Solve |x| + 7 < 4.
........................
A rectangle has an area of k2 + 19k + 60 square inches. If the value of k and the dimensions of the rectangle are all natural numbers, which statement about the rectangle could be true?
WILL GIVE A BRAINLIEST IF UR RIGHT PLEASE HELP!!
Determine which ordered pair is NOT a solution of y=3x-8.
a.
(8, 16)
b.
(3, 4)
c.
(–6, –26)
d.
(–10, –38)
Find the mean, variance, and standard deviation of the binomial distribution with the given values of n and p. n equals 123n=123, p equals 0.85
The mean of the binomial distribution is [tex]\( 104.55 \)[/tex], the variance is [tex]\( 15.6825 \)[/tex], and the standard deviation is approximately .
To find the mean, variance, and standard deviation of a binomial distribution with given values of [tex]\( n \)[/tex] and [tex]\( p \)[/tex], we use the following formulas:
Mean [tex](\( \mu \)) = \( n \times p \)[/tex]
Variance [tex](\( \sigma^2 \)) = \( n \times p \times (1 - p) \)[/tex]
Standard Deviation [tex](\( \sigma \)) = \( \sqrt{\text{Variance}} \)[/tex]
Given:
[tex]\( n = 123 \)[/tex]
[tex]\( p = 0.85 \)[/tex]
Let's calculate each of these:
Mean [tex](\( \mu \))[/tex]:
[tex]\( \mu = n \times p \)[/tex]
[tex]\( \mu = 123 \times 0.85 \)[/tex]
[tex]\( \mu = 104.55 \)[/tex]
Variance [tex](\( \sigma^2 \))[/tex]:
[tex]\( \sigma^2 = n \times p \times (1 - p) \)[/tex]
[tex]\( \sigma^2 = 123 \times 0.85 \times (1 - 0.85) \)[/tex]
[tex]\( \sigma^2 = 123 \times 0.85 \times 0.15 \)[/tex]
[tex]\( \sigma^2 = 104.55 \times 0.15 \)[/tex]
[tex]\( \sigma^2 = 15.6825 \)[/tex]
Standard Deviation [tex](\( \sigma \))[/tex]:
[tex]\( \sigma = \sqrt{\sigma^2} \)[/tex]
[tex]\( \sigma = \sqrt{15.6825} \)[/tex]
[tex]\( \sigma \approx 3.9599 \)[/tex]
Therefore, the mean of the binomial distribution is [tex]\( 104.55 \)[/tex], the variance is [tex]\( 15.6825 \)[/tex], and the standard deviation is approximately .
determine the valie of x for which v || w if m2 =100 and. m7 =4x+10
A group of hikers are 675 ft from the base of Guadalupe Peak, which is 8,749 ft tall. What is the angle of elevation when they look at the top of the Peak? Round to the nearest hundredth.
What is the simplified expression for ?
(05.02 LC)
Which equation does the graph below represent?
y = fraction 1 over 4x
y = 4x y
fraction negative 1 over 4x
y = −4x
Answer:
y=-4x
Step-by-step explanation:
WE need to write the equation for the given graph
In the graph y intercept is (0,0)
The equation of linear graph is y=mx+b
where m is the slope and b is the y intercept
From the given graph y intercept is 0 so b=0
to find slope pick two points from the graph
(0,0) and (1, -4)
slope = [tex]\frac{y_2-y_1}{x_2-x_1} = \frac{-4-0}{1-0} = -4[/tex]
m=-4 and b=0
So the equation becomes
y= -4x+0
y= -4x
Find the equation of the tangent line of f^-1(x) at the point where it intersects the x-axis
Line EF has an equation of a line y = −2x + 7. Which of the following could be an equation for a line that is perpendicular to line EF?
y = 2x − 3
y = 1 over 2x − 3
y = −2x − 3
y = −1 over 2x − 3
Answer:
[tex]y=\frac{1}{2} x-3[/tex]
Step-by-step explanation:
Step 1
Find the slope of the line EF
we have
[tex]y=-2x+7[/tex]
The slope of the line EF is equal to
[tex]m=-2[/tex]
Step 2
Find the slope of the line perpendicular to the line EF
we know that
If two lines are perpendicular, then the product of its slopes is equal to minus one
so
[tex]m1*m2=-1[/tex]
we have
[tex]m1=-2[/tex] -----> slope of the line EF
Find the value of m2
substitute
[tex](-2)*m2=-1[/tex]
[tex]m2=1/2[/tex]
therefore
the equation [tex]y=\frac{1}{2} x-3[/tex] could be an equation for a line that is perpendicular to line EF
Student identification codes at a high school are 4-digit randomly generated codes beginning with 1 letter and ending with 3 numbers. there are 26,000 possible codes. what is the probability that you will be assigned the code a123?
Simplify 10x - 3x + (-5x).
-2x
2x
18x
-18x
Find all solutions in the interval [0, 2pi): sin5x+sinx=sin3x
Determine the slope of a line that makes an angle of 5pi/4 radians with the x-axis.
Triangle END is translated using the rule (x, y) → (x − 4, y − 1) to create triangle E'N'D'. If a line segment is drawn from point E to point E' and from point N to point N', which statement would best describe the line segments drawn? (1 point
This answer is right!!!!! They are parallel and congruent.
If y = 4x + 3 were changed to y = -4x + 3, how would the graph of the new function compare with the original?
Answer:
The graph of y=-4x+3 will be as a reflexion in a mirror of y=4x+3
Step-by-step explanation:
y=4x+3 y=-4x+3
. .
. .
. .
What is the length of the side opposite the 30° angle? HELP
solve for x in the diagram (right triangle smallest side 9,bottom side 12,longest x)
Find three consecutive odd integers with the sum of 51.
The tip of a 15-inch wiper blade wipes a path that is 36 inches long. What is the angle of rotation of the blade in radians to the nearest tenth?
2.4 radians
1.2 radians
2.8 radians
0.4 radians
A bond payable is similar to which of the following?
A Bond payable is are likely similar to note payable. They are similar because they have both written premises to pay the interest and the principal amount on a specific futures dates. They are both liability and also the interest is accrued in current liability.
The answer to your question is "Notes Payable."
The area of a rectangle is 33 m2 , and the length of the rectangle is 5 m less than double the width. find the dimensions of the rectangle.
George plays basketball in a week-long camp. On Day 2, he scored 8 points. On day 4, he scored 12 points. Explain how to measure his average rate of change
A triangle has one leg measuring 10 inches and the hypotenuse measuring 20 inches. the other leg measures 10\sqrt[]{3} 10 3 inches. what type of triangle is represented here?
Name a pair of supplementary angles.
A. angle A E B and angle C E D
B. angle A E B and angle B E D
C. angle A E C and angle B E D
D. angle B E A and angle C E B
Answer:
B.angle AEB and angle BED.
Step-by-step explanation:
We are given that a diagram .
We have to find a pair of supplementary angles.
Supplementary angles:The pair of angles whose sum is 180 degrees is called supplementary angles.
From given diagram
[tex]\angle AEB+\angle BED=180^{\circ}[/tex]
[tex]\angle AEC+\angle CED=180^{\circ}[/tex]
Hence, option B is true.
Answer:B.angle AEB and angle BED.
What is the sum of the arithmetic sequence 3, 9, 15..., if there are 26 terms?
9 - 3 = 6, 15-9 = 6 the difference is 6, So d = 6
First term: a1 = 3
Sn = n*(a1 + an)/2
Sn = n*(a1 + a1 + (n-1)*d)/2
Sn = n*(2*a1 + (n-1)*d)/2
substitute 26 for n
S26 = 26*(2*a1 + (26-1)*d)/2
substitute 3 for a1
S26 = 26*(2*3 + (26-1)*d)/2
substitute 6 for d
S26 = 26*(2*3 + (26-1)*6)/2
S26 = 2,028
For Jane's Uber business, she charges $5 initial fee and $0.10 a mile. Joe's Uber business charges $4 initial fee and $0.20 per mile.
1. Write a function for jane's Uber buisiness
2. write a function for joe's Uber business
The linear equations to calculate the earning by Jane and Joe's Uber business per ride, given the initial fee and charge per mile:
Jane: y = 5 + 0.1x
Joe: y = 4 + 0.2x
What is a linear equation ?A linear equation is an equation in which the highest power of the variable is always 1. It is also known as a one-degree equation.
For Jane's Uber business, she charges $5 initial fee and $0.10 a mile.
Let Jane's earning from a ride be $y.
Let the number of miles she drove in that ride be x miles.
Linear equation to calculate the earning from a ride given the number of miles rode: y = 5 + 0.1x
For Joe's Uber business, he charges $4 initial fee and $0.20 a mile.
Let Joe's earning from a ride be $y.
Let the number of miles he drove in that ride be x miles.
Linear equation to calculate the earning from a ride given the number of miles rode: y = 4 + 0.2x
Learn more about linear equation here
https://brainly.com/question/14056312
#SPJ2
How many three-letter "words" can be made from 5 letters "fghij" if repetition of letters (a) is allowed?
How much money should be deposited today in an account that earns 6% compounded monthly so that it will accumulate to $9000 in three years?
Write the equation in logarithmic form.
25 = 32
A. log32 = 5 • 2
B. log232 = 5
C. log32 = 5
D. log532 = 2
The equation in logarithmic form is B.log₂32 = 2.
To convert the equation 2⁵ = 32 into logarithmic form, you need to identify the base, the exponent, and the result. The given equation can be interpreted as 2 raised to the power of 5 equals 32.
The general form of a logarithmic equation is: log_base (result) = exponent
In this specific case, we have:
base = 2
result = 32
exponent = 5
Putting it into the logarithmic form, we get: log₂32 = 5
So, the correct option is: B.log₂32 = 2