The work done on an ideal gas system in an isothermal process is -400J. What is the change in internal (thermal) energy of the gas? (a) 0J (b) -400J (c) 400J (d) 200 J

Answers

Answer 1

Answer:

The change in internal energy is zero.

(a) is correct option

Explanation:

Given that,

Work done W = -400 J

The First law of thermodynamics is law conservation of energy

Law of conservation energy is defined the total amount of energy is constant in isolated system.

The energy can not be created and destroyed but the energy can be changed from one form to other form.

The First law of thermodynamics is given by

[tex]\Delta U=Q+W[/tex]

Where,  

W = work done  by the system or on the system

[tex]\Delta U[/tex] = Total internal energy

Q = heat

In isothermal process, the temperature is constant

The energy can not be change and the internal energy is the function of temperature.

So, The internal energy will be zero .

Hence, The change in internal energy is zero.


Related Questions

A 350-g air track cart is traveling at 1.25 m/s and a 280-g cart traveling in the opposite direction at 1.33 m/s. What is the speed of the center of mass of the two carts?

Answers

Answer:

The speed of the center of mass of the two carts is 0.103 m/s

Explanation:

It is given that,

Mass of the air track cart, m₁ = 350 g = 0.35 kg

Velocity of air track cart, v₁ = 1.25 m/s

Mass of cart, m₂ = 280 g = 0.28 kg

Velocity of cart, v₂ = -1.33 m/s (it is travelling in opposite direction)

We need to find the speed of the center of mass of the two carts. It is given by the following relation as :

[tex]v_{cm}=\dfrac{m_1v_1+m_2v_2}{m_1+m_2}[/tex]

[tex]v_{cm}=\dfrac{0.35\ kg\times 1.25\ m/s+0.28\ kg\times (-1.33\ m/s)}{0.35\ kg+0.28\ kg}[/tex]

[tex]v_{cm}=0.103\ m/s[/tex]

Hence, this is the required solution.

A set of crash tests consists of running a test car moving at a speed of 11.4 m/s (25.08 m/h) into a solid wall. Strapped securely in an advanced seat belt system, a 55 kg (121 lbs) dummy is found to move a distance of 0.78 m from the moment the car touches the wall to the time the car is stopped. Calculate the size of the average force which acts on the dummy during that time.

Answers

Answer:

4582 N

Explanation:

The initial speed of the test car is

u = 11.4 m/s

While the final speed is

v = 0

The displacement of the test car during the collision is

d = 0.78 m

So we can find the acceleration of the car by using the following SUVAT equation:

[tex]v^2 - u^2 = 2ad\\a=\frac{v^2-u^2}{2d}=\frac{0-(11.4)^2}{2(0.78)}=-83.3 m/s^2[/tex]

Now we can find the average force acting on the dummy by using Newton's second law:

F = ma

Where m = 55 kg is the mass. Substituting,

[tex]F=(55 kg)(-83.3 m/s^2)=-4582 N[/tex]

So the size of the average force is 4582 N.

Tom kicks a soccer ball on a flat, level field giving it an initial speed of 20 m/s at an angle of 35 degrees above the horizontal. a) How long will the ball be in the air? b) What maximum height will the ball attain? c) How far away from Tom will the ball land? d) What speed will the ball have in the instant just before it lands?

Answers

Answer:

(a) 2.34 s

(b) 6.71 m

(c) 38.35 m

(d) 20 m/s

Explanation:

u = 20 m/s, theta = 35 degree

(a) The formula for the time of flight is given by

[tex]T = \frac{2 u Sin\theta }{g}[/tex]

[tex]T = \frac{2 \times 20 \times Sin35 }{9.8}[/tex]

T = 2.34 second

(b) The formula for the maximum height is given by

[tex]H = \frac{u^{2} \times Sin^{2}\theta }{2g}[/tex]

[tex]H = \frac{20^{2} \times Sin^{2}35 }{2 \times 9.8}[/tex]

H  = 6.71 m

(c) The formula for the range is given by

[tex]R = \frac{u^{2} \times Sin 2\theta }{g}[/tex]

[tex]R = \frac{20^{2} \times Sin 2 \times 35}{9.8}[/tex]

R = 38.35 m

(d) It hits with the same speed at the initial speed.

An us bomber is flying horizontally at 300 mph at an altitude of 610 m. its target is an iraqi oil tanker crusing 25kph in the same direction and same vertical plane. what horizontal distance behind the tanker must the pilot observe before he releases the shell to score a direct hit

Answers

Answer:

=1419.19 meters.

Explanation:

The time it takes for the shell to drop to the tanker from the height, H =1/2gt²

610m=1/2×9.8×t²

t²=(610m×2)/9.8m/s²

t²=124.49s²

t=11.16 s

Therefore, it takes 11.16 seconds for a free fall from a height of 610m

Range= Initial velocity×time taken to hit the tanker.

R=v₁t

Lets change 300 mph to kph.

=300×1.60934 =482.802 kph

Relative velocity=482.802 kph-25 kph

=457.802 kph

Lets change 11.16 seconds to hours.

=11.16/(3600)

=0.0031 hours.

R=v₁t

=457.802 kph × 0.0031 hours.

=1.41918 km

=1.41919 km × 1000m/km

=1419.19 meters.

Distance is a numerical representation of the distance between two objects or locations. The horizontal distance behind the tanker will be 1419.19 m.

What is the distance?

Distance is a numerical representation of the distance between two objects or locations. The distance can refer to a physical length or an estimate based on other factors in physics or common use.

The given data in the problem is ;

v₁ is the horizontal flying velocity  = 300 m/h

H is the  altitude = 610 m

v₂ is he cruise velocity= 25km/h

If t is the time taken the shell drops to the tanker from the height h is found by the formula;

[tex]\rm H =\frac{1}{2} gt^2 \\\\ \rm t=\sqrt{\frac{H}{2g} } \\\\ \rm t=\sqrt{2gh} \\\\ \rm t=\sqrt{2\times 610 \times 9.81} \\\\ \rm t=11.16 \sec[/tex]

The velocity of bomber obtained after unit conversion;

[tex]V_{12}=300\times 1.60 = 482.802[/tex]

Relative velocity is defined as the velocity of an object with respect to the other object.

Relative velocity=482.802 kph-25 kph=457.802 kph

In one hour there are 3600 seconds then the conversion is found by;

On changing 11.16 seconds to hours we found;

[tex](\frac{11.16}{3600} )=0.0031 \ hours.[/tex]

The range is the horizontal distance which is given by ;

Range= Initial velocity×time taken to hit the tanker.

[tex]\rm R= v \times t \\\\ \rm R= 457.8\times 0.0031\\\\ \rm R= 1.41918\ Km \\\\ \rm R=1419.19 m[/tex]

Hence the horizontal distance behind the tanker will be 1419.19 m.

To learn more about the distance refer to the link;

https://brainly.com/question/26711747

A sample of blood is placed in a centrifuge of radius 12.0 cm. The mass of a red blood cell is 3.0 ✕ 10^−16 kg, and the magnitude of the force acting on it as it settles out of the plasma is 4.0 ✕ 10^−11 N. At how many revolutions per second should the centrifuge be operated?

Answers

Answer:

167.85 rev / s

Explanation:

r = 12 cm = 0.12 m, m = 3 x 10^-16 kg, F = 4 x 10^-11 N

F = m r w^2

where, w is the angular velocity.

4 x 10^-11 = 3 x 10^-16 x 0.12 x w^2

w = 1054.1 rad / s

w = 2 π f

f = w / 2 π = 1054.1 / (2 x 3.14) = 167.85 rev / s

The number of revolutions given by the calculated frequency value in which the centrifuge would be operated is 167.8 Hz.

Recall :

Frequency, f = ω/2π

Force, F = mω²r

Mass, m = [tex] 3 \times 10^{-16}[/tex]

Force, F = [tex] 4 \times 10^{-11} N[/tex]

Radius, r = 12 cm = 12/100 = 0.12 m

We calculate the angular velocity, ω thus :

ω² = F/mr

ω² = [tex] \frac{4 \times 10^{-11}}{3 \times 10^{-16} \times 0.12 = 11.11 \times 10^{5}[/tex]

ω = [tex] \sqrt{1.11 \times 10^{6}} = 1053.56 rad/s[/tex]

Frequency = 1053.56 ÷ (2π)

Frequency = 167.68 Hz

Therefore, the Number of revolutions per seconds would be about 167.8 Hz

Learn more : https://brainly.com/question/11607177

An electron travels undeflected in a path that is perpendicular to an electric feld of 8.3 x 10 v/m. It is also moving perpendicular to a magnetic field with a magnitude of 7.3 x 103 T. If the electric field is turned off, at what radius would the electron orbit? O 124 x 10*m 889 x 104 m O 9.85 x 104m O 1.06 x 10o m

Answers

Answer:

[tex]8.6\cdot 10^{-18} m[/tex]

Explanation:

Initially, the electron is travelling undeflected at constant speed- this means that the electric force and the magnetic force acting on the electron are balanced. So we can write

q E = q v B

where

q is the electron's charge

[tex]E=8.3\cdot 10 V/m[/tex] is the electric field magnitude

v is the electron's speed

[tex]B=7.3\cdot 10^3 T[/tex] is the magnitude of the magnetic field

Solving for v,

[tex]v=\frac{E}{B}=\frac{8.3 \cdot 10 V/m}{7.3\cdot 10^3 T}=0.011 m/s[/tex]

Then the electric field is turned off, so the electron (under the influence of the magnetic field only) will start moving in a circle of radius r. Therefore, the magnetic force will be equal to the centripetal force:

[tex]qvB= m \frac{v^2}{r}[/tex]

where

[tex]q=1.6\cdot 10^{-19} C[/tex] is the electron's charge

[tex]m=9.11\cdot 10^{-31} kg[/tex] is the electron's mass

Solving for r, we find the radius of the electron's orbit:

[tex]r=\frac{mv}{qB}=\frac{(9.11\cdot 10^{-31} kg)(0.011 m/s)}{(1.6\cdot 10^{-19} C)(7.3\cdot 10^3 T)}=8.6\cdot 10^{-18} m[/tex]

A particle travels in a circular orbit of radius 21 m. Its speed is changing at a rate of 23.1 m/s2 at an instant when its speed is 37.2 m/s. What is the magnitude of the acceleration (in m/s?) of the particle?

Answers

The particle has an acceleration vector with one component directed toward the center of its orbit, and the other directing tangentially to its orbit. Call these components [tex]\vec a_c[/tex] ([tex]c[/tex] for center) and [tex]\vec a_t[/tex] ([tex]t[/tex] for tangent). Then its acceleration vector has magnitude

[tex]|\vec a|=\sqrt{\|\vec a_c\|^2+\|\vec a_t\|^2}[/tex]

We have

[tex]\|\vec a_c\|=\dfrac{\|\vec v\|^2}r[/tex]

where [tex]\|\vec v\|[/tex] is the particle's speed and [tex]r[/tex] is the radius of orbit, so

[tex]\|\vec a_c\|=\dfrac{\left(37.2\frac{\rm m}{\rm s}\right)^2}{21\,\rm m}=65.9\dfrac{\rm m}{\mathrm s^2}[/tex]

We're given that the particle's speed changes at a rate of 23.1 m/s^2. Its velocity vector points in the same direction as [tex]\vec a_t[/tex], i.e. perpendicular to [tex]\vec a_c[/tex], so

[tex]\|\vec a_t\|=23.1\dfrac{\rm m}{\mathrm s^2}[/tex]

Then the magnitude of the particle's acceleration is

[tex]\|\vec a\|=\sqrt{\left(65.9\dfrac{\rm m}{\mathrm s^2}\right)^2+\left(23.1\dfrac{\rm m}{\mathrm s^2}\right)^2}=\boxed{69.8\dfrac{\rm m}{\mathrm s^2}}[/tex]

Final answer:

The magnitude of the acceleration of the particle is approximately 70.55 m/s^2, calculated by using the formulas for combined radial and tangential acceleration in circular motion.

Explanation:

In this physics problem, the particle not only moves around in a circle but is also experiencing an increase in speed which is a case of combined radial and tangential acceleration. Radial acceleration, known as centripetal acceleration (ar), is the result of the change in direction of the velocity vector, while tangential acceleration (at) comes from changes in speed.

The total acceleration of an object in circular motion is given by:

a = sqrt((ar^2) + (at^2))

Centripetal acceleration can be calculated using the formula ar = v^2 / r, where: v = speed (37.2 m/s), r = radius of the circle (21 m). This gives us ar = (37.2^2) / 21, which approximately equals 66.62 m/s^2.

The tangential acceleration is given in the problem: at = 23.1 m/s^2.

We therefore calculate the total acceleration using the formula above which gives us:

a = sqrt((66.62^2) + (23.1^2)) which approximately equals 70.55 m/s^2.

Learn more about Acceleration in Circular Motion here:

https://brainly.com/question/33720661

#SPJ2

A particle moves in a straight line and has acceleration given by a(t) = 12t + 10. Its initial velocity is v(0) = −5 cm/s and its initial displacement is s(0) = 9 cm. Find its position function, s(t).

Answers

Answer:

The position function is [tex]s_{t}=2t^3+5t^2-5t+9[/tex].

Explanation:

Given that,

Acceleration [tex]a =12t+10[/tex]

Initial velocity [tex]v_{0} = -5\ cm/s[/tex]

Initial displacement [tex]s_{0}=9\ cm[/tex]

We know that,

The acceleration is the rate of change of velocity of the particle.

[tex]a = \dfrac{dv}{dt}[/tex]

The velocity is the rate of change of position of the particle

[tex]v=\dfrac{dx}{dt}[/tex]

We need to calculate the the position

The acceleration is

[tex]a_{t} = 12t+10[/tex]

[tex]\dfrac{dv}{dt} = 12t+10[/tex]

[tex]a_{t}=dv=(12t+10)dt[/tex]

On integration both side

[tex]\int{dv}=\int{(12t+10)}dt[/tex]

[tex]v_{t}=6t^2+10t+C[/tex]

At t = 0

[tex]v_{0}=0+0+C[/tex]

[tex]C=-5[/tex]

Now, On integration again both side

[tex]v_{t}=\int{ds_{t}}=\int{(6t^2+10t-5)}dt[/tex]

[tex]s_{t}=2t^{3}+5t^2-5t+C[/tex]

At t = 0

[tex]s_{0}=0+0+0+C[/tex]

[tex]C=9[/tex]

[tex]s_{t}=2t^3+5t^2-5t+9[/tex]

Hence, The position function is [tex]s_{t}=2t^3+5t^2-5t+9[/tex].

Final answer:

To find the position function of a particle given acceleration a(t) = 12t + 10, one integrates twice. The first integral gives the velocity function, the second gives the position or displacement function. These are determined to be v(t) = 6t^2 + 10t - 5 and s(t) = 2t^3 +5t^2 - 5t + 9, respectively.

Explanation:

The subject of this problem involves calculating the position function, or displacement, of a particle given an acceleration function, initial velocity, and initial position. In this case, acceleration is given by a(t) = 12t + 10.

To find the velocity function, v(t), you integrate the acceleration function: ∫a(t) dt = ∫(12t + 10) dt = 6t^2 + 10t + C1, where C1 is the constant of integration. We know that v(0) = −5 cm/s, so C1 is -5: the full velocity function is v(t) = 6t^2 + 10t - 5.

We then integrate the velocity function to find the position function, s(t): ∫v(t) dt = ∫(6t^2 + 10t - 5) dt = 2t^3 +5t^2 - 5t + C2. Given s(0) = 9 cm, we find C2 = 9. The position function s(t) is therefore s(t) = 2t^3 +5t^2 - 5t + 9.

Learn more about Particle displacement here:

https://brainly.com/question/29691238

#SPJ11

Ramon and Sally are observing a toy car speed up as it goes around a circular track. Ramon says, “The car’s speeding up, so there must be a net force parallel to the track.” “I don’t think so,” replies Sally. “It’s moving in a circle, and that requires centripetal acceleration. The net force has to point to the center of the circle.” Do you agree with Ramon, Sally, or neither

Answers

Answer:

Neither

Explanation:

In this situation, the net force acting on the toy car moving in the circle has two components:

- There is a component which is tangential (parallel) to the circle - we can understand this by the fact that the car is speeding up: this means that its tangential speed is changing, so it has a tangential acceleration, therefore there must be a component of the force tangential to the circle (parallel to the circle)

- There is a component which is radial to the circle, pointing towards the centre - this is called centripetal force. This is due to the fact that the car is constantly changing direction of motion: so, there must be a force that causes this change in direction of the car, and this force points towards the centre of the circle, and it is called centripetal force.

An object moving in a straight line changes its velocity uniformly from 2m/s to 4 m/s over a distance of 12 m. What was its acceleration? (A) 0.5 m/s^2 (B) 1 m/s^2 (C) 2 m/s^2 (D) 3 m/s^2

Answers

Answer:A

Explanation:

Initial velocity, u = 2m/s

Final velocity, v = 4m/s

Distance covered, s = 12m

Acceleration, a = ?

Using

v² = u² + 2as

2as = v² - u²

a = v²-u²/2s

a = 4²-2²/2 x 12

a = 16-4/24

a = 12/24

a = 0.5m/s²

Hydro-Quebec transmits power from hydroelectric dams in the far north of Quebec to the city of Montreal at 735kV. The lines are 935 km long and are 3.50 cm in diameter. Given the resistivity of copper is 1.68 x 10^-8 Ω.m. a) find the resistance of one of the lines, and b) the current carried by the wire.

Answers

Answer:

a)

16.33 Ω

b)

45009.18 A

Explanation:

a)

L = length of the line = 935 km = 935000 m

d = diameter of the line = 3.50 cm = 0.035 m

ρ = resistivity of the line = 1.68 x 10⁻⁸ Ω.m

Area of cross-section of the line is given as

A = (0.25) πd²

A = (0.25) (3.14) (0.035)²

A = 0.000961625 m²

Resistance of the line is given as

[tex]R=\frac{\rho L}{A}[/tex]

inserting the values

R = (1.68 x 10⁻⁸) (935000)/(0.000961625)

R = 16.33 Ω

b)

V = potential difference across the line = 735 kv = 735000 Volts

i = current carried by the wire

Using ohm's law, current carried by the wire is given as

[tex]i=\frac{V}{R}[/tex]

i = 735000/16.33

i = 45009.18 A

A projectile is shot from the edge of a cliff 140 m above ground with an initial speed of 120 m/s at an angle of 38 degrees above the horizontal. What is the time taken by the projectile to hit the ground 140 m below the cliff?(g = 9.8 m/s²)

Answers

Answer:

17 seconds

Explanation:

In the y direction:

y = y₀ + v₀ᵧ t + ½ gt²

0 = 140 + (120 sin 38) t + ½ (-9.8) t²

4.9 t² - 73.9 t - 140 = 0

Solve with quadratic formula:

t = [ -b ± √(b² - 4ac) ] / 2a

t = [ 73.9 ± √((-73.9)² - 4(4.9)(-140)) ] / 9.8

t = -1.7, 16.8

Since t can't be negative, t = 16.8.  Rounding to 2 sig-figs, the projectile lands after 17 seconds.

The bending of light as it moves from one medium to another with differing indices of refraction is due to a change in what property of the light? A) amplitude B) period C) frequency D speed E) Color

Answers

Answer:

D]  speed

Explanation:

An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated by a distance of 1.70 mm. A 21.0-V potential difference is applied to these plates. (a) Calculate the electric field between the plates.

Answers

Answer:

12353 V m⁻¹ = 12.4 kV m⁻¹

Explanation:  

Electric field between the plates of the parallel plate capacitor depends on the potential difference across the plates and their distance of separation.Potential difference across the plates V over the distance between the plates gives the electric field between the plates. Potential difference is the amount of work done per unit charge and is given here as 21 V. Electric field is the voltage over distance.

E = V ÷ d = 21 ÷ 0.0017 = 12353 V m⁻¹

A block of mass 0.240 kg is placed on top of a light, vertical spring of force constant 5 200 N/m and pushed downward so that the spring is compressed by 0.096 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise? (Round your answer to two decimal places.)

Answers

Answer:

10.19 m

Explanation:

Energy is conserved, so elastic energy stored in spring = gravitational energy of block.

1/2 kx² = mgh

h = kx² / (2mg)

h = (5200 N/m) (0.096 m)² / (2 × 0.240 kg × 9.8 m/s²)

h = 10.19 m

A 1240-kg car is traveling with a speed of 15.0 m/s. What is the magnitude of the horizontal net force that is required to bring the car to a halt in a distance of 31.8 m?

Answers

Answer:

Force required is 4387 N in the opposite direction of motion.

Explanation:

We have equation of motion v² = u² + 2as

      v = 0m/s , u = 15 m/s, s = 31.8 m

  Substituting

         0² = 15² + 2 x a x 31.8

          a = -3.54 m/s²

So, deceleration = 3.54 m/s²

Force = Mass x Acceleration

          = 1240 x -3.54 = -4387 N

So force required is 4387 N in the opposite direction of motion.

A planet of mass m 6.75 x 1024 kg is orbiting in a circular path a star of mass M 2.75 x 1029 kg. The radius of the orbit is R 8.05 x107 km. What is the orbital period (in Earth days) of the planet Tplanet?

Answers

The planet's orbital period is about 388 days

[tex]\texttt{ }[/tex]

Further explanation

Centripetal Acceleration can be formulated as follows:

[tex]\large {\boxed {a = \frac{ v^2 } { R } }[/tex]

a = Centripetal Acceleration ( m/s² )

v = Tangential Speed of Particle ( m/s )

R = Radius of Circular Motion ( m )

[tex]\texttt{ }[/tex]

Centripetal Force can be formulated as follows:

[tex]\large {\boxed {F = m \frac{ v^2 } { R } }[/tex]

F = Centripetal Force ( m/s² )

m = mass of Particle ( kg )

v = Tangential Speed of Particle ( m/s )

R = Radius of Circular Motion ( m )

Let us now tackle the problem !

[tex]\texttt{ }[/tex]

Given:

mass of the planet = m = 6.75 × 10²⁴ kg

mass of the star = M = 2.75 × 10²⁹ kg

radius of the orbit = R = 8.05 × 10⁷ km = 8.05 × 10¹⁰ m

Unknown:

Orbital Period of planet = T = ?

Solution:

Firstly , we will use this following formula to find the orbital period:

[tex]F = ma[/tex]

[tex]G \frac{ Mm}{R^2}=m \omega^2 R[/tex]

[tex]G M = \omega^2 R^3[/tex]

[tex]\frac{GM}{R^3} = \omega^2[/tex]

[tex]\omega = \sqrt{ \frac{GM}{R^3}}[/tex]

[tex]\frac{2\pi}{T} = \sqrt{ \frac{GM}{R^3}}[/tex]

[tex]T = 2\pi \sqrt {\frac{R^3}{GM}}[/tex]

[tex]T = 2 \pi \sqrt {\frac{(8.05 \times 10^{10})^3}{6.67 \times 10^{-11} \times 2.75 \times 10^{29}}}[/tex]

[tex]T \approx 3.35 \times 10^7 \texttt{ seconds}[/tex]

[tex]T \approx 388 \texttt{ days}[/tex]

[tex]\texttt{ }[/tex]

Learn moreImpacts of Gravity : https://brainly.com/question/5330244Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454The Acceleration Due To Gravity : https://brainly.com/question/4189441

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Circular Motion

[tex]\texttt{ }[/tex]

Keywords: Gravity , Unit , Magnitude , Attraction , Distance , Mass , Newton , Law , Gravitational , Constant

Final answer:

To calculate the orbital period of the planet, convert the radius to meters, substitute the mass of the star and the radius into Kepler's third law, solve for the orbital period squared, and convert to Earth days.

Explanation:

The question involves applying Kepler's third law of planetary motion to calculate the orbital period of a planet revolving around a star. The law relates the orbital period (T) to the radius (r) of the orbit and the mass (M) of the star around which the planet orbits. Kepler's third law can be expressed as:

T² = (4π²/GM) · r³,

where G is the gravitational constant (6.67430 × 10⁻¹¹ m³/kg · s²).

To find the orbital period of the planet:

Convert the radius of the orbit from kilometers to meters (R = 8.05 x 10⁷ km = 8.05 x 10¹ m).Substitute the given values into the equation (G = 6.67430 × 10⁻¹¹ m³/kg · s², M = 2.75 x 10²¹ kg, r = 8.05 x 10¹ m).Solve for T² and then calculate T by taking the square root of T².Convert T from seconds to Earth days by dividing by the number of seconds in a day (86,400 s).

The student will then have the orbital period of the planet in Earth days.

An 92-kg football player traveling 5.0m/s in stopped in 10s by a tackler. What is the original kinetic energy of the player? Express your answer to two significant figures and include the appropriate units. What average power is required to stop him? Express your answer to two significant figures and include the appropriate units.

Answers

Explanation:

It is given that,

Mass of the football player, m = 92 kg

Velocity of player, v = 5 m/s

Time taken, t = 10 s

(1) We need to find the original kinetic energy of the player. It is given by :

[tex]k=\dfrac{1}{2}mv^2[/tex]

[tex]k=\dfrac{1}{2}\times (92\ kg)\times (5\ m/s)^2[/tex]

k = 1150  J

In two significant figure, [tex]k=1.2\times 10^3\ J[/tex]

(2) We know that work done is equal to the change in kinetic energy. Work done per unit time is called power of the player. We need to find the average power required to stop him. So, his final velocity v = 0

i.e. [tex]P=\dfrac{W}{t}=\dfrac{\Delta K}{t}[/tex]

[tex]P=\dfrac{\dfrac{1}{2}\times (92\ kg)\times (5\ m/s)^2}{10\ s}[/tex]

P = 115 watts

In two significant figures, [tex]P=1.2\times 10^2\ Watts[/tex]

Hence, this is the required solution.  

There are competitions in which pilots fly small planes low over the ground and drop weights, trying to hit a target. A pilot flying low and slow drops a weight; it takes 2.0 s to hit the ground, during which it travels a horizontal distance of 100 m. Now the pilot does a run at the same height but twice the speed. How much time does it take the weight to hit the ground? How far does it travel before it lands?

Answers

Answer:

2.0 s, 200 m

Explanation:

Time to hit the ground depends only on height.  Since the plane is at the same height, the weight lands at the same time as before, 2.0 s.

Since the plane is going twice as fast, the weight will travel twice as far (ignoring air resistance).  So it will travel a horizontal distance of 200 m.

Answer:

1) 2 seconds

2) 200 m

Explanation:

1) Fall time at initial speed [tex]s_{1}[/tex] = [tex]t_{1}[/tex]

  Fall time at final speed [tex]s_{2}[/tex] = [tex]t_{2}[/tex]

  Initial fall height [tex]h_{1}[/tex] at initial speed = Final fall height [tex]h_{2}[/tex] at final speed i.e [tex]h_{1}[/tex] = [tex]h_{2}[/tex]

s = speed

t = time

h = height

Therefore, since fall time depends on fall height where acceleration due to gravity (g) is constant,

Fall time at [tex]s_{1}[/tex] = Fall time at [tex]s_{2}[/tex]

i.e [tex]t_{1}[/tex] = [tex]t_{2}[/tex] = 2.0 s

Time taken to land = 2.0 s

2) Initial distance traveled ([tex]S_{1}[/tex]) at initial speed [tex]s_{1}[/tex] = 100 m

   Final speed [tex]s_{2}[/tex] is double initial speed i.e [tex]s_{2}[/tex] = [tex]2s_{1}[/tex]

Therefore, since distance traveled is directly proportional to speed,

Final distance traveled [tex]S_{2}[/tex] at final speed [tex]s_{2}[/tex] is double initial distance [tex]S_{1}[/tex]

i.e [tex]S_{2}[/tex] = [tex]2S_{1}[/tex]

    [tex]2S_{1}[/tex] = 2 x 100 m = 200 m

Distance traveled = 200 m

A bearing is designed to ____ A reduce friction B. support a load C.guide moving parts such as wheels, shafts and pivots D. all of the above

Answers

Answer:

Option (A)

Explanation:

A ball bearing is a device which is use to reduce the friction.

The outer rim of the bearing is fixed with the part of machine and inner rim is fitted into shafts. Now the shafts rotates and only the small spheres in the bearing will rotate. The friction can be further reduced by apply the oil or grease to the bearing.

Select the impulse-momentum bar charts for the next problems. A 1.0-kg block moving to the right at speed 3.0 m/s collides with an identical block also moving to the right at a speed 1.0 m/s. Both blocks stick together and move to the right. What is their speed after collision?

Answers

Answer with Explanation:

since the two blocks move (stick) together, the collision is inelastic, which does not conserve kinetic energy.  So do not use kinetic energy consideration.

Fortunately, in such a situation, momentum is still conserved.

Momentum of 1.0 kg block

= 1.0 * 3.0 = 3.0 kg-m/s

Momentum of second block

= 1.0 * 1.0 = 1.0 kg-m/s

Total mass after collision = 1.0+1.0 = 2.0 kg

Common velocity after collision

= total momentum / total mass

= (3.0+1.0)/2.0 = 2.0 m/s

What current is produced if 1473 sodium ions flow across a cell membrane every 3.4ju8? 0 5.81 pA O 694 pA O 7.76 pA 5.99 pA

Answers

Answer:

69.4 pA

Explanation:

n = number of sodium ions = 1473

e = magnitude of charge on each sodium ion = 1.6 x 10⁻¹⁹ C

t = time taken to flow across the membrane = 3.4 x 10⁻⁶ sec

Total Charge on sodium ions is given as

q = n e                                            eq-1

Current produced is given as

[tex]i = \frac{q}{t}[/tex]

Using eq-1

[tex]i = \frac{ne}{t}[/tex]

Inserting the values

[tex]i = \frac{(1473)(1.6\times 10^{-19})}{3.4\times 10^{-6}}[/tex]

i = 69.4 x 10⁻¹² A

i = 69.4 pA

The radioactive isotope of lead, Pb-209, decays at a rate proportional to the amount present at time t and has a half-life of 3.3 hours. If 1 gram of this isotope is present initially, how long will it take for 80% of the lead to decay? (Round your answer to two decimal places.)

Answers

Apologies for the other person’s answer.

The half-life of an isotope describes the amount of time for half of the radioactive substance to decay into another form - in this case, the half life of this lead isotope is 3.3 hours.

We will use the two equations that are made for radioactive decay:

k = (ln(2))/ (t1/2)

k = (1/(to))ln(No/Nt),

where “t1/2” describes the half-life time (3.3 hours), “No” (actually “N zero”) refers to the amount of the original radioactive substance (how much was there initially), “Nt” refers to the amount of radioactive substance at some time “to”, and “to” (actually “t zero”) describes the amount of time required to reach the amount defined by “Nt”. It’s a lot.

We can assign the information given in the question to each of these:

t1/2= 3.3 hours
No = 1 gram
Nt = 0.2 grams (80% decayed)

Now, we just need to simplify the equations using these values.

k = ln2/(t1/2) = ln2 / 3.3 hours = 0.21

0.21 = (1/(to))ln(No/Nt) = (1/(to))ln(1/0.2) = (1/(to))(1.60944)

0.21 = (1.60944/(to))

to = 7.664 hours

It will take approximately 7.664 hours for the sample of lead to decay by 80 percent.

Hope this helps!

Final answer:

The question inquires about the time needed for 80% of Pb-209 to decay, knowing its half-life is 3.3 hours. By applying the exponential decay formula, we calculate that approximately 7.39 hours are required for 80% of Pb-209 to decay.

Explanation:

The question involves the concept of radioactive decay and specifically asks how long it will take for 80% of Pb-209 to decay, given that its half-life is 3.3 hours. To find the time required for 80% of the lead to decay, we use the half-life formula and the property that radioactive decay is an exponential process. Since 80% decay means 20% remains, we set up the equation based on the exponential decay formula: N = N0(1/2)(t/T), where N is the remaining amount of substance, N0 is the initial amount, t is the time elapsed, and T is the half-life of the substance.

Substituting the given values and solving for t, we find:

N0 = 1 gram (100% initially)

N = 0.2 grams (20% remains)

T = 3.3 hours

Thus, the equation becomes 0.2 = 1(1/2)(t/3.3). Solving for t gives us the time required for 80% decay.

After calculations, the result is that it takes approximately 7.39 hours for 80% of the Pb-209 to decay. This showcases the practical application of exponential decay and half-life in determining the amount of a radioactive substance that remains after a given period.

A tiny object carrying a charge of +35 μC and a second tiny charged object are initially very far apart. If it takes 32 J of work to bring them to a final configuration in which the +35 μC object i is at x = 1.00 mm, y = 1.00 mm, and the other charged object is at x = 1.00 mm, y = 3.00 mm (Cartesian coordinate system), find the magnitude of the charge on the second object. (k = 1/4πε 0 = 8.99 × 109 N · m2/C2)

Answers

Final answer:

The magnitude of the charge on the second object is 0.025 μC and its sign is negative because it is required work to bring the two charges together, suggesting these are opposite charges and repel each other.

Explanation:

The problem can be solved using the formula for the work done on a charge moving in an electric field, which is determined by the formula W = k * q1 * q2 / r, where k is the Coulomb's constant (8.99 × 10⁹ N · m²/C²), q1 and q2 are the charges, and r is the distance between them. From the problem, we know W = 32J, q1 = +35 μC, and r = 2.00 mm (the difference in the y-coordinates). Solving for q2 gives q2 = W * r / (k * q1) = 32J * 2.00 x 10⁻³m / (8.99 × 10⁹ N · m²/C² * 35 x 10⁻⁶C) = approximately -0.025 μC. Therefore, the magnitude of the charge on the second object is 0.025 μC, and its sign is negative because it takes work to bring the two charges together.

Learn more about Electric Charge and Field here:

https://brainly.com/question/27091125

#SPJ12

106 m/s in a uniform 1.9 x 105 N/C electric field. The field accelerates the Problem 6: An electron has an initial velocity of 5.25 electron in the direction opposite to its initial velocity. Part (a) What is the direction of the electric field? MultipleChoice 1) The field is in the direction of the electron's initial velocity 2) The field is in the direction to the right of the clectron's initial velocity 3) The ficld is in the opposite dircction of the elcctron's initial velocity 4) The field is in another direction not listed here Part (b) How far does the electron travel before coming to rest in m? Numeric : A numeric value is expected and not an expression Part (c) How long does it take the clectron to come to rest in s? Numeric A numeric value is expected and not an expression. Part (d) What is the magnitude of the electron's velocity (in m/s) when it returns to its starting point in the opposite direction of its initial velocity? Numeric : A numeric value is expected and not an expression

Answers

(a) 1) The field is in the direction of the electron's initial velocity

The electric field is in a direction opposite to the initial velocity of the electron.

Let's remind that, when an electric charge is immersed in an electric field:

- if the charge is positive, the charge experiences a force in the same direction as the electric field direction

- if the charge is negative, the charge experiences a force in the opposite direction to the electric field direction

In this case, we have an electron: so the electric force exerted on the electron will be in a direction opposite to the direction of the electric field. Since the electron is accelerated in a direction opposite to the electron's initial velocity, this means that the electric force is in a direction opposite to the initial velocity, and so the electric field must be in the same direction as the electron's initial velocity.

(b) [tex]4.13\cdot 10^{-4} m[/tex]

We have:

Electron's initial velocity: [tex]u=5.25\cdot 10^6 m/s[/tex]

Electric field magnitude: [tex]E=1.9 \cdot 10^5 N/C[/tex]

Electron charge: [tex]q=-1.6\cdot 10^{-19} C[/tex]

Mass of the electron: [tex]m=9.11\cdot 10^{-31}kg[/tex]

The electric force exerted on the electron is:

[tex]F=qE=(-1.6\cdot 10^{-19} C)(1.9\cdot 10^5 N/C)=-3.04\cdot 10^{-14}N[/tex] (the negative sign means the direction of the force is opposite to its initial velocity)

The electron's acceleration is given by:

[tex]a=\frac{F}{m}=\frac{3.04\cdot 10^{-14} N}{9.11\cdot 10^{-31} kg}=-3.34\cdot 10^{16} m/s^2[/tex]

Now we can use the SUVAT equation:

[tex]v^2 - u^2 = 2ad[/tex]

where

v = 0 is the final speed (the electron comes to rest)

d is the total distance travelled by the electron

Solving for d,

[tex]d=\frac{v^2-u^2}{2a}=\frac{0-(5.25\cdot 10^6 m/s)^2}{2(-3.34\cdot 10^{16} m/s^2)}=4.13\cdot 10^{-4} m[/tex]

(c) [tex]1.57\cdot 10^{-10}s[/tex]

We can use the following equation:

[tex]a=\frac{v-u}{t}[/tex]

where we have

[tex]a=-3.34\cdot 10^{16}m/s^2[/tex] is the electron's acceleration

v = 0 is its final speed

[tex]u=5.25\cdot 10^6 m/s[/tex] is the initial speed

t is the time it takes for the electron to come at rest

Solving for t,

[tex]t=\frac{v-u}{a}=\frac{0-(5.25\cdot 10^6 m/s)}{-3.34\cdot 10^{16} m/s^2}=1.57\cdot 10^{-10}s[/tex]

(d) [tex]5.25\cdot 10^6 m/s[/tex]

This part of the problem is symmetrical to the previous part. In fact, the force exerted on the electron is the same as before (in magnitude), but in the opposite direction. This also means that the acceleration is the same (in magnitude), but in the opposite direction.

So we have:

u = 0 is the initial speed of the electron

[tex]a=3.34\cdot 10^{16}m/s^2[/tex]

[tex]d=4.13\cdot 10^{-4} m[/tex] is the distance covered to go back

So we can use the following equation:

[tex]v^2 - u^2 = 2ad[/tex]

to find v, the new final speed:

[tex]v=\sqrt{u^2 +2ad}=\sqrt{0^2 + 2(3.34\cdot 10^{16} m/s^2)(4.13\cdot 10^{-4} m)}=5.25\cdot 10^6 m/s[/tex]

How many electrons leave a 9.0V battery every minute if it is connected to a resistance of 1.4?? O 80x 1020 O 6.7x 1020 O 5.1 x 1021 O 24x 1021

Answers

Answer:

2.4 x 10^21

Explanation:

V = 9 V, R = 1.4 ohm, t = 1 minute = 60 second

Use Ohm's law

V = I R

I = V / R

I = 9 / 1.4

I = 6.43 A

Now use Q = I t

Q = 6.43 x 60 = 385.7 C

Number of electrons passing in 1 minute , n

= total charge in one minute / charge of one electron

n = 385.7 / (1.6 x 10^-19) = 2.4 x 10^21

A marble is dropped from a toy drone that is 25 m above the ground, and slowly rising with a vertical velocity of 0.8 m/s. How long does it take the marble to reach the ground?

Answers

Answer:

2.18 s

Explanation:

H = - 25 m ( downwards)

U = - 0.8 m/s

g = - 9.8 m/s^2

Let time taken is t.

Use second equation of motion

H = u t + 1/2 g t^2

- 25 = - 0.8 t - 1/2 × 9.8 × t^2

4.9 t^2 + 0.8 t - 25 = 0

By solving we get

t = 2.18 s

A 19.4 cm pendulum has a period of 0.88 s. What is the free-fall acceleration at the pendulum's location?

Answers

Answer:

Acceleration due to gravity value

[tex]=9.89m/ {s}^{2} [/tex]

Explanation:

Time period of simple pendulum is given by the expression

[tex]T=2\pi\sqrt{\frac{l}{g}} \\ [/tex]

Here we have

T = 0.88 s

l = 19.4 cm = 0.194 m

Substituting

[tex]0.88=2\pi\sqrt{\frac{0.194}{g}}\\\\\frac{0.194}{g}=0.0196\\\\g=9.89m/s^2 \\ [/tex]

Acceleration due to gravity value

[tex]=9.89m/s^2 \\ [/tex]

A 6.0-μF air-filled capacitor is connected across a 100-V voltage source. After the source fully charges the capacitor, the capacitor is immersed in transformer oil (of dielectric constant 4.5). How much ADDITIONAL charge flows from the voltage source, which remained connected during the process?

Answers

Answer:

[tex]2.1\cdot 10^{-3} C[/tex]

Explanation:

The initial charge stored on the capacitor is given by

[tex]Q_0 =C_0 V[/tex]

where

[tex]C_0 = 6.0 \mu F = 6.0 \cdot 10^{-6}F[/tex] is the initial capacitance

V = 100 V is the potential difference across the capacitor

Solving the equation,

[tex]Q_0 = (6.0 \cdot 10^{-6}F)(100 V)=6.0 \cdot 10^{-4}C[/tex]

The charge stored in the capacitor when inserting the dielectric is

[tex]Q = k Q_0[/tex]

where

k = 4.5 is the dielectric constant

Substituting,

[tex]Q=(4.5)(6.0 \cdot 10^{-4}C)=2.7\cdot 10^{-3}C[/tex]

So the additional charge is

[tex]\Delta Q=Q-Q_0 = 2.7 \cdot 10^{-3}C - 6.0 \cdot 10^{-4}C=2.1\cdot 10^{-3} C[/tex]

Final answer:

The additional charge that flows into the capacitor once it is immersed in transformer oil (of dielectric constant 4.5) and kept connected to the source is 2100 μC.

Explanation:

The question involves a capacitor that is connected across a 100-V voltage source and then submerged in transformer oil. The capacitor initially charges to capacity while in the air. When a capacitor is then immersed in a material with a dielectric constant, its ability to store charge improves. Here, the dielectric constant of the transformer oil is given as 4.5, suggesting that the capacitor's capacity to store charge will increase 4.5 times as compared to when it was in air.

The additional charge that flows into the capacitor can be calculated using the formula for the charge in a capacitor, Q = CV. The initial charge (Q1) on the capacitor when it was in air would be Q1 = CV1 = 6.0 μF * 100 V = 600 μC. After immersing in transformer oil, the capacitance would increase by a factor of 4.5, giving a new capacitance C2 = 4.5 * 6.0 μF = 27.0 μF. The new charge (Q2) would be Q2 = CV2 = 27.0 μF * 100 V = 2700 μC. Hence the additional charge that's flown from the source would be Q2 - Q1 = 2700 μC - 600 μC = 2100 μC.

Learn more about Capacitors and Dielectrics here:

https://brainly.com/question/34032783

#SPJ3

A bullet is shot at an angle of 32° above the horizontal on a level surface. It travels in the air for 6.4 seconds before it strikes the ground 92m from the shooter. What was the maximum height reached by the bullet?

Answers

Answer:

H = 4.12 m

Explanation:

As we know that horizontal range is the distance moved in horizontal direction

Since horizontal direction has no acceleration

so here we have

[tex]Range = v_x T[/tex]

here we know that

[tex]v_x = vcos32[/tex]

so from above formula

[tex]92 = (vcos32)(6.4)[/tex]

[tex]v = 16.95 m/s[/tex]

now we have maximum height is given as

[tex]H = \frac{(vsin32)^2}{2g}[/tex]

[tex]H = \frac{(16.95 sin32)^2}{2(9.8)}[/tex]

[tex]H = 4.12 m[/tex]

Other Questions
Which two molecules do green plants use to make glucose?OA. Nitrogen and waterOB. Hydrogen and oxygenOC. Carbon dioxide and waterOD. Methane and iron oxide Simplify the expression. Write the answer using scientific notation. (9x10^2)(2x10^10) Anyone know what the answer can be The basis for Americas foundation in liberty is found in Patrick Henrys speech about liberty.the Declaration of Independence.the Bill of Rights and the Constitution.de Tocquevilles book Democracy in America. 2. What occurs at the end of a female's monthly cycle?| O ovulationO endometriosiso menstruationO menopause What is Symmetric and Asymmetric DSL? What defined republicanism as a social philosophy? which describes a role of enzymes your heart beats 240 beats per 4 minutes at this rate how many times will your heartbeat in a hourdon't spam random letters or i'll delete your answer. (for french class) Which direct object pronoun correctly completes the conversation?Sandrine: Est-ce que tu as invit tes amies la soire?Catherine: Oui. Je ______ ai toutes invites.A.lB.leC.laD.les A jet airplane lands with a speed of 120 mph. It has 1800 ft of runway after touch- down to reduce its speed to 30 mph. Compute the average acceleration required of the airplane during braking A: a -8.1 ft/s2 Use the following map to answer the question below:What key role did the location of the Tigris and the Euphrates river play on the development of Mesopotamia? A.) Mesopotamia was settled between the two rivers to take advantage of the natural barrier produced by the Arabian Desert. B.) Mesopotamia was settled between the two rivers to take advantage of the protection provided by the rivers.C.) Mesopotamia was settled between the two rivers to take advantage of the fertile soil produced by floods. D.) Mesopotamia was settled between the two rivers to take advantage of the drinking water provided by the Persian Gulf. Which facts represent the economic reality the nation faced in 1933?Choose ALL answers that are correct.A.Banks were failing every day.B.People were selling gold at lower price.C.The government had too much money.D.The economic system was on the verge of collapsing When doing blood testing for a viral infection, the procedure can be made more efficient and less expensive by combining partial samples of different blood specimens. If samples from three people are combined and the mixture tests negative, we know that all three individual samples are negative. Find the probability of a positive result for three samples combined into one mixture, assuming the probability of an individual blood sample testing positive for the virus is 0.03. The height of a box can be found by dividing its volume by the area of its base,bottom.What is the height of a box that has a volume of 26.35 cubic centimeter and a base area of 4 1/4 square centimeter? What relationships can be determined from a balanced chemical equation? What are the themes of the movie Pocahontas Who said a revolution is not a dinner party? Why might collective bargaining fail, causing a union to go on strike?AThe union agrees with the boss about wages.BThe boss compromises about work hours.CThe factory goes out of business, causing the workers to lose their jobs.DThe boss refuses to address dangerous working conditions in the factories. Which country was the first to industrialize on the continent of Europe? Germany Britain Italy Belgium