}[/tex]
[tex]x+76^{\circ}=180^{\circ}[/tex]
[tex]x=104^{\circ}[/tex]
thus, the value of x is [tex]104^{\circ}[/tex].
Hence, option D is correct.
Answer:
the answer is 104 i just took quiz 6.11.3
Step-by-step explanation:
A ball is thrown upward from the top of a building. The function below shows the height of the ball in relation to sea level, f(t), in feet, at different times, t, in seconds:
f(t) = −16t2 + 48t + 160
The average rate of change of f(t) from t = 3 seconds to t = 5 seconds is _____ feet per second.
Answer:
The average rate of change of f(t) from t = 3 seconds to t = 5 seconds is -80 feet per second.
Step-by-step explanation:
The function that models the height of the ball is:
[tex]f(t)=-16t^2+48t=160[/tex]
At t=3, [tex]f(3)=-16(3)^2+48(3)+160=160[/tex]
At t=5, [tex]f(5)=-16(5)^2+48(5)+160=0[/tex]
The average rate of change is simply the slope of the secant line connecting.
[tex](3,f(3))[/tex] and [tex](5,f(5))[/tex].
The average rate of change
[tex]=\frac{f(3)-f(5)}{3-5}[/tex]
[tex]=\frac{160-0}{-2}[/tex]
[tex]=-80fts^{-1}[/tex]
please help!!!!!!!!
9a^2b^4/3a^3b^-3
Answer:
3a5b
Step-by-step explanation:
Answer:
3a5b
Step-by-step explanation:
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
A population of bacteria is growing according to the exponential model P = 100e(.70)t, where P is the number of colonies and t is measured in hours. After how many hours will 300 colonies be present? [Round answer to the nearest tenth.]
Answer: B) 1.6
Step-by-step explanation:
[tex]P=100e^{0.70t}\\\\\underline{\text{Substitute P = 300:}}\\300=100e^{0.70t}\\\\\\\underline{\text{Divide both sides by 100:}}\\3=e^{0.70t}\\\\\\\underline{\text{Apply ln to both sides:}}\\ln\ 3=ln\ e^{0.70t}\\\\\\\underline{\text{ln e cancels out:}}\\ln\ 3=0.70t\\\\\\\underline{\text{Divide both sides by 0.70:}}\\\dfrac{ln\ 3}{0.70}=t\\\\\\\underline{\text{Evaluate using a calculator:}}\\1.569=t[/tex]
Hank is taking a walking tour of a park. The route he takes is shown on the map above. How far is the fountain from the entrance? Note: picture not drawn to scale.
A) 0.20 mi
B) 0.40 mi
C) 0.45 mi
D) 0.63 mi
Answer: B) 0.40 mi
Step-by-step explanation:
Using the Pythagorean Theorem.
A squared + B squared = C squared.
A = leg B = leg C = hypotenuse
A = 0.3 B = ? C = 0.7
0.3 squared x ? squared = 0.7 squared
Answer:
on usatestprep its 0.63
Step-by-step explanation:
Find the length of side c in the right triangle below. Round to the nearest tenth if necessary.
A) 4.9
B) 13
C) 14
D) 1669
Answer:
13
Step-by-step explanation:
You need to use the Pythagorean theorem. Which is a^2+b^2=c^2
so 5^2+12^2
which simplifies to 25+144=c^2
then it simplifies to 169=c^2
Now you take the square root
c=sqrt(169)
c=13
For this case we have that by definition, the Pythagorean theorem states that:
[tex]c = \sqrt {a ^ 2 + b ^ 2}[/tex]
Where:
c: It is the hypotenuse
a, b: Are the legs
Substituting the values of the figure:
[tex]c = \sqrt {5 ^ 2 + 12 ^ 2}\\c = \sqrt {25 + 144}\\c = \sqrt {169}\\c = 13[/tex]
Thus, the value of the hypotenuse is 13.
Answer:
13
Option B
Complete the equation of the line through (-1,6) and (7,-2)
Use exact numbers.
See attachment for solution steps and answer.
The slope of the line through the points (-1,6) and (7,-2) is -1. Substitute this and one of the points into the point-slope form, 'y - y1 = m (x - x1)', to get the equation of the line. The final equation is y = -x + 5.
Explanation:To complete the equation of the line through points (-1,6) and (7,-2), we first need to find the slope (m) of the line using the formula m=(y2-y1)/(x2-x1). Here, (-1,6) is (x1,y1) and (7,-2) is (x2,y2). When we substitute these values in, we get m=(-2-6)/(7-(-1)), which simplifies to m=-8/8 or m=-1.
Now, you can use the point-slope form of a line, which is y - y1 = m (x - x1). You can use either of the points given, but let's use (-1,6). The equation then becomes y - 6 = -1(x - (-1)). To simplify, this becomes y - 6 = -x - 1. If you add 6 to both sides, the final equation of the line is y = -x + 5.
Learn more about Equation of a Line here:https://brainly.com/question/21511618
#SPJ2
Harry took a loan from the bank.
D(t)D(t)D, left parenthesis, t, right parenthesis models Harry's remaining debt (in dollars) as a function of time ttt (in months).
D(t)=-200t+9000D(t)=−200t+9000D, left parenthesis, t, right parenthesis, equals, minus, 200, t, plus, 9000
What was the size of Harry's loan?
Answer:
The size of Harry's loan is $9000.
Step-by-step explanation:
D(t) models Harry's remaining debt, in dollars, as a function of time t, in months that is given by :
[tex]D(t) =-200t+ 9000[/tex]
We can see 200 is in negative that means it is getting deducted from the function. So, Harry must be paying this each month against his loan.
Lets put t = 0, that shows no payments have been made.
This will get the amount of loan, before any payments.
[tex]D(t)=-200(0)+9000[/tex]
So,[tex]D(t) =9000[/tex]
Hence, the size of Harry's loan is $9000.
Answer:
$200
Step-by-step explanation:
I got $9000 wrong on Khan and $200 right
plz help! i will give brainliest to the correct answer!
Answer:
It is B because this triangle Q and R are congruent
Step-by-step explanation:
Answer:
B. 68
Step-by-step explanation:
Because the side lengths PQ and PR both equal 5 and are congruent, the angles opposite them (angle Q and angle R) are also congruent to each other.
Angle Q is 68, so angle R is also 68.
The slope of line l is 3/4 . Line m is perpendicular to line l.
What is the slope of line m?
A.
4 over 3
B.
-3 over 4
C.
- 4 over 3
D.
3 over 4
Final answer:
The slope of a line perpendicular to a line with slope 3/4 is -4/3. This follows from the principle that slopes of perpendicular lines are negative reciprocals of each other.
Explanation:
The question pertains to finding the slope of a line that is perpendicular to another line with a given slope. Given that the slope (m) of line l is 3/4, let's find the slope of line m which is perpendicular to l. In algebra, the slope of perpendicular lines are negative reciprocals of each other. This means that to find the slope of m, you take the negative reciprocal of 3/4, which is -4/3.
Thus, the correct answer is C. - 4 over 3.
The back to back stem and leaf plot below show exam scores from two different two different math classes. Which class has a greater mean score ? Which class has a greater median score?
Class A Class B
12 4 2
168 5 4
5779 6 16
66789 7 2566
12 8 00489
1 9 3567
Answer:
what
Step-by-step explanation:
Answer:
B. greater mean = class B greater median = class B
Step-by-step explanation:
By what percent will a fraction decrease if its numerator is decreased by 50% and its denominator is decreased by 25%?
Answer:
The fraction will decrease [tex]33.33\%[/tex]
Step-by-step explanation:
Let
x/y ----> the fraction
we know that
100%-50^=50%=50/100=0.50
100%-25%=75%=75/100=0.75
substitute
[tex]\frac{x}{y}*\frac{0.50}{0.75} =\frac{2}{3}(\frac{x}{y})[/tex]
therefore
The percent that the fraction will decrease is equal to
[tex](1-\frac{2}{3})*100=33.33\%[/tex]
Drag and drop an answer to each box to correctly explain the derivation of the formula for the volume of a pyramid.
A prism is rectangular shaped,. a pyramid is triangular shaped.
The ratio would be 1 to 3
The formula for the pyramid is V = 1/3Bh
What is the cube root of 27a12
Answer:
[tex]3a^4[/tex]
Step-by-step explanation:
Given expression is [tex]27a^{12}[/tex].
Now we need to find the cube root of given expression [tex]27a^{12}[/tex].
[tex]\sqrt[3]{27a^{12}}[/tex]
[tex]=\sqrt[3]{3*3*3a^{4*3}}[/tex]
[tex]=\sqrt[3]{3^3\left(a^4\right)^3}[/tex]
[tex]=\sqrt[3]{\left(3a^4\right)^3}[/tex]
Since cube root and cube are opposite operations of each other. So they will cancel each other.
[tex]=3a^4[/tex]
Hence correct choice is the last choice [tex]3a^4[/tex].
Find the value of x. round the length to the nearest tenth.
HELP! Urgent!
Answer:
(10 yd) ............=x.....
The function y=ln(x+3)-6 has been shifted left three units and down 5 units .... (Please help my math project is due tommrow)
Answer:
y = ln( x + 6 ) - 11
h = 6
k = -11
h + k = -5
Step-by-step explanation:
Horizontal shift changes whats inside the brackets, in other words, changes just the x-value.If the shift is right, the number should be subtracted, if the shift is left, the number should be added.
Vertical shift changes the equation as a whole.if the shift is up, the number of should be added.If the shift is down, the number should be subtracted.
The changes given to us are 3 units left ( horizontal translation ) and 5 units down ( vertical translation )
If we rewrite the equation, we have:
y = ln( x + 3 + 3 ) - 6 - 5
y = ln( x + 6 ) - 11
Which step of the equation is invalid?
I am pretty sure it’s step one