Three identical springs each have the same spring constant k. if these three springs are attached end to end forming a spring three times the length of one of the original springs, what will be the spring constant of the combination?

Answers

Answer 1
Final answer:

The spring constant of the combination can be calculated using the formula: k_comb = (k1 + k2 + k3) / L, where k1, k2, and k3 are the spring constants of the individual springs, and L is the length of the combined spring.

Explanation:

The spring constant of the combination can be calculated using the formula:

kcomb = (k1 + k2 + k3) / L

Where k1, k2, and k3 are the spring constants of the individual springs, and L is the length of the combined spring. In this case, since the combined spring is three times the length of one of the original springs, L = 3L1. Substituting this value into the formula gives:

kcomb = (k1 + k2 + k3) / 3L1


Related Questions

How can density be determined in a lab of a rectangular solid?

Answers

We will first record its mass and then its volume by measuring its dimensions
then divide mass by volume and will get density of regular solid

Final answer:

The density of a rectangular solid can be determined in a lab by finding the mass and volume of the object and dividing them. The mass is measured using an analytical balance, and the volume is calculated from the geometric parameters.

Explanation:

The density of a rectangular solid can be determined in a lab by separately finding the mass and volume of the object and then dividing the mass by the volume. The mass can be measured using an analytical balance, while the volume can be calculated from the geometric parameters. For example, the volume of a rectangle is equal to length x width x height, and the volume of a cube is equal to the edge length cubed.

Let's say we have a rectangular solid with a length of 10 cm, a width of 5 cm, and a height of 2 cm. To determine the density of this solid, we would first measure its mass using an analytical balance. Let's assume the mass is 100 grams. Next, we would calculate the volume of the rectangular solid by multiplying its length, width, and height together: 10 cm x 5 cm x 2 cm = 100 cm³. Finally, we would divide the mass by the volume to find the density: 100 g / 100 cm³ = 1 g/cm³.

how do mold fossils form?

Answers

Fossils also form from molds and casts. If an organism completely dissolves in sedimentary rock, it can leave an impression of its exterior in the rock, called an external mold. If that mold gets filled with other minerals, it becomes a cast.

On the water simulation, what does the crest (peak) of the wave look like in the top view? what does the trough look like?

Answers

On the water simulation, the crest (peak) of the wave look likes a plateau, a flat line and then going down. A vivid example is when a motorboat passes by, you that represent a particle in water will tend to move up and down in the place you are located. The motorboat creates ripples or vibrations within the water, and when you move up and down, you are creating crests of waves shown as vibrations in water.

 

Galileo dropped a light rock and a heavy rock from the leaning tower of pisa, which is about 55 m high. suppose that galileo dropped one rock 0.50 s before the second rock.with what initial velocity should he drop the second rock so that it reaches the ground at the same time as the first rock?

Answers

Final answer:

Galileo most likely used a water clock or a pendulum clock to measure the time objects took to hit the ground. The mass of the objects does not affect the time it takes for them to fall. On the Moon, the time it takes for objects to hit the ground would be different, but the ratio of their times would remain the same.

Explanation:

When Galileo conducted his experiment of dropping two objects of different masses from the Tower of Pisa, he most likely used a water clock or a pendulum clock to measure the time it took for each object to reach the ground. Although stopwatches weren't available at that time, water clocks and pendulum clocks were commonly used as timekeeping devices.

If the objects were the same size but had different masses, Galileo should have observed that both objects hit the ground at the same time. This is because, in the absence of air friction, all objects experience the same acceleration due to gravity. Hence, the difference in mass does not affect the time it takes for an object to fall.

If the experiment were done on the Moon, where the acceleration due to gravity is approximately one-sixth of that on Earth, the time it takes for the objects to hit the ground would be different. However, the ratio of their times would remain the same, meaning that the second rock would still need to be dropped 0.50 s after the first rock to hit the ground simultaneously.

A manufacturer claims its cleanser works twice as fast as any other. Could test be performed to support the claim? Explain

Answers

Yes, a test could be performed to support the claim.

 

Hypothesis: The claim that a manufacturer’s cleanser works twice as fast as any other cleanser.

 

So, based from this hypothesis, we can perform the following tests:

We assign Cleanser A to the manufacturer that claims that their cleanser works twice as fast as any other cleanser and Cleanser B to the cleanser to be compared with.

 

1.       Get two tiles and put the same amount of stain on them.

2.       Apply Cleanser A on the first tile and Cleanser B on the second tile.

3.       Apply the same amount of force in removing the stains on both tiles

4.       Record the amount of time it takes to remove the stains on each tile.

The crew of an enemy spacecraft attempts to escape from your spacecraft by moving away from you at 0.259 of the speed of light. but all is not lost! you launch a space torpedo toward the foe at 0.349 of the speed of light with respect to you. at what speed in kilometers per second does the enemy crew observe the torpedo approaching its spacecraft?

Answers

Final answer:

The enemy crew observes the torpedo approaching its spacecraft at a speed of 0.55c or 165,000 kilometers per second.

Explanation:

To determine the speed at which the enemy crew observes the torpedo approaching its spacecraft, we need to use relativistic velocity addition. In this case, the velocity of the torpedo as observed by the enemy crew can be calculated by adding the velocities of the torpedo with respect to you and the velocity of the enemy crew's spacecraft with respect to you. Using the formula for relativistic velocity addition, the velocity of the torpedo as observed by the enemy crew is:



v_t &= (v_{torpedo} + v_{enemy}) / (1 + v_{torpedo} * v_{enemy} / c^2)



where v_t is the velocity of the torpedo as observed by the enemy crew, v_{torpedo} is the velocity of the torpedo with respect to you (0.349c), v_{enemy} is the velocity of the enemy crew's spacecraft with respect to you (0.259c), and c is the speed of light. Plugging in the values, we have:



v_t &= (0.349 * c + 0.259 * c) / (1 + 0.349 * 0.259)



Simplifying the expression, we find that the velocity of the torpedo as observed by the enemy crew is approximately 0.55c or 165,000 kilometers per second.

Learn more about relativistic velocity addition here:

https://brainly.com/question/34180662

#SPJ12

The enemy crew observes the torpedo approaching at approximately 29,658 km/s. This calculation uses the relativistic velocity addition formula and accounts for the relative velocities of the spacecraft and the torpedo.

This problem involves the concept of relative velocity in special relativity. We will use the relativistic velocity addition formula to find the speed of the torpedo as observed by the enemy spacecraft:

Relativistic velocity addition formula:

u' = (u + v) / (1 + uv/c²)

Here:

u = 0.349c (speed of the torpedo relative to your spacecraft)

v = -0.259c (speed of the enemy spacecraft relative to your spacecraft; negative because it's moving away)

c = speed of light

Substituting the values into the formula:

u' = (0.349c - 0.259c) / (1 - (0.349 × 0.259))

u' = (0.090c) / (1 - 0.090491)

u' ≈ 0.09886c

Therefore, the enemy crew observes the torpedo approaching at approximately 0.09886 times the speed of light. To convert this to kilometers per second (km/s):

c ≈ 300,000 km/s

u' ≈ 0.09886 × 300,000 km/s ≈ 29,658 km/s

The enemy crew observes the torpedo approaching at approximately 29,658 km/s.

The Pilot of a plane measures an air velocity of 165Km/h south relative to the plane. An observer on
the ground sees the plane pass overhead at a velocity of 145 Km/h toward the north. What is the
velocity of the wind that is affecting the plane relative to the observer?

Answers

The speed obtained by the pilot is not accurate since it is measuring the rate of travel in the wind, true velocity is that compared to the ground. Therefore the speed of the wind is:

v wind = 165 - 145

v wind = 20 km/h

Therefore the wind velocity = 20 km/h against the plane.

The wind velocity affecting the plane relative to the observer is 310 km/h toward the north. This is determined by vector addition of air velocity of the plane relative to the plane and ground velocity of the plane relative to the observer.

To determine the velocity of the wind affecting the plane relative to the observer, we can use vector addition.

Given:

Air velocity of the plane relative to the plane [tex]v_{ap}[/tex] is 165 km/h south.Ground velocity of the plane relative to the observer [tex]v_{pg}[/tex] is 145 km/h north.

We need to find the wind velocity relative to the observer [tex]v_{wg}[/tex]. The relation can be expressed as:

[tex]v_{pg} = v_{ap} + v_{wg}[/tex]

Here, South and North are in opposite directions, so we can subtract these velocities and solve for vwg.

Let's assume south direction as negative and north as positive.

Calculation:

[tex]+145 km/h \text{(toward north)} = -165 km/h \text{(south)}+ v_{wg}[/tex]

Solving for [tex]v_{wg}:[/tex]

[tex]v_{wg} = 145 km/h + 165 km/h = 310 km/h[/tex]

Therefore, the velocity of the wind relative to the observer is 310 km/h toward the north.

A film with n = 1.60 is deposited on glass. what is the thinnest film that will produce constructive interference in the reflection of light with a wavelength of 510 nm ?

Answers

You are given a film with n = 1.60 that is deposited on glass. You are also given the wavelength of light that is 510nm. You are asked to find the thinnest film that will produce constructive interference in the reflection of light. To solve this, find the wavelength of the film and that is 510nm/1.62 = 314.815nm. Because there is constructive interference, there is a phase reversal on the reflection of the above surface and no reversal on the second surface reflection. Therefore, the light will traverse into the film thickness two times. 314.815nm/4 = 78.704nm.

Final answer:

The thinnest film that will produce constructive interference in the reflection of light with a wavelength of 510 nm for a film with a refractive index of 1.60 is 159.375 nm.

Explanation:

Thin Film Interference and Constructive Interference

To find the thinnest film that will produce constructive interference in the reflection of light with a wavelength of 510 nm for a film with n = 1.60, one can use the formula for constructive interference in thin films. The formula for the thinnest film thickness (t) for constructive interference, when light of wavelength λ in the film is incident normally, is given by:

t = (m λ) / (2n), where m is the order of the interference (m = 0, 1, 2, ...), λ is the wavelength of the light in vacuum, and n is the refractive index of the film.

For the first order of constructive interference (m=0), t should be minimum, so we use m = 0:

[tex]t = \frac{(0 \times 510 \ nm)}{(2 \times 1.60)} = 0 \ nm[/tex].

Since 0 nm doesn't represent a physical film, the next order (m=1) should be considered, so:

[tex]t = \frac{(1 \times 510 \ nm)}{(2 \times 1.60)} = 159.375 nm[/tex].

The minimum thickness for the first constructive interference is thus 159.375 nm.

A change in the average kinetic energy of the molecules of an object may best be detected by measuring a change in the object's

mass
speed
temperature
weight

Answers

average (thermal) kinetic energy is proportional to the temperature in kelvin

Answer:

temperature

Explanation:

The temperature of an object will automatically reflect the increase or decrease in the average kinetic energy of the molecules of the object, kinetic energy is related with the movement, but when the molecules of the object are moving and reflecting kinetic energy it is not necessary the case that that would be provoqued by the movement of the object so temperature would be the best way to measure the change in the molecules kinetic energy.

If you shine a beam of red light and a beam of green light on the same area of a screen, what color will you see on the screen?

Answers

At one end of the electromagnetic wave line, is the group o the visible spectrum. This is referred to as the visible light spectrum. The visible light with the shortest of the wavelength is the blue light and the one with the longest is the red light. 

The primary colors of the light spectrum are red, blue, and green. The combination of these colors will form other colors which are referred to as the secondary colors.

The combination of the beam of red light and the beam of green light will form yellow color. 

the color would be yellow..hope this helps :))

The element sulfur (S) is most likely to form covalent bonds with the element
A) Helium
B) Magnesium
C) Zinc
D) Oxygen

Answers

D. Oxygen, because an atom of oxygen usually forms only two covalent bonds. Primarily because is outermost orbital is larger than that of oxygen, sulfur can form as few as 2 covalent bonds, as in hydrogen sulfide, or as many as 6, as in sulfur trioxide, or sulfuric acid.

The element sulfur (S) is most likely to form covalent bonds with the oxygen element, therefore the correct answer is option D.

What is a Chemical compound?

A chemical compound is a combination of two or more either similar or dissimilar chemical elements

for example, H₂O is a chemical compound made up of two oxygen atoms and a single hydrogen atom

As given in the problem we have to find out which of the elements sulfur (S) is most likely to form covalent bonds,

Helium is an inert gas hence it can not form a covalent bond with sulfur.

Magnesium is an electropositive element and it would form an ionic bond with the sulfur, not a covalent bond.

Thus, the element sulfur (S) is most likely to form covalent bonds with the oxygen element, therefore the correct answer is option D.

To learn more about a chemical compound, refer to the link given below ;

brainly.com/question/12166462

#SPJ6

Gaussian surfaces a and b enclose the same positive point charge. the area of surface a is two times larger than that of surface

b. how does the total electric flux through the two surfaces compare? gaussian surfaces a and b enclose the same positive point charge. the area of surface a is two times larger than that of surface

b. how does the total electric flux through the two surfaces compare? the total electric flux through surface a is four times larger than that through surface

b. the total electric flux through surface b is eight times larger than that through surface

a. the total electric flux through surface a is eight times larger than that through surface

b. the total electric flux through surface b is four times larger than that through surface

a. the total electric flux through the two surfaces is equal.

Answers

the total electric flux through the two surfaces is equal.

Gauss law! Flux is proportional to the interior charge, the shape of the closed surface or its size is irrelevant as far as it encloses the same charge.

According to the Gauss law, the electric flux through the closed surface is [tex]$\frac{1}{{{\varepsilon }_{0}}}$[/tex] times the charge enclosed by the surface.

[tex]$\Delta \phi =\frac{q}{{{\varepsilon }_{0}}}$[/tex]

Here, [tex]$\Delta \phi $[/tex] is the electric flux.

Gaussian surface a and b encloses the same positive point charges. So, the electric flux through surface a is four times larger than that through surface b is incorrect.

The total electric flux through surface b is eight times larger than that through surface a is incorrect because the electric flux is [tex]$\frac{1}{{{\varepsilon }_{0}}}$[/tex] times the total charge enclosed by the surface.  

As one is aware that the electric flux is independent of the area of the Gaussian surface.

The total electric flux through surface a is eight times larger than that through surface b is also incorrect because the electric flux is independent of the area of the Gaussian surface.

Explanation:

Electric flux is independent of the area of the Gaussian surface. Since the charges enclosed by the surfaces are equal, then the electric flux through the surface will be equal.

Therefore, the total electric flux through the two surfaces is equal.

Learn more:

https://brainly.com/question/14930311

A coil lies flat on a horizontal tabletop in a region where the magnetic field points straight down. the magnetic field disappears suddenly. when viewed from above, what is the direction of the induced current in this coil as the field disappears?

Answers

When viewed from above, the direction of the induced current in this coil as the field disappears would be clockwise. To know the direction of the induced current, we use the Lenz's law. It states that the direction of a current induced by a circuit that is due to the change in the magnetic field would be opposing the change in the flux. For this situation, the change in the flux is directed counterclockwise so that the direction of the current induced is clockwise. 

Final answer:

As the downward magnetic field disappears, an induced clockwise current is generated in the coil when viewed from above, creating an upward magnetic field according to Faraday's and Lenz's Laws.

Explanation:

When the magnetic field pointing straight down disappears suddenly, Faraday's Law of electromagnetic induction states that the changing magnetic field will induce an electric current in the coil. According to Lenz's Law, the direction of the induced current will be such that it opposes the change in the magnetic field. Therefore, the induced current will create a magnetic field that points upward to counteract the loss of the original downward field. Since the original magnetic field is directed down, the induced current will be in a direction that, from above, appears clockwise to produce an upward magnetic field.

The acceleration of a motorcycle is given by ax(t)=at−bt2, where a=1.50m/s3 and b=0.120m/s4. the motorcycle is at rest at the origin at time t=0. calculate the maximum velocity it attains.

Answers

From given information, the acceleration is
a(t) = 1.5t - 0.12t²  m/s²

Integrate to obtain the velocity.
v(t) = (1/2)*1.5t² - (1/3)*0.12t³ + c₁   
      = 0.75t² - 0.04t³ + c₁  m/s

Because v(0) = 0 (given), therefore c₁ = 0
The velocity is
v(t) = 0.75t² - 0.04t³  m/

The velocity is maximum when the acceleration is zero. That is,
t(1.5 - 0.12t) = 0
t = 0 or t = 1.5/.12 = 12.5 s
Reject t = 0 because it yields zero value.

The maximum velocity is
v(12.5) = 0.75*(12.5²) - 0.04*(12.5³) = 39.0625 m/s

Answer: The maximum velocity is 39.06 m/s (nearest hundredth)

The graph shown below displays the velocity.

The maximum velocity it attains is 39.1 m/s

Further explanation

The velocity is changing over the course of time. Velocity is the rate of motion in a specific direction. Whereas acceleration is the rate of change of velocity of an object with respect to time. Maximum velocity is reached when you stop accelerating, To calculate velocity using acceleration, we start by multiplying the acceleration by the change in time

The acceleration of a motorcycle:

where [tex]a = 1.50 \frac{m}{s^{3}}[/tex] and [tex]ax* (t) = at - b*t^{2}[/tex]

[tex]a = 0.120  \frac{m}{s^{4}}[/tex]

The motorcycle is at rest at the origin at time t=0.

The maximum velocity it attains = ?

Answer:

[tex]v(t) = (1/2)At^2 - (1/3)Bt^3 v(0)[/tex]

but v(0) = 0.

[tex]x(t) = (1/6)At^3 - (1/12)Bt^4 x(0)[/tex]

but x(0) = 0.

[tex]v(t) = (0.75 \frac{m}{s^{3}}) t^2 - (0.04 \frac{m}{s^{4}})t^3[/tex]

Next step is find its position as a function of time.

[tex]x(t)= x(t) = (0.25 \frac{m}{s^{3}})t^3 - (0.01 \frac{m}{s^{4}})t^4[/tex]

Then, calculate the maximum velocity it attains.

Max velocity will be attained when

[tex]At = Bt^2[/tex]

T= 1.50/0.120 = 12.5 seconds

V(t) = 0.750(12.5)^2 – 0.04(12.5)^3 = 39.1 m/s

Learn moreLearn more about the maximum velocity https://brainly.com/question/3889436

Answer details

Grade:  9

Subject:  physics

Chapter:  the maximum velocity

Keywords: the maximum velocity

Why does increasing the pressure of a gas usually increase reaction rate

Answers

ANSWER: Well increasing the pressure of a reacting gas increases the number of reactant particles that are in the same volume, Therefore there will be a greater chance of particles colliding and increases in the frequency of collisions and so that increases the rate of reaction.

EXPLANATION: More pressure means more gas; more gas means more particles react.

Answer:

It increases the number of collision

A projectile proton with a speed of 500 m/s collides elastically with a target proton initially at rest. the two protons thenmove along perpendicular paths, with the projectile path at 60 from the original direction. after the collision, what are the speedsof (a) the target proton and (b) the projectile proton

Answers

Because the two paths are perpendicular, therefore the target proton's new path must be at 30 degrees from the original direction. 

Using the law of conservation of momentum about the original direction: 
m (400 m/s) = m (v1) cos(60) + m (v2) cos(30) 
Cancelling m since the two protons have similar mass.
(v1)cos(60) + (v2)cos(30) = 500 m/s                         ---> 1

Now by using the law conservation of momentum perpendicular to the original direction: 
m (0 m/s) = m (v1) sin(60) – m (v2) sin(30) 
Which simplifies to:
(v1)sin(60) - (v2)sin(30) = 0 m/s                                
v2 = v1 * sin(60) / sin(30) = v1 * sqrt(3)                  ---> 2

Plugging equation 2 to equation 1: 
(v1) (1/2) + (v1 * sqrt(3)) sqrt(3)/2 = 500 m/s 
(1/2) (v1) + (3/2) (v1) = 500 m/s 
2 (v1) = 500 m/s 
v1 = 250 m/s 

Thus, from equation 2:

v2 = v1*sqrt(3) = (250 m/s) sqrt(3) = 433.01 m/s 


So,
A. The target proton's speed is about 433 m/s 
B. The projectile proton's speed is 250 m/s

Final answer:

The speed of the target proton and the projectile proton after the elastic collision are both 500 m/s.

Explanation:

For an elastic collision, the total kinetic energy before the collision is equal to the total kinetic energy after the collision.




To find the speed of the target proton, we can use the conservation of momentum. Since the projectile proton is moving at an angle of 60°, its initial momentum can be split into two perpendicular components: one along the target proton's path and one perpendicular to it. After the collision, the two protons move perpendicular to each other, so the initial component along the target proton's path remains unchanged. Therefore, the speed of the target proton is also 500 m/s.
To find the speed of the projectile proton after the collision, we can use the conservation of momentum along the target proton's path. Since the target proton is initially at rest, the total momentum before the collision is the momentum of the projectile proton. After the collision, the two protons move perpendicular to each other, so the initial momentum remains unchanged. Therefore, the speed of the projectile proton remains 500 m/s.

Given a maximum magnetic field gradient of 40 mt/m and magnetic field of 3t, how homogenous must the magnet be (in parts per million) to enable a spatial resolution of 1 mm to be acquired.

Answers

What's the actual question

Some fish have a density slightly less than that of water and must exert a force (swim) to stay submerged. what force (in n) must a 53.0 kg grouper exert to stay submerged in salt water if its body density is 1013 kg/m3?

Answers

To stay submerged in salt water, a 53.0 kg grouper with a body density of 1013 kg/m3 must exert a force of approximately 7.27 N. This is calculated using the principle of buoyancy to determine the buoyant force in relation to the grouper's weight.

The force a 53.0 kg grouper must exert to stay submerged in salt water with a body density of 1013 kg/m3 can be found by applying the principle of buoyancy (Archimedes' principle), which states that the buoyant force on a submerged object is equal to the weight of the fluid that is displaced by the object.

First, calculate the volume of the grouper. Since density ( ) equals mass (m) divided by volume (V), we have V = m / . For a 53.0 kg grouper with a density of 1013 kg/m³, the volume V would be 53.0 kg / 1013 kg/m³ = 0.05234 m³.

Next, calculate the weight of the volume of salt water displaced. The density of salt water is approximately 1027 kg/m3. The weight of the displaced water (Ww) is the product of its volume (V), its density ( water), and the acceleration due to gravity (g). So, Ww = V × water × g = 0.05234 m³ × 1027 kg/m³ × 9.81 m/s² = 527.3 N.

Finally, the force the grouper must exert to stay submerged (F) is the difference between the buoyant force and the grouper's weight. The weight of the grouper (Wg) is calculated as mass times gravitational acceleration, Wg = 53.0 kg ×9.81 m/s2 = 520.03 N. Thus, F = Ww - Wg = 527.3 N - 520.03 N = 7.27 N.

Therefore, a 53.0 kg grouper must exert a force of approximately 7.27 N to stay submerged in salt water.

The grouper must exert a force of approximately [tex]\( 516.88 \, \text{N} \)[/tex] to stay submerged in salt water.

To determine the force that the grouper must exert to stay submerged in salt water, we can use Archimedes' principle, which states that the buoyant force acting on an object submerged in a fluid is equal to the weight of the fluid displaced by the object.

The buoyant force [tex](\( F_b \))[/tex] can be calculated using the formula:

[tex]\[ F_b = V \times \rho_{\text{fluid}} \times g \][/tex]

Where:

[tex]\( V \)[/tex] is the volume of the object submerged in the fluid

[tex]\( \rho_{\text{fluid}} \)[/tex] is the density of the fluid

[tex]\( g \)[/tex] is the acceleration due to gravity

The weight of the grouper [tex](\( F_g \))[/tex] can be calculated using the formula:

[tex]\[ F_g = m \times g \][/tex]

For the grouper to stay submerged, the buoyant force must be equal to the weight of the grouper. Therefore:

[tex]\[ F_b = F_g \][/tex]

[tex]\[ V \times \rho_{\text{fluid}} \times g = m \times g \][/tex]

[tex]\[ V \times \rho_{\text{fluid}} = m \][/tex]

[tex]\[ V = \frac{m}{\rho_{\text{fluid}}} \][/tex]

Now, we can calculate the volume of the grouper submerged in the fluid:

[tex]\[ V = \frac{53.0 \, \text{kg}}{1013 \, \text{kg/m}^3} \][/tex]

[tex]\[ V = \frac{53.0 \, \text{kg}}{1013 \, \text{kg/m}^3} \][/tex]

[tex]\[ V = 0.05236 \, \text{m}^3 \][/tex]

Now, we can use this volume to calculate the buoyant force:

[tex]\[ F_b = V \times \rho_{\text{fluid}} \times g \][/tex]

[tex]\[ F_b = 0.05236 \, \text{m}^3 \times 1013 \, \text{kg/m}^3 \times 9.8 \, \text{m/s}^2 \][/tex]

[tex]\[ F_b = 516.88 \, \text{N} \][/tex]

Therefore, the grouper must exert a force of approximately [tex]\( 516.88 \, \text{N} \)[/tex] to stay submerged in salt water.

Which of tWhich of the following forms when ocean surface currents collide?he following forms when ocean surface currents collide?

Answers

Eddies are being formed when ocean surface currents collide with each other. An eddy in oceans is defined as a circular current of the waters. The ocean is constantly in motion, the flow or these movements are called as currents. When these currents would pinch off in a section, it would create a current that is circular in motion which is called as eddy. These structures are temporary however they could travel in long distances before they are completely gone. This motion along with currents and gyres are very important in the transport of water and heat in the ocean. Also, it helps in the mixing of the oceans.

12. The source of the sun's heat is

Answers

The sun's heat comes from nuclear fusion of hydrogen into helium. Light and heat are byproducts of the fusion.
Comes from nuclear fusion

Strontium has density of 2.64 g/cm3 and crystallizes with the face-centered cubic unit cell. part a calculate the radius of a strontium atom.

Answers

You are given the density of a strontium atom at 2.64 g/cm3 and crystallizes with the face-centered cubic unit cell. You are asked to find the radius of a strontium atom. Use the density equation where D = M/V. Of course, the M part, because it is focused on the atom part, is equivalent to ZM/A where Z is the number of atoms in a unit cell, M is the molecular weight of the atom and A is the Avogadro's constant. Because it is a face centered cubic cell, the volume would be a³.

In a face center cubic cell, there are 4 atoms. There are eight 1/8 at the corners and six 1/2 on the faces making it 4 atoms. Plugging in all the values to get the side of the cubic cell,

D = [ZM/A]/a³
2.64 grams /cm³ = [(4 atoms)(87.62 grams/mol) / (6.023 x 10²³ atoms/mole)] / a³
a³ = 2.205 x 10⁻²²
a = 6.041 x 10⁻⁸ cm

The relationship between the side of the cube and the radius of the cell is a/r = 2√2 where a is the side of the cube and r is the radius of the atom.

a/r = 2√2
6.041 x 10⁻⁸ cm/r = 2√2
r = 2.136 x 10⁻⁸ cm
Final answer:

The radius of a strontium atom can be calculated using its given density and the properties of its face-centered cubic unit cell. The mass and volume involved in computing for density pertain to the unit cell, with the atomic mass of strontium and Avogadro's number used to determine atomic mass in grams. The radius is indirectly determined through the side length of the cubic unit cell.

Explanation:

The question is asking for the radius of a strontium atom, given that the strontium atom crystallizes in a face-centered cubic unit cell and its density is provided. For the face-centered cubic unit cell, we can approximate that there are four atoms in the unit cell: one-eighth of an atom at each of the eight corners (8 × 1/8 = 1 atom) and one-half of an atom on each of the six faces (6 × 1/2 = 3 atoms).

The atomic mass of strontium (Sr) is approximately 87.62 g/mol. To calculate the radius, we know that density = mass/volume. The mass of strontium is given by the number of atoms per unit cell times the atomic mass of strontium (converted to grams using Avogadro's number), divided by the volume of one unit cell. The side length of the unit cell, 'a', is related to the radius of the strontium atom, 'r', by the equation a = √2 * 4r. By substituting the given density and calculating for 'r', we can determine the radius of the strontium atom.

Learn more about Atom Radius Calculation here:

https://brainly.com/question/13607061

#SPJ11

A soap film is illuminated by white light normal to its surface. the index of refraction of the film is 1.50. wavelengths of 480 nm and 800 nm and no wavelengths between are intensified in the reflected beam. the thickness of the film is:

Answers

Since the index of refraction of the film is larger than that of air (n = 1) there is an additional phase shift for the reflection in the soap film.

The formula for constructive interference is

2L = (m+ 0.5)λ/n

Where,

L = thickness of the film

m = order number

λ = wavelength

n = index of refraction = 1.50

Rewriting in terms of λ:

 λ = 3L/(m+ 0.5)

The information that λ = 800 nm and λ = 480 nm are consecutive maximum means that if λ = 800 nm refers to m, then λ = 480 nm refers to m + 1. Using the m dependence on λ, this implies that:

800 / (m + 1 + 0.5) = 480 / (m + 0.5)

800 (m + 0.5) = 480 (m + 1.5)

800 m + 400 = 480 m + 720

320 m = 320

m = 1

In other words for m = 1 and λ = 800 nm:

L = (m + 0.5)λ/3 = (1.5)*800/3 = 400 nm

Final answer:

The soap film is under constructive interference from the light. Given that the index of refraction of the film is n=1.5, the thinnest possible thickness of the film using the longest wavelength (800 nm) results in a film thickness of around 266.5 nm.

Explanation:

The phenomenon under study here is known as thin film interference. When light shines on a thin film like a soap bubble, some light is reflected from the top surface of the film, and some light is refracted and travels through the film and reflects off the bottom surface. These two rays of light can interfere constructively or destructively depending on the thickness of the film and the light's wavelength.

Given that only wavelengths of 480 nm and 800 nm are intensified, this indicates constructive interference - that is, the path difference between the two rays is a multiple of the wavelength. Because the soap film has an index of refraction of n = 1.5, the wavelength of light in the film will be the vacuum wavelength divided by n.

For constructive interference in a film, we have the condition that twice the film thickness equals m wavelengths in the film for some integer m. In other words, 2t = mλ’. To apply this condition, we use the longest wavelength (800 nm) to get the thinnest possible film thickness, since a larger m would imply a thicker film. From λ’ = λ/n = 800/1.5 ~ 533 nm, we have 2t = λ’, which means t = λ’/2 ~ 533/2 = 266.5 nm.

Learn more about Thin Film Interference here:

https://brainly.com/question/33710977

#SPJ11

An ideal gas is at a pressure 1.00 Ã 105 n/m2 and occupies a volume 2.00 m3. if the gas is compressed to a volume 1.00 m3 while the temperature remains constant, what will be the new pressure in the gas?

Answers

The behavior of an ideal gas at constant temperature obeys Boyle's Law of
p*V = constant
where
p = pressure
V = volume.

Given:
State 1:  
  p₁ = 10⁵ N/m² (Pa)
  V₁ = 2 m³
State 2:
  V₂ = 1 m³

Therefore the pressure at state 2 is given by
p₂V₂ = p₁V₁
or
p₂ = (V₁/V₂) p₁
    = 2 x 10⁵ Pa

Answer: 2 x 10⁵ N/m² or 2 atm.

Two point particles, one with charge +8 × 10–9 c and the other with charge–2 × 10–9 c, are separated by 4 m. the electric field midway between them is:

Answers

Final answer:

The electric field midway between the two point particles, one with charge +8 × 10⁻⁹ c and the other with charge -2 × 10⁻⁹ c, separated by 4 m, is 1124 N/C, directed away from the positive charge.

Explanation:

The electric field at a point is the force that a unit of positive charge would experience if placed at that point. It is given by the Coulomb's Law formula, E = k*q/r², where k is Coulomb's constant (8.99 x 10⁹ N.m²/C²), q is the charge and r is the distance from the charge.

For the given question, the two point charges are +8 × 10⁻⁹ C and -2 × 10⁻⁹ C. The point where we need to find the electric field is midway, so the distance from each charge is 2m. The directions of the electric fields due to the positive and negative charges are opposite at this point.

Calculating the electric field caused by each charge: For positive charge (E₁): E₁ = kxq₁/r₁² = (8.99 x 10⁹ N.m²/C²)x(8 × 10⁻⁹ C)/(2 m)² = 899 N/C, and for the negative charge (E₂): E₂ = kxq₂/r₂² = (8.99 x 10⁹ N.m²/C²)x(-2 × 10⁻⁹ C)/(2 m)² = -225 N/C.

The resultant electric field E at the midpoint is the vector sum of E₁ and E₂. As they are directed in opposite directions, we subtract E₂ from E₁, giving E = E₁ - E₂ = 899 N/C - (-225 N/C) = 1124 N/C, directed away from the positive charge.

Learn more about Electric Field here:

https://brainly.com/question/8971780

#SPJ12

Calculate the acceleration of a 300,000-kg jumbo jet just before takeoff when the thrust on the aircraft is 120,000 n.

Answers

Final answer:

The acceleration of a 300,000-kg jumbo jet with a thrust force of 120,000 N is calculated using Newton's second law of motion to be 0.4 m/s².

Explanation:

The student has asked a Physics question related to calculating the acceleration of an object given its mass and the force applied to it. The subject of this question falls under Newton's second law of motion, which states that the acceleration (a) of an object is directly proportional to the net force (F) acting on it and inversely proportional to its mass (m), which can be represented by the equation a = F / m.

In the case of the jumbo jet with a mass of 300,000 kg experiencing a thrust force of 120,000 N, we can find the acceleration of the jet by using Newton's second law:

a = F / m = 120,000 N / 300,000 kg = 0.4 m/s²

The acceleration of the jumbo jet is 0.4 m/s² just before takeoff.

The speed of sound at 0°C is 331.5 m/s. Calculate the speed of sound in the room at 20.0°C.

Answers

The speed of sound is defined as the rate wherein pressure waves would move through a certain medium. From the kinetic theory, we know that c is equal to square root of dP/dρ where c is the speed of sound. From the ideal gas law, we have P = ρRT/M from the expression PV = nRT. Then, it follows that dP/dρ = RT/M = (Rm) (T) where Rm is the specific gas constant. 

From the problem statement, we can calculate as follows:

Rm = c^2/T = 331.5^2 / (273.15+0) = 402.3 J/kg.K 

Next, at the new temperature, we calculate the speed of sound as follows:

 c = squareroot((Rm)T) = squareroot((402.3)(273.15+10)) = 337.5 m/s

Answer:

v = 343.5 m/s

Explanation:

As we know that speed of sound at a given temperature "t" is given by the formula

[tex]v = 331.5 + 0.6 t[/tex]

now we know that

if t = 0 degree Celsius

then the speed of sound will be

v = 331.5 m/s

now at t = 20 degree Celsius

[tex]v = 331.5 + 0.6(20)[/tex]

[tex]v = 343.5 m/s[/tex]

so the speed will be 343.5 m/s

Why are humans common ancestor of fish and reptiles

Answers

The common ancestor of all jawed vertebrates on Earth resembled a shark, ... from fish and sharks to birds, reptiles, mammals and humans.
The timeline of human evolution outlines the major events in the development of the human species, Homo sapiens, and the evolution of our ancestors. ..... Chimpanzee-human last common ancestor · Dawn of Humanity (film) · Homininae · Human .... It was a member of a group of mammal-like reptiles called the cynodonts.

Explain how the first three steps of scientific inquiry are related.

Answers

the first three steps in scientific inquiry are related in that they are all equal to being on a fact finding mission. The three steps are to find or develop the question that must be answered, to study all related academic literature on the subject, and then to make a guess as to what the answer is. sorry if im wrong.

The primary coil of an ideal transformer has 100 turns and its secondary coil has 400 turns. if the ac voltage applied to the primary coil is 120 v, what voltage is present in its secondary coil?

Answers

The formula used in calculations relating to transformers is:

Secondary voltage (Vs)/ Primary voItage (VP) = Secondary turns (nS)/ Primary turns (nP)

 

Substituting the given values to find for Vs,

Vs / 120 V = 400 turns / 100 turns

Vs = 480 V

Final answer:

The voltage in the secondary coil of the transformer is 480 volts in this scenario, which is obtained by using the transformer equation to adjust the primary voltage according to the ratio of the number of turns in the secondary and primary coils.

Explanation:

The subject of this question is an ideal transformer, which is a device that changes the voltage of an alternating current (AC) in a process known as electromagnetic induction based on Faraday's law. The output voltage (Vs) changes according to the ratio of the number of turns in the secondary coil (Ns) to the number of turns in the primary coil (Np). This relationship is given by the transformer equation: Vs/Vp = Ns/Np.

In your case, the number of turns in the primary coil (Np) is 100 and in the secondary coil (Ns) is 400. The given primary voltage (Vp) is 120 V.

By rearranging the transformer equation for Vs, we get: Vs = Vp * (Ns/Np).

Therefore, substituting the given values in this equation, we find: Vs = 120 V * (400 / 100) = 480 V. This implies that the voltage in the secondary coil of your transformer is 480 volts.

Learn more about Transformer voltage here:

https://brainly.com/question/32721143

#SPJ3

Determine the linear velocity of an object with an angular velocity of 5.9 radians per second at a distance of 12 centimeters from the center. use . round the answer to the nearest tenth.

Answers

The linear velocity of a rotating object is the product of the angular velocity and the radius of the circular motion. Angular velocity is the rate of the change of angular displacement of a body that is in a circular motion. It is a vector quantity so it consists of a magnitude and direction. From the problem, the angular velocity is 5.9 rad per second and the radius is given as 12 centimeters. We calculate as follows:

Linear velocity = angular velocity (radius)
Linear velocity = 5.9 (12 ) = 70.8 cm / s

The linear velocity of the body in motion is 70.8 centimeters per second or 0.708 meters per second.
Other Questions
how are the rules of signs for multiplication and division related How is light used in photosynthesis reddit? A medium sized apple weighs 130 grams. How many apples are there in 1 kilogram? Predict what might happen if the broad ligament and other supporting ligaments were damaged by infection or injury Before world war 1 France and Russia had a military alliance this meant that each country promised to support the other in the event of war in 1914 Germany declared war on Russia by the end of the year both French and Russia troops were battling the German military Which type of substance is an environmental contaminant that causes harm to living organisms? Air bags are designed to __________. A. cushion impact in a collision B. work without passengers having to buckle up C. deploy at a harmless speed for passengers sitting within ten inches D. All of the above Este pas est situado en Sudamrica y su capital es La Paz. Investigators are most likely to use the case history method when they study Hope is desperate for the new designer purse that she saw while window shopping at her local mall. she knew every girl in school would covet her bag and wish to be like her. when she walked in, she whipped out her credit card, and purchased the $5,000 bag. this kind of purchasing is called: question 50 options: 1) conspicuous consumption 2) popular consumerism 3) designer consumerism 4) credit card consumerism Assume that y varies inversely with x. If y=12 when x=5, find y when x=3 The A) democratic B) populist C) RebublicanParty emphasized the role of ordinary or common citizens. Low voter turnout and political apathy endanger ________. if H(x)=4x-8 and j(x) = -x solve h{j(3)} five friends go out to lunch and they decide to split the bill evenly the bill comes out to 57.25 how much does each person owe? Les films policiers sont _____ films intressants. The scores on a final exam were approximately normally distributed with a mean of 82 and a standard deviation of 11. If 85 students took the exam, and above a 60 is a passing grade, how many students failed the exam? The way that the conflict in a story is resolved often reveals the storystheme.climax.plot.setting. What should the title of an essay give hints about? PLEASE HELP!!!!!During the Cold War Era, the Soviet Union believed one political party should be represented during governmental elections, while the United States argued - a minimum of six political parties must be included - elections should include multiple candidates and political parties - elections should be free of influence by political parties - a maximum of two political parties could participate in electionsWhat was the goal of the Berlin Airlift?- To assist citizens of East Germany who wanted to move to West Germany- To keep the people of West Berlin alive after the Soviet Union tried to starve them- To rescue military troops being held as prisoners by Soviet Union troops in East Berlin- To transfer as many citizens as possible from communist East Berlin into West Berlin