Answer:
running and not stopping at traffic lights and stop signs
Explanation:
Stopping the vehicle at traffic lights and stop signs are most important to avid any accidents or collisions. Traffic lights and signs are meant to control the traffic and avoid any collision. It allows and helps to pass the vehicles to drive away safely. But not following the traffic signs and not stopping at the traffic lights can lead to fatal accidents and serious injuries. This is very dangerous and must be avoided.
The top five contributing risk factors to fatal crashes in Texas are: speeding, driving under the influence, failure to control speed, failure to drive in a single lane, and distraction or inattention.
To understand why this is the correct answer, one must consider the common risk factors that contribute to fatal crashes not only in Texas but in many other places as well. The top five contributing risk factors to fatal crashes often include:
1. Speeding: Exceeding the speed limit or driving too fast for conditions is a major contributing factor to fatal crashes. Speeding reduces the driver's ability to react to sudden changes in the road environment and increases the severity of a crash.
2. Driving Under the Influence: Operating a vehicle under the influence of alcohol or drugs impairs a driver's judgment, coordination, and reaction time, leading to a higher risk of accidents, including fatal ones.
3. Failure to Control Speed: This is related to speeding but focuses on the driver's inability to adjust their speed to the traffic, road conditions, or weather, leading to loss of vehicle control and crashes.
4. Failure to Drive in a Single Lane: This risk factor includes behaviors such as weaving in and out of traffic, drifting out of one's lane, or making unsafe lane changes, which can result in head-on collisions or sideswipe accidents.
5. Distraction or Inattention: Distracted driving involves any activity that diverts a driver's attention from the primary task of driving. This includes texting, talking on the phone, eating, drinking, talking to passengers, or any other form of distraction. Inattention can also be due to daydreaming or simply not paying enough attention to the road and surrounding conditions.
These five risk factors are frequently cited in traffic safety reports and studies as the leading causes of fatal crashes. Distraction or inattention is particularly notable because it encompasses a wide range of behaviors that can take a driver's focus away from the task of driving, thus increasing the likelihood of a fatal crash."
Which law is described by saying that doubling the absolute temperature will double the pressure of a sample of gas in a rigid container?
Answer:
Gay Lussac law
Explanation:
Gay Lussac law states that for a gas kept at constant volume (so, in a rigid container), the pressure of the gas is directly proportional to the absolute temperature.
In mathematical formula:
[tex]\frac{p}{T}=k[/tex]
where
p is the gas pressure
T is the absolute temperature
According to this law, we see therefore that if the absolute temperature of the gas is doubled:
T' = 2T
The pressure will also double:
[tex]\frac{p}{T}=\frac{p'}{T'}\\p' = p \frac{T'}{T}=p\frac{2T}{T}=2p[/tex]
Answer:
Gay-Lussac’s law
Explanation:
This is the correct answer on Edge.
Why does atomic radius decrease from left to right?
The atomic radius decreases from left to right across a period due to the increase in nuclear charge, which attracts electrons more strongly and pulls them closer to the nucleus. This leads to a contraction of the electron cloud and a decrease in the atomic radius.
Explanation:The atomic radius decreases from left to right across a period in the periodic table due to the increase in the number of protons in the nucleus. This increase in protons enhances the nuclear charge, which in turn attracts the electrons more strongly, pulling them closer to the nucleus. As a result, the effective nuclear charge experienced by the outermost electrons increases, leading to a decrease in the atomic radius.
As electrons are added to the same principal energy level while moving across a period, the increased positive charge of the nucleus draws these electrons closer. This process causes the electron cloud to contract, and thus, the atomic radius decreases. It's important to note that there are some exceptions and nuances, such as electron-electron repulsions and shielding effects, which can influence this trend to some extent.
Moreover, the largest atoms are found in the lower left corner of the periodic table, while the smallest atoms are located in the upper right corner. This phenomenon is a direct result of the aforementioned periodic trends in atomic radii.
Refraction occurs when light passing from one medium to another. True or False
Answer: True
Refraction is a phenomenon in which the light bends or changes its direction (and changes the speed of propagation, as well) when passing through a medium with a refractive index [tex]n[/tex] different from the other medium.
Where the Refractive index is a number that describes how fast light propagates through a medium or material:
[tex]n=\frac{c}{v}[/tex]
Being [tex]n[/tex] a relation between the speed of light in vacuum [tex]c[/tex] and its speed in the other medium [tex]v[/tex] .
It is important to note that in this process, the wavelength may be modified because it depends on the medium, however, the refracted ray of light does not change its frequency.
Average speed is the total distance divided by the
Time
Explanation:The average speed of an object that is moving is defined as the distance traveled divided by the time of travel. You can measure the distance with a ruler and the time with a stopwatch. This can be expressed as the following formula:
[tex]v=\frac{\Delta x}{\Delta t}[/tex]
For instance, if an object travels a distance [tex]\Delta x=100m[/tex] in 4 seconds, the the average speed is:
[tex]v=\frac{100m}{4s} \\ \\ \therefore \boxed{v=25m/s}[/tex]
Average speed is calculated by dividing the total distance traveled by the elapsed time, represented as D / Δt, where D is distance and Δt is the time interval. It is a scalar quantity, indicating the average rate of travel without regard to direction.
Explanation:The question asks, "Average speed is the total distance divided by the?" The answer is elapsed time. Average speed is a fundamental concept in physics that represents the average rate at which distance was traversed over a period of time. It is calculated by dividing the total distance traveled by the total time taken for the journey. Unlike average velocity, which is a vector quantity and considers direction, average speed is a scalar quantity, meaning it only considers magnitude and has no direction associated with it. To calculate average speed (ϕavg), the formula used is: vavg = D / Δt, where D represents the distance traveled and Δt represents the time interval.
For example, if a person travels 100 kilometers over 2 hours, their average speed would be calculated as 100 km divided by 2 hours, resulting in an average speed of 50 km/h. This calculation indicates that, on average, the person covered 50 kilometers for each hour of travel. It's critical to differentiate between average speed and average velocity because the latter takes into account the travel direction, whereas the former does not. Understanding average speed is crucial for solving a plethora of problems in physics, particularly those related to motion and dynamics.
A submarine can withstand an external pressure of 63 atm before collapsing. If seawater has a density of 1027 kg/m^3 how deep can the sub dive?
Answer:
623.8 m
Explanation:
How do comets, asteroids, and meteorites influence life on Earth?
Answer: More than 48 tons of debris falls into Earth’s atmosphere every day and asteroid impacts have literally shaped Earth resulting craters from large objects crashing into the crust. Upon impact, vaporized dirt and rock would fill the atmosphere, blocking sunlight and causing winter like conditions
Explanation:
Final answer:
Comets, asteroids, and meteorites influence life on Earth through global catastrophes, the formation of essential elements, and the shielding effect of large outer planets.
Explanation:
Comets, asteroids, and meteorites influence life on Earth in several ways. Firstly, the impacts of comets and asteroids can cause global catastrophes, leading to the extinction of species and significant changes in the evolution of life on the planet. These impacts release large amounts of energy, change the climate, and create widespread destruction.
Additionally, the debris from comets and asteroids, such as dust and organic compounds, can contribute to the formation of life on Earth by providing essential elements like water and organic materials. Moreover, the gravitational fields of large outer planets in our solar system can help shield Earth from more frequent and larger impacts. Therefore, comets, asteroids, and meteorites play a crucial role in shaping and influencing life on Earth.
In 1909 Robert Millikan was the first to find the charge of an electron in his now-famous oil drop experiment. In the experiment tiny oil drops are sprayed into a uniform electric field between a horizontal pair of oppositely charged plates. The drops are observed with a magnifying eyepiece, and the electric field is adjusted so that the upward force q E on some negatively charged oil drops is just sufficient to balance the downward force m g of gravity. Millikan accurately measured the charges on many oil drops and found the values to be whole-number multiples of 1.6 × 10−19 C — the charge of the electron. For this he won the Nobel Prize. If a drop of mass 5.2898 × 10−13 kg remains stationary in an electric field of 6 × 105 N/C, what is the charge on this drop? The acceleration due to gravity is 9.8 m/s 2 . Answer in units of C
Answer:
[tex]8.64\cdot 10^{-18} C[/tex]
Explanation:
There are two forces acting on the oil drop:
- The force of gravity, downward, given by
[tex]F_G = mg[/tex]
where m is the mass of the drop and g is the acceleration due to gravity
- The electric force, upward, given by
[tex]F_E = qE[/tex]
where q is the charge of the oil drop and E is the magnitude of the electric field
The oil drop remains stationary, so the two forces are balanced:
[tex]F_G = F_E\\mg = qE[/tex]
where
[tex]m=5.2898\cdot 10^{-13}kg\\E=6\cdot 10^5 N/C\\g = 9.8 m/s^2[/tex]
Substituting into the previous equation and solving for q, we find the charge of the oil drop:
[tex]q=\frac{mg}{E}=\frac{(5.2898\cdot 10^{-13} kg)(9.8 m/s^2)}{6\cdot 10^5 N/C}=8.64\cdot 10^{-18} C[/tex]
The charge of a stationary oil drop can be calculated by balancing gravitational force with electric force. In this case, the calculated charge is approximately -1.37 x 10-18 C, indicating about 9 excess electrons on the oil drop.
Explanation:
In Robert A. Millikan's famous oil drop experiment, we balance the downward gravitational force with an upward electric force to determine the charge of an electron. In this case, with the oil drop being stationary, it means that these two forces are equal. Therefore, we can say that the upward force (qE) is equal to the downward force (mg).
By rearranging this equation for q (charge), we get q = mg / E. Substituting the given values, mass m = 5.2898 × 10-13 kg, acceleration due to gravity g = 9.8 m/s2, and electric field E = 6 × 105 N/C, into this formula, we get q = (5.2898 × 10-13 kg * 9.8 m/s2) / 6 × 105 N/C.
This gives us the charge q = -1.37 x 10-18 C. Finally, from Millikan's oil drop experiment, we know the quantized charge of an electron is -1.6 x 10-19 C, therefore, it indicates that there are approximately 9 excess electrons on the oil drop.
Learn more about Millikan Oil Drop Experiment here:https://brainly.com/question/32330429
#SPJ3
Which is the correct scientific notation of the number 0.000681? 68.1 × 10-4 6.81 × 104 6.81 × 10-4 6.81 × 10-5 68.1 × 104
Answer:
6.81 × 10^-4
Explanation:
A number is said to be in standard form when it is written in the form of A × 10^n.
6.81 × 10^-4
6.81× 0.0001
= 0.000681
The correct scientific notation of the number 0.000681 is 6.81 × 10⁻⁴.
What is scientific notation?The scientific notation provides the way of expressing a complex number in the easiest way.
A number is said to be in scientific form when it is written in the form of A × 10^n.
0.000681 = 6.81× 0.0001
0.000681 = 6.81 × 10⁻⁴
Thus, correct scientific notation of the number 0.000681 is 6.81 × 10⁻⁴.
Learn more about scientific notation.
https://brainly.com/question/18073768
#SPJ2
Is the distance traveled during a specific unit of time.
Answer:
Speed is the distance traveled during a specific unit of time.
Answer:
speed
Explanation:
edge 2021
An object is 40 cm in front of a concave mirror with a focal length of 20 cm. Use ray tracing to locate the image. Is the image upright or inverted?
By implementing ray tracing rules for concave mirrors and applying the mirror/lens formula, it is observed the formed image is real and inverted.
Explanation:For the given scenario, the object is farther from the concave mirror than its focal length. We use ray tracing principles to locate the image. Ray 1 approaches parallel to the axis, Ray 2 strikes the center of the mirror, and Ray 3 goes through the focal point on the way toward the mirror. These rays will cross at the same point after being reflected, which locates the inverted real image. This qualifies as a case 1 image for a converging mirror.
Now to confirm if the image is upright or inverted we need to understand that inverted images correspond to a negative magnification. Using the mirror formula 1/f = 1/v + 1/u, and given that u = -40 cm and f = -20 cm, we can solve for the image distance (v). The calculation gives us v = -40 cm, which is negative, hence the image is real and inverted.
Learn more about Ray Tracing in Concave Mirrors here:
https://brainly.com/question/33313133
#SPJ3
The image formed by the concave mirror is located 40 cm from the mirror, inverted, and of the same size as the object.
Locating the Image Using a Concave Mirror
To locate the image formed by a concave mirror, we follow the rules of ray tracing:
Ray 1: This ray is drawn parallel to the principal axis and reflects through the focal point (F).Ray 2: This ray passes through the focal point and reflects parallel to the principal axis.Ray 3: This ray strikes the center of the mirror and reflects back at the same angle.Given:
Object distance (do) = 40 cmFocal length (f) = 20 cmAnalyzing:
Draw the object 40 cm in front of the concave mirror.
Draw Ray 1 parallel to the principal axis; it will reflect through the focal point.
Draw Ray 2 passing through the focal point; it will reflect parallel to the principal axis.
Draw Ray 3 to the center of the mirror; it will reflect back at the same angle.
The intersection of these rays gives the location of the image.
The rays intersect at 40 cm on the same side as the object. Thus, the image is located 40 cm from the mirror.
The image is inverted and of the same size as the object.
How can solar energy be used to produce electricity
Answer:
Explanation:
Electricity is generated from solar energy predominantly by the use of photovoltaic cells.
The sun is the ultimate source of energy for all life and the bulk of the solar system at large.
Energy from the sun is used for various life processes and other abiotic uses.
In order to harness the sun's energy to produce electricity, a photovoltaic cell is required. These cells are often used in making solar panels which are available in most places today.
Electricity is produced by the movement of electrons within a cell or a body. In a photovolatic cell, the radiation from the sun causes chemical reactions to occur on the surface of these materials. The reaction is such in which electrons are produced. The movement of electrons in these cells results in the generation of electricity.
In some other cases, sunlight can be concentrated for heating water to produce steam. Steam can be used to drive turbines to produce electricity too.
When a second identical bulb is added in series to a circuit with a single bulb, the resistance of the circuit
Answer:
Will double
Explanation:
The total resistance of a circuit with n resistors in series is equal to the sum of the individual resistances:
[tex]R_T = R_1 + R_2 + ... + R_n[/tex]
In this problem, we have a circuit with initially one light bulb of resistance R, so the total resistance of the circuit is:
[tex]R_T = R[/tex]
Later, a second identical bulb (so, same resistance R) is added in series to the circuit; so applying the previous formula, we see that the new total resistance is
[tex]R_T = R + R = 2 R[/tex]
So, the resistance has doubled.
________ are more likely to be found near rural communities due to the large requirement for space.
Military bases
Farms
Domed stadiums
Coal mines
Complex highway interchanges
Military bases and Farms, Domed stadiums are more likely to be found near rural communities due to the large requirement for space.
What is Rural Communities?
A rural area is an expanse of open ground with few houses or other structures and few inhabitants. The population density in a rural location is very low.
A rural area is an expanse of open ground with few houses or other structures and few inhabitants. The population density in rural areas is quite low. Numerous individuals reside in urban or suburban areas. Their residences and places of business are situated close together.
Most rural communities' main industry is agriculture. On farms or ranches, the majority of people reside or work.
Therefore, Military bases and Farms, Domed stadiums are more likely to be found near rural communities due to the large requirement for space.
To learn more about Rural communities, refer to the link:
https://brainly.com/question/19515708
#SPJ5
While studying physics at the library late one night, you noticethe image of the desk lamp reflected from the varnished tabletop.When you turn your Polaroid sunglasses sideways, the reflectedimage disappears.
If this occurs when the angle between the incident and reflectedrays is 120^\circ, what is the index ofrefraction of the varnish?
Explanation:
The situation described here is known as polarization by reflection. This was discovered by Scottish physicist David Brewster and then formulated the law that bears his name:
"When a beam of light hits the surface that separates two non-conducting media characterized by different electromagnetic characteristics (electrical permittivity and magnetic permeability), part of it is reflected back to the source medium, and part is transmitted to the second medium."
This polarization happens when the light incides at a specific angle, called the Brewster angle ([tex]\theta_{B}[/tex]), which is given by the following formula (taking into account that generally the magnetic permeabilities of the two media involved do not vary):
[tex]tan\theta_{B}=\frac{n_{2}}{n_{1}}[/tex] (1)
Where [tex]n_{2}[/tex] is the index of refraction of the second medium (the varnish in this case) and [tex]n_{1}=1[/tex] is the index of refraction of the first medium (the air).
Now, if we are told the angle between the incident and reflected rays is [tex]120\°[/tex], this means the incident angle is the half ([tex]60\°[/tex]), which is the Brewster angle in this case.
So, [tex]\theta_{B}=60\°[/tex] (2)
Rewriting (1) with this incident ray angle:
[tex]tan(60\°)=\frac{n_{2}}{1}[/tex] (3)
[tex]n_{2}=tan(60\°)[/tex]
Finally we obtain the index ofrefraction of the varnish:
[tex]n_{2}=1.732[/tex]
The Brewster's angle formula can help determine the index of refraction of a material based on the angle of reflection. In this case, with a 120° angle, the varnish's refractive index would be around 1.732.
When the angle between the incident and reflected rays is 120°, the index of refraction of the varnish can be calculated using the Brewster's angle formula.
For this scenario, if Brewster's angle is 120°, the refractive index of the varnish would be approximately 1.732.
The concept of Brewster's angle relates the angle of incidence and the refractive index of a material for which the reflected ray is entirely polarized, offering a method to determine the index of refraction of the varnish.
HELP
The distance, A, in the image represents
amplitude
frequency
period
wavelength
Amplitude.
The amplitude A is the maximum elongation of each point of the wave with respect to the central or equilibrium position.
In a sinusoid wave is the maximum distance in the absolute value of the curve measured from the x axis, can be represented as y(t) = A sen (ωx + φ).
Example:
y(t) = 10 sin (2πx), Where the amplitud of the sine wave is A = 10
Answer:
A represents the amplitude of the wave. This measures the sound wave's intensity, or volume. Pls mark brainliest. Have a nice day!
The famous cliff divers of Acapulco leap from a perch 35 m above the ocean. How fast are they moving when they reach the surface? What happens to their kinetic energy as they slow to a stop in the water? Please show how you get the energy conservation equation
1) 26.2 m/s
The mechanical energy of the divers at any point of their vertical motion is sum of the kinetic energy and the gravitational potential energy:
[tex]E=K+U = \frac{1}{2}mv^2 + mgh[/tex]
where
m is the mass of the diver
v is the speed
g = 9.8 m/s^2 is the acceleration due to gravity
h is the height above the water
When the diver is on the cliff, v = 0 (he is at rest), so K=0 and the initial mechanical energy is just potential energy:
[tex]E_i = mgh[/tex]
where h=35 m is the height of the cliff.
When the diver hits the water above, h = 0, so U=0 and the final mechanical energy is just kinetic energy:
[tex]E_f = \frac{1}{2}mv^2[/tex]
since the total mechanical energy is conserved, we have
[tex]E_i = E_f\\mgh = \frac{1}{2}mv^2[/tex]
And solving the equation for v, we find the speed when they reach the surface of the water:
[tex]v=\sqrt{2gh}=\sqrt{2(9.8 m/s^2)(35 m)}=26.2 m/s[/tex]
2) It is converted into thermal energy of the water
When the diver enters the water, he suddenly feels another force acting against the motion of the diver: the resistance of the water. The resistance of the water acts upward, slowing down the diver until he stops.
In this process, the speed of the diver (v) decreases, and therefore the kinetic energy of the diver decreases as well, until it becomes zero.
However, this does not mean that the conservation of energy has been violated. In fact, the kinetic energy of the diver has been converted into thermal energy of the molecules of water surrounding the diver.
Two of the wavelengths emitted by a hydrogen atom are 97.26 nm and 1282 nm . Part A What is the m value for the wavelength 97.26 nm ? Express your answer as an integer. Part B What is the n value for the wavelength 97.26 nm ? Express your answer as an integer. Part C What is the m value for the wavelength 1282 nm ? Express your answer as an integer. Part D What is the n value for the wavelength 1282 nm ? Express your answer as an integer.Part E Part complete For the wavelength 97.26 nm , is the light infrared, visible, or ultraviolet? Part F Part complete For the wavelength 1282 nm , is the light infrared, visible, or ultraviolet?
A) m = 4
We can solve the problem by using Rydberg equation:
[tex]\frac{1}{\lambda}=R_H (\frac{1}{n^2}-\frac{1}{m^2})[/tex]
where
[tex]R_H = 1.097\cdot 10^7 m^{-1}[/tex] is the Rydberg constant for hydrogen
n is the principal quantum number of the upper energy level
m is the principal quantum number of the lower energy level
For the first wavelength, we have
[tex]\lambda=97.26 nm = 97.26\cdot 10^{-9} m[/tex]
Substituting into the equation, we find
[tex]\frac{1}{n^2}-\frac{1}{m^2}=\frac{1}{\lambda R_H}=\frac{1}{(97.26\cdot 10^{-9} m)(1.097\cdot 10^7 m^{-1})}=0.9373[/tex])
By setting n=1, we obtain the Lyman series which goes from 121.6 nm (for m=2) to 91.18 nm (for [tex]m=\infty[/tex]). So our line of 97.26 nm must be in this series.
By setting n=1, we find m:
[tex]\frac{1}{m^2}=\frac{1}{n^2}-0.9373=\frac{1}{1^2}-0.9373=0.0627\\m=\frac{1}{\sqrt{0.0627}}=4[/tex]
B) n = 1
n can be found by thinking about the limit of the different series.
Larger n corresponds to larger wavelengths; for each n, m goes from (n+1) to [tex]\infty[/tex], and the shortest wavelength of each series is the one corresponding to [tex]m=\infty[/tex].
If we put n = 2, and [tex]m=\infty[/tex], we find the shortest wavelength of the n=2 series:
[tex]\frac{1}{\lambda}=R_H (\frac{1}{n^2}-\frac{1}{m^2})=(1.097\cdot 10^7 m^{-1})(\frac{1}{2^2}-\frac{1}{\infty})=\frac{1.097\cdot 10^7 m^{-1}}{4}=2.74\cdot 10^6 m^{-1}\\\lambda=\frac{1}{2.74\cdot 10^6 m^{-1}}=3.64\cdot 10^{-7} m = 364 nm[/tex]
which is longer than our line at 97.26 nm, so n must be smaller than 2, which means n=1.
C) m = 5
Similarly to what we did in part A), here we have a wavelength of
[tex]\lambda=1282 nm = 1282\cdot 10^{-9} m[/tex]
Substituting into the Rydberg equation, we find
[tex]\frac{1}{n^2}-\frac{1}{m^2}=\frac{1}{\lambda R_H}=\frac{1}{(1282\cdot 10^{-9} m)(1.097\cdot 10^7 m^{-1})}=0.0711[/tex])
By setting n=3, we obtain the Paschen series which goes from 1875 nm (for m=4) to 820.4 nm (for [tex]m=\infty[/tex]). So our line of 1282 nm must be in this series.
By setting n=3, we find m:
[tex]\frac{1}{m^2}=\frac{1}{n^2}-0.0711=\frac{1}{3^2}-0.0711=0.04001\\m=\frac{1}{\sqrt{0.04001}}=5[/tex]
D) n = 3
Similarly to what we did in part B), if we put n = 4, and [tex]m=\infty[/tex], we find the shortest wavelength of the n=4 series:
[tex]\frac{1}{\lambda}=R_H (\frac{1}{n^2}-\frac{1}{m^2})=(1.097\cdot 10^7 m^{-1})(\frac{1}{4^2}-\frac{1}{\infty})=\frac{1.097\cdot 10^7 m^{-1}}{16}=6.856\cdot 10^5 m^{-1}\\\lambda=\frac{1}{6.856\cdot 10^5 m^{-1}}=1.458\cdot 10^{-6} m = 1458 nm[/tex]
which is longer than our line at 1282 nm, so n must be smaller than 4. Indeed, if we try with n=3, we find:
[tex]\frac{1}{\lambda}=R_H (\frac{1}{n^2}-\frac{1}{m^2})=(1.097\cdot 10^7 m^{-1})(\frac{1}{3^2}-\frac{1}{\infty})=\frac{1.097\cdot 10^7 m^{-1}}{9}=1.219\cdot 10^6 m^{-1}\\\lambda=\frac{1}{1.219\cdot 10^6 m^{-1}}=8.204\cdot 10^{-7} m = 820.4 nm[/tex]
So, our line is contained in the n=3 series.
E) Ultraviolet
We can answer this question by looking at the different wavelengths of the electromagnetic spectrum. In fact, we have:
Ultraviolet: 380 nm - 1 nm
Visible: 750 nm - 380 nm
Infrared: 1 mm - 750 nm
Our wavelength here is
97.26 nm
So, we see it is included in the ultraviolet part of the spectrum. In fact, all lines in the Lyman series (n=1) lie in the ultraviolet ragion.
F) Infrared
Again, the electromagnetic spectrum is:
Ultraviolet: 380 nm - 1 nm
Visible: 750 nm - 380 nm
Infrared: 1 mm - 750 nm
Our wavelength here is
1282 nm
So, we see it is included in the infrared part of the spectrum. In fact, all lines in the Paschen series (n=3) lie in the infrared band.
The wavelength 97.26 nm represents ultraviolet light, with m=1 and n=2, while the wavelength 1282 nm represents infrared light, with m=3 and n=4. These conclusions are derived from the Balmer-Rydberg equation where m and n are quantum states.
Explanation:The wavelengths emitted by a hydrogen atom are determined by the energy difference between quantum states, which are indicated by the values of m and n. For hydrogen, the series corresponding to an m value of 1 is in the ultraviolet spectrum, while the series corresponding to an m value of 3 is in the infrared spectrum.
Part A and B: The wavelength 97.26 nm belongs to the Lyman series (where m=1) and in it, the n value is 2 for this wavelength. Therefore by the Balmer-Rydberg equation, this presents ultraviolet light since it falls into 10nm to 400nm range which represents the ultraviolet spectrum.
Part C and D: The wavelength 1282 nm corresponds to the Paschen series (where m=3) and the n value is 4, thus resulting in an infrared light since it falls over 700 nm which represents the infrared spectrum.
Part E and F: Summarily, The 97.26 nm wavelength represents ultraviolet light while the 1282 nm wavelength represents infrared light.
Learn more about Hydrogen Wavelengths here:https://brainly.com/question/31833299
#SPJ11
Blood pressure is the force exerted against the
Blood pressure is the force that blood exerts when circulating through our body (if it is considered as a fluid) on the internal walls of veins, blood vessels and especially the arteries.
In this sense, arteries are the "conduits" that carry blood from the heart to various parts of the body, analogous to the water flow in the pipes of a house. So, each time a person's heart beats, it pumps blood to the arteries and from there it is distributed throughout the body.
Now, this blood pressure is divided into two terms:
Systolic pressure: When the heart is pumping blood and the force exerted on the arteries is high.
Diastolic pressure: When the heart is at rest (between heartbeats) and the pressure in the arterial walls is low.
Another important factor in blood pressure is the extent to which the arteries exert resistance to the circulation of the blood flow, depending on how narrow or wide they are and the amount of blood that passes through them.
In other words, this pressure is determined by two main aspects:
-The amount of blood pumped and the force it exerts on the arteries.
-The size and flexibility of these arteries.
Finally, it is important to note this process is a basic part of life and is one of the main vital signs when testing the health status of a person.
How deep in the ocean is the wreckage of the titanic?
Answer:
12,500 feet
Explanation:
Which of the following selections completes the following nuclear reaction?
Answer:
n (a neutron)
Explanation:
For a chemical element:
- The lower subscript indicates the atomic number (the number of protons)
- The upper subscript indicates the mass number (the sum of protons and neutrons in the nucleus)
In the reaction described in the problem, we see that a gamma photon hits a nucleus of Calcium-40, which has
Z = 20 (20 protons)
A = 40 (40 protons+neutrons)
Which means that the number of neutrons is n = A - Z = 40 - 20 = 20
After the reaction, we have a nucleus of Calcium-39, which has
Z = 20 (20 protons)
A = 39 (39 protons+neutrons)
Which means that the number of neutrons is n = A - Z = 40 - 39 = 19
So, the nucleus has lost 1 neutron, which is the particle missing in the reaction.
The surface temperature of the star Rigel is 12,000 K, its radius is 5.43 ✕ 10^10 m, and its emissivity is 0.955. Determine the total energy radiated by this star each second (in W). W
Answer: [tex]4.1602(10)^{21} W[/tex]
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
[tex]P=\sigma A T^{4}[/tex] (1)
Where:
[tex]P[/tex] is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing [tex]1W=\frac{1Joule}{second}=1\frac{J}{s}[/tex]
[tex]\sigma=5.6703(10)^{-18}\frac{W}{m^{2} K^{4}}[/tex] is the Stefan-Boltzmann's constant.
[tex]A[/tex] is the Surface of the body
[tex]T=12000K[/tex] is the effective temperature of the body (its surface absolute temperature) in Kelvin .
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close.
Therefore, for the case of the star Rigel, we will use the Stefan-Boltzmann law for real radiator bodies:
[tex]P=\sigma A \epsilon T^{4}[/tex] (2)
Where [tex]\epsilon=0.955[/tex] is the star's emissivity
Now, firstly we need to find [tex]A[/tex], in the case of Rigel, its surface area can be approximated to a sphere, so:
[tex]A_{Rigel}=4 \pi r^{2}[/tex] (3)
[tex]A_{Rigel}=4 \pi (5.43(10)^{10}m)^{2}[/tex]
[tex]A_{Rigel}=3.705(10)^{22}m^{2}[/tex] (4)
Knowing this value, let's substitute it in (2):
[tex]P=(5.6703(10)^{-18}\frac{W}{m^{2} K^{4}})(3.705(10)^{22}m^{2})(0.955)(12000K)^{4}[/tex] (5)
[tex]P=4.1602(10)^{21}W[/tex] (6) This is the total energy radiated by Rigel each second.
To determine the total energy radiated by the star Rigel each second, we can use the Stefan-Boltzmann law. Given the temperature, radius, and emissivity of Rigel, we can calculate the surface area and use it to find the power radiated by the star.
Explanation:To determine the total energy radiated by the star Rigel each second, we can use the Stefan-Boltzmann law, which states that the power radiated by a black body is proportional to the fourth power of its temperature. The equation is given by:
Power = εσAT⁴
Where ε is the emissivity, σ is the Stefan-Boltzmann constant, A is the surface area of the star, and T is the temperature in Kelvin.
For Rigel, given its temperature (12,000 K), radius (5.43 × 10¹⁰ m), and emissivity (0.955), we can calculate the surface area:
A = 4πr²
A = 4π(5.43 × 10¹⁰)²
The power radiated by Rigel each second is:
Power = (0.955)(5.67 × 10⁻⁸)(4π(5.43 × 10¹⁰)²)(12,000⁴)
Calculate the power to get the answer.
The amount of space an object takes up is its
Volume.
Hope this helps.
r3t40
What type of electron is available to form bonds
Answer:
The electrons that are available to form bonds are known as valence electrons.
Explanation:
Which of the following statements best describes the characteristic of the restoring force in the spring-mass system described in the introduction?The restoring force is constant.The restoring force is directly proportional to the displacement of the block.The restoring force is proportional to the mass of the block.The restoring force is maximum when the block is in the equilibrium position.
Answer:
The restoring force is directly proportional to the displacement of the block.
Explanation:
For a spring-mass system, the restoring force is given by Hooke's Law:
F = -kx
where
F is the restoring force
k is the spring constant
x is the displacement of the block, attached to the end of the spring
As we see from the equation, the restoring force is directly proportional to the displacement of the block. So, the correct answer is
The restoring force is directly proportional to the displacement of the block.
The correct statement for the answer to the question is The style of recovery is directly proportional to the displacement of the block.
Further explanationRestoring force is a force whose magnitude is proportional to the deviation and is always in the opposite direction to the deviation. Restoring force that causes objects to move in simple harmonics. Simple Harmonic Motion is a movement back and forth around the balance point.
Terms of an object said harmonic include the following:
Its movements are periodic (back and forth).His movements always cross the balance position.The acceleration or force acting on an object is proportional to the position/deviation of the object.The direction of acceleration or force acting on an object always leads to a position of balanceHooke's law states that if the tensile force does not exceed the elastic limit of the spring, then the length of the spring is proportional to the tensile force. If a spring is disturbed so the spring is stretched (the spring is pulled) or docked (the spring is pressed), then the spring will work the restoring force whose direction is always toward the origin.
The force that arises in the spring to return its position to a state of equilibrium is called the recovery force on a spring. A large restoration force on the spring is proportional to the disturbance or deviation experienced by the spring.
Hooke's law can be stated in the following formula equation:
Fp = -k. Δy
(Note : The negative sign (-) in the formula is an indication that the direction of the recovery force always goes towards the point of balance that is opposite to the direction of the force of the cause)
Learn more
The restoring force https://brainly.com/question/11511167, https://brainly.com/question/12162527
Details
Class: High School
Subject: Physics
Keyword: recovery force on a spring.
any help is appreciated please
Answer:
C. It speeds up, and the angle increases
Explanation:
We can answer by using the Snell's law:
[tex]n_i sin \theta_i = n_r sin \theta_r[/tex]
where
[tex]n_i, n_r[/tex] are the refractive index of the first and second medium
[tex]\theta_i[/tex] is the angle of incidence (measured between the incident ray and the normal to the surface)
[tex]\theta_r[/tex] is the angle of refraction (measured between the refracted ray and the normal to the surface)
In this problem, light moves into a medium that has lower index of refraction, so
[tex]n_r < n_i[/tex]
We can rewrite Snell's law as
[tex]sin \theta_r =\frac{n_i}{n_r}sin \theta_i[/tex]
and since
[tex]\frac{n_i}{n_r}>1[/tex]
this means that
[tex]sin \theta_r > sin \theta_i[/tex]
which implies
[tex]\theta_r > \theta_i[/tex]
so, the angle increases.
Also, the speed of light in a medium is given by
[tex]v=\frac{c}{n}[/tex]
where c is the speed of light and v the refractive index: we see that the speed is inversely proportional to n, therefore the lower the index of refraction, the higher the speed. So, in this problem, the light will speed up, since it moves into a medium with lower index of refraction.
What lowers the freezing point of water?
Answer:
It cannot be changed
Explanation:
The freezing point of water cannot be changed; it stays the same.
What is the shortest distance between two points
Answer: displacement
Explanation:
According to the definition of displacement it is the shortest distance between two points.
Final answer:
The shortest distance between two points is a straight line, which is the displacement in physics. The Pythagorean theorem can be used to calculate this distance in a two-dimensional space. Displacement differs from the total distance traveled as it signifies the most direct path between two points.
Explanation:
The shortest distance between two points is often referred to as a straight line. This concept is not only a geometric truth but also has applications in physics, particularly when discussing displacement and distance traveled.
In a two-dimensional space, such as when navigating a city with a grid layout, the shortest path between two points can be visualized as the hypotenuse of a right triangle.
This forms the basis for utilizing the Pythagorean theorem, which is expressed as a² + b² = c², where a and b are the legs of the triangle and c is the hypotenuse. The theorem helps to quantify the straight-line distance between two points, providing a mathematical model for the physical concept of displacement.
Furthermore, in physics, the term 'displacement' is used to describe this shortest-path scenario between the starting and ending points, which differs from the total distance traveled, which accounts for the actual path taken, regardless of its directness.
1).which of the following describes the interaction between a south pole and a north pole of a magnet
a) attract
b) repel
c) stay unchanged
d) it depends
2). which of the following producing a magnetic field
a) motion of electrons
b) pair of atoms
c) magnetic area
d) static charges
1) a) attract
The magnetic force between two magnetic poles is attractive for two unlike poles and repulsive for two like poles. Therefore we have:
1- For two north poles, the force between them is repulsive
2- For two south poles, the force between them is repulsive
3- For a north pole and a south pole, the force between them is attractive
In this problem, we are in the situation described in 3), so the force between the poles is attractive.
2) a) motion of electrons
While electric fields are produced by static electric charges, magnetic fields are produced by charges in motion (currents). In particular, a current in a wire (where a current is simply the motion of electrons inside the wire) produces a magnetic field whose intensity is
[tex]B=\frac{\mu_0 I}{2 \pi r}[/tex]
where
I is the current in the wire
r is the radial distance from the wire
And the direction of the field lines are such that the field form concentric circles around the wire.
Final answer:
A south pole and a north pole of a magnet will attract each other, and a magnetic field is mainly produced by the motion of electrons or the presence of an electric current.
Explanation:
When considering the interaction of magnetic poles, opposite poles indeed attract each other according to magnetic field principles. Specifically, a south pole and a north pole will experience attraction because the magnetic field lines become denser between them, pulling the magnets together. Therefore, the correct answer to the first part of the question is (a) attract.
Regarding what produces a magnetic field, one of the principal sources is the motion of electrons or an electric current. This relationship is observed in electromagnets, where a current flowing through wires creates a surrounding magnetic field. Consequently, the correct answer to the second part of the question is (a) motion of electrons.
A neutral object develops an electric charge when it either gains or loses electrons
True or false ?
Answer:
True
Explanation:
A neutral object is an object whose net charge is zero, so the sum of the positive charges is equal to the sum of negative charges:
[tex]Q=Q_{pos}+Q_{neg}=0\\Q_{pos} = -Q_{neg}[/tex]
If the neutral object develops an electric charge (= different from zero), it means that this balance has changed. In particular, usually electric charge is carried by electrons (negative charges), so the object has either gained or lost electrons.
In particular:
- if the object has gained electrons, it has became negatively charged
- If the object has lost electrons, it has became positively charged
Two identical satellites orbit the earth in stable orbits. One satellite orbits with a speed v at a distance r from the center of the earth. The second satellite travels at a speed that is less than v. At what distance from the center of the earth does the second satellite orbit?
Answer:
The second satellite will orbit at a larger distance
Explanation:
A satellite orbits the Earth due to its gravitational attraction to the Earth, which is equal to the centripetal force, so we can write
[tex]G\frac{Mm}{r^2}=m\frac{v^2}{r}[/tex]
where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance of the satellite from Earth's center
v is the speed of the satellite
We can rewrite the formula as
[tex]r=\frac{GM}{v^2}[/tex]
so we see that the distance of the satellite from the center of the Earth is inversely proportional to the square of the distance. This means that the second satellite, which travels at a lower speed, will have a larger distance from the centre of the Earth.
A satellite orbiting at a lesser speed than another identical satellite orbits at a greater distance from the center of the earth based on principles of orbital dynamics and Kepler's Second Law.
Explanation:The distance at which the second satellite orbits the earth, with a speed less than v, is greater than r. This is based on principles of orbital dynamics, which show a relationship between orbital speed and the distance from the center of the object being orbited. Looking at the gravitational force that supplies the centripetal acceleration for an orbiting object, we can see that as speed decreases, the gravitational force also decreases, meaning the object must be further from the center of gravity.
Take into consideration Kepler's Second Law, in that the satellite travels an equal area within equal times. If we consider two satellites orbiting, the one with a lesser speed will take a greater time to cover the same area, hence, it will be at a greater distance from the earth's center.
These observations are true for stable, circular orbits. Real world conditions might vary due to additional influences such as atmospheric drag, oblateness of the earth, and gravitational perturbations from the sun and moon.
Learn more about Orbital Dynamics here:https://brainly.com/question/30239383
#SPJ3