The time T that technician requires to perform preventive maintenance on an air conditioning unit has an unknown probability distribution. However, its mean is known to be 2 hours, with standard deviation 1 hour. Suppose the company maintains 70 of these units and that the conditions of the Central Limit Theorem apply. What is the probability that a maintenance operation will take more than 2 hours and 15 minutes?

Answers

Answer 1

Answer:

0.4

Step-by-step explanation:

To calculate the probability that a maintenance operation will take more than 2 hours and 15 minutes. We can first calculate the probability that ALL maintenance operation on 70 of the units will take less than 2 hours and 15 minutes, then subtract it from 1.

So the probability of a maintenance operation that would take less than 2 hours and 15 minutes, or 135 minutes is:

[tex]P(X \leq 135, \mu = 120, \sigma = 60) = 0.6 [/tex]

So the probability that a maintenance operation will take more than 2 hours and 15 minutes is:

[tex] 1 - 0.6 = 0.4[/tex]


Related Questions

Determine the point estimate of the population mean and margin of error for the confidence interval.Lower bound is 22, upper bound is 28The point estimate of the population mean is ___The margin of error for the confidence interval is ___

Answers

Answer: The point estimate of the population mean is 25.

The margin of error for the confidence interval is 3 .

Step-by-step explanation:

The confidence interval for population mean is given by :-

[tex](\overline{x}-E , \overline{x}+E)[/tex] , here [tex]\overline{x}[/tex] is the point estimate of the population mean and E is the margin of error .

As per given , we have

Lower bound of CI = [tex]\overline{x}-E =22[/tex]   (1)

Upper bound of CI =  [tex]\overline{x}+E =28[/tex]  (2)

Add (1) and (2) , we get

[tex]2\overline{x}=50\\\Rightarrow\ \overline{x}=25[/tex]

Subtract (1) from (2) , we get

[tex]2E=6\\\Rightarrow\ E=3[/tex]

Hence, the point estimate of the population mean is 25.

The margin of error for the confidence interval is 3 .

Answer:

1. The point estimate for population mean is 25.

2)

[tex]\text{Margin of error} = \pm 3[/tex]

Step-by-step explanation:

We are given the following information in the question:

Confidence interval: (22,28)

Confidence interval is calculated as:

[tex]\text{Sample mean }\pm \text{ Margin of error}[/tex]

Thus, we can write the equations:

[tex]\bar{x} - \text{Margin of error} = 22\\\bar{x} + \text{Margin of error} = 28[/tex]

1) The point estimate of the population mean

To calculate the point estimate of the population mean we solve the two equations, to find the sample mean

Adding the two equations we get:

[tex]2\bar{x} = 22+ 28 = 50\\\bar{x} = 25[/tex]

Thus, the point estimate for population mean is 25.

2) The margin of error for the confidence interval

Putting the values from the equation, we get:

[tex]\text{Margin of error} = 28 - 25 = 3[/tex]

Thus, the margin of error f the given confidence interval is

[tex]\text{Margin of error} = \pm 3[/tex]

Does involving a statistician to help with statistical methods improve the chance that a medical research paper will be published? A study of papers submitted to two medical journals found that 135 of 190 papers that lacked statistical assistance were rejected without even being reviewed in detail. In contrast, 293 of the 514 papers with statistical help were sent back without review. Find the value of the z-test statistic. Give your answer to two decimal places.

Answers

Answer:

z-test statistic is 3.38

Step-by-step explanation:

Null and alternative hypotheses are:

[tex]H_{0}[/tex]: the proportion of papers that lacked statistical assistance  sent back without review is the same as the proportion of papers with statistical help sent back without review

[tex]H_{a}[/tex]: the proportion of papers that lacked statistical assistance sent back without review is different than the proportion of papers with statistical help sent back without review

Test statistic can be found using the equation:

[tex]z=\frac{p1-p2}{\sqrt{{p*(1-p)*(\frac{1}{n1} +\frac{1}{n2}) }}}[/tex] where

p1 is the sample proportion of papers that lacked statistical assistance  sent back without review ( ([tex]\frac{135}{190}=0.71[/tex])p2 is the sample proportion of papers with statistical help sent back without review  ([tex]\frac{293}{514}=0.57[/tex])p is the pool proportion of p1 and p2 ([tex]\frac{135+293}{190+514}=0.61[/tex])n1 is the sample size of papers that lacked statistical assistance (190)n2 is the sample size of papers with statistical help (514)

Then [tex]z=\frac{0.71-0.57}{\sqrt{{0.61*0.39*(\frac{1}{190} +\frac{1}{514}) }}}[/tex] ≈ 3.38

A recent study conducted by the state government attempts to determine whether the voting public supports a further increase in cigarette taxes to help the public schools. The opinion poll recently sampled 1500 voting age citizens. 622 of the sampled citizens were in favor of an increase in taxes. The state government would like to decide if there is enough evidence to establish whether the proportion of citizens supporting an increase in cigarette taxes is significantly greater than 66%. At what level of significance will the null hypothesis not be rejected?

Answers

Answer:

0.001%

Step-by-step explanation:

Given that a recent study conducted by the state government attempts to determine whether the voting public supports a further increase in cigarette taxes to help the public schools

n = 1500

favour x = 622

Sample proportion p = [tex]622/1500 = 0.4147[/tex]

[tex]H_0: p = 0.66\\H_a: p >0.66[/tex]

(right tailed test)

Assume H0 to be true.

Std error = [tex]\sqrt{\frac{0.66*0.34}{1500} } \\=0.01223[/tex]

p difference = -0.2453

Test statistic Z = [tex]\frac{-0.2453}{0.01223} \\=-20.05[/tex]

p value <0.00001

Hence fon ull hypothesis not to be rejected significant level should be greater than 0.00001 or 0.001%

Shane receives an hourly wage of $30.40 an hour as an emergency room nurse. How much does he make if he works 30 hours during the day at the normal work rate?​

Answers

Multiply his rate by number of hours:

30.40 x 30 = $912

Final answer:

Shane would make $912 if he works 30 hours at his normal work rate.

Explanation:

To calculate how much Shane makes if he works 30 hours at an hourly wage of $30.40, we can multiply his hourly wage by the number of hours he works:

$30.40/hour x 30 hours = $912

Therefore, Shane would make $912 if he works 30 hours at his normal work rate.

Learn more about Calculating earnings here:

https://brainly.com/question/11921889

#SPJ12

Sue and Kathy were doing their algebra homework. They were asked to write the equation of
the line that passes through the points (-3,4) and (6,1). Sue wrote y - 4 = -(x + 3) and Kathy
wrote y = -x + 3. Justify why both students are correct.

Answers

Answer:both students are incorrect

Step-by-step explanation:

The equation of a straight line can be represented in the slope intercept form as

y = mx + c

Where

m = slope = (change in the value of y in the y axis) / (change in the value of x in the x axis)

Slope = (y2 - y1)/(x2 - x1)

y2 = 1

y1 = 4

x2 = 6

x1 = - 3

Slope = (1 - 4)/(6 - -3) = -3/9 = -1/3

To determine the intercept, we would substitute m = -1/3, x = 6 and y = 1 into y = mx + c. It becomes

1 = -1/3 × 6 + c = -2 + c

c = 1 + 2 = 3

The equation becomes

y = -x/3 + 3

If the equation was written in the slope intercept form which is expressed as

y - y1 = m(x - x1)

It becomes

y - 4 = -1/3(x - - 3)

y - 4 = -1/3(x + 3)

Both students are incorrect

Given an actual demand this period of 61, a forecast value for this period of 58, and an alpha of 0.3, what is the experimential smoothing forecast for the next period?

Answers

Answer:

Experimental smoothing forecast for the next period will be 58.9

Step-by-step explanation:

We have given actual demand is [tex]A_{t-1}=61[/tex]

Initial forecast [tex]f_{t-1}=61[/tex] and [tex]\alpha =0.3[/tex]

We have to find the experimental smoothing forecast [tex]f_t[/tex]

Experimental forecast is given by

[tex]f_t=(1-\alpha )f_{t-1}+\alpha A_{t-1}=(1-0.3)\times 58+0.3\times 61=58.9[/tex]

So experimental smoothing forecast for the next period will be 58.9

When you construct a confidence interval for the difference between two proportions, what do you use as an unbiased estimate of the difference between the two proportions?

Answers

Final answer:

To construct a confidence interval for the difference between two proportions, you use an unbiased estimate of the difference between the two proportions.

Explanation:

When constructing a confidence interval for the difference between two proportions, an unbiased estimate of the difference between the two proportions is obtained using the formula:

(p1 - p2) ± ME

Where:

p1 and p2 are the sample proportionsME is the margin of error

The margin of error is calculated as:

ME = z * sqrt((p1*(1-p1)/n1) + (p2*(1-p2)/n2))

Where:

z is the z-score corresponding to the desired confidence leveln1 and n2 are the sample sizes

Using this formula, you can calculate the confidence interval for the difference between two proportions.

Find an equation of the sphere with center s23, 2, 5d and radius 4. What is the intersection of this sphere with the yz-plane?

Answers

Answer:

Equation: [tex](x+3)^2+(y-2)^2+(z-5)^2=16[/tex]

Intersection: [tex](y-2)^2+(z-5)^2=7[/tex]

Step-by-step explanation:        

We are asked to write an equation of the sphere with center center [tex](-3,2,5)[/tex] and radius 4.    

We know that equation of a sphere with radius 'r' and center at [tex](h,k,l)[/tex] is in form:

[tex](x-h)^2+(y-k)^2+(z-l)^2=r^2[/tex]

Since center of the given sphere is at point [tex](-3,2,5)[/tex], so we will substitute [tex]h=-3[/tex], [tex]k=2[/tex], [tex]l=5[/tex] and [tex]r=4[/tex] in above equation as:

[tex](x-(-3))^2+(y-2)^2+(z-5)^2=4^2[/tex]

[tex](x+3)^2+(y-2)^2+(z-5)^2=16[/tex]

Therefore, our required equation would be [tex](x+3)^2+(y-2)^2+(z-5)^2=16[/tex].

To find the intersection of our sphere with the yz-plane, we will substitute [tex]x=0[/tex] in our equation as:

[tex](0+3)^2+(y-2)^2+(z-5)^2=16[/tex]

[tex]9+(y-2)^2+(z-5)^2=16[/tex]

[tex]9-9+(y-2)^2+(z-5)^2=16-9[/tex]

[tex](y-2)^2+(z-5)^2=7[/tex]

Therefore, the intersection of the given sphere with the yz-plane would be [tex](y-2)^2+(z-5)^2=7[/tex].

All areas of the country use a BAC of 0.100.10 ​g/dL as the legal intoxication level. Is it possible that the mean BAC of all drivers involved in fatal accidents who are found to have positive BAC values is less than the legal intoxication​ level? a. No, it is not possible.b. Yes, and it is highly probable.c. Yes, but it is not likely.

Answers

Answer:

The answer is b): Yes, and it is highly probable.

Step-by-step Explanation:

Yes, it is highly probable that the mean BAC of all drivers involved in fatal accidents and found to have positive BAC values, is less than the legal intoxication level because blood alcohol concentration (BAC) level is not the most/only factor that determines fatal accidents. Other types of human errors are the main causes of fatal accidents; they include: side distractions, avoiding the use of helmets and seat belts, over-speeding, beating traffic red lights, overtaking in an inappropriate manner, using the wrong lane, etc. Most times, these errors are not caused by BAC levels.

For this problem, carry at least four digits after the decimal in your calculations. Answers may vary slightly due to rounding.


A random sample of 5020 permanent dwellings on an entire reservation showed that 1564 were traditional hogans. (a) Let p be the proportion of all permanent dwellings on the entire reservation that are traditional hogans.


Find a point estimate for p. (Round your answer to four decimal places.)

Answers

Answer:

[tex]p = \frac{1564}{5020} = 0.3116[/tex]

Step-by-step explanation:

The point estimate for the population proportion is the number of sucesses divided by the size of the sample.

In this problem, we have that:

A success is being a tradition hogan in the reservation(the population). In a sample of 5020, 1564 are traditional hogans.

So [tex]p = \frac{1564}{5020} = 0.3116[/tex]

What kinds of functions can be integrated using partial fraction decomposition? Choose the correct answer below

A. Inverse functions
B. Rational functions
C. Periodic functions
D. Logarithmic functions

Answers

Answer:

B. Rational functions

Step-by-step explanation:

The partial fraction decomposition is used for functions there are described by fractions, and for which the substitution method is not possible. These are rational functions, in which both the numerator and the denominator are polynomials.

So the correct answer is:

B. Rational functions

Final answer:

Partial fraction decomposition is used to simplify complex rational functions to make them easier to integrate. Rational function is the correct answer.

Explanation:

The correct answer is B. Rational functions. Partial fraction decomposition is a mathematical technique used essentially to simplify complex rational functions. A rational function is a function that can be defined as the ratio of two polynomials. By breaking down a complex rational function into simpler fractions (which is what partial fraction decomposition does), integration becomes more manageable. For example, it's easier to integrate simple fractions like 1/x or 2/x^2, which would be the result of a partial fraction decomposition, than complex, intertwined expressions.

Learn more about Partial Fraction Decomposition here:

https://brainly.com/question/34850694

#SPJ3

Listed below are student evaluation ratings of​ courses, where a rating of 5 is for​ "excellent." The ratings were obtained at one university in a state. Construct a confidence interval using a 95​% confidence level. What does the confidence interval tell about the population of all college students in the​ state?


3.63.6​,


2.92.9​,


3.83.8​,


4.54.5​,


3.23.2​,


3.93.9​,


3.33.3​,


4.64.6​,


4.14.1​,


4.34.3​,


4.44.4​,


3.93.9​,


3.23.2​,


4.24.2​,


3.83.8

Answers

Answer:

3.573 to 4.127

Step-by-step explanation:

Given

Sample size = 15

Mean = Sum of ratings/ sample size

Mean = 57.7/15

Mean = 3.85

Degree of freedom = sample size - 1

Degree of freedom = 15 - 1 = 14

df = 14

Then we calculate the standard deviation

(x - mean)² ||

(3.6 - 3.85)² || 0.0625

(2.9 - 3.85)² || 0.9025

(3.8 - 3.85)² || 0.0025

(4.5 - 3.85)² || 0.4225

(3.2 - 3.85)² || 0.4225

( 3.9 - 3.85)² || 0.0025

( 3.3 - 3.85)² || 0.3025

( 4.6 - 3.85)² || 0.5625

(4.1 - 3.85)² || 0.0625

(4.3 - 3.85)² || 0.2025

4.4 - 3.85)² || 0.3025

( 3.9 - 3.85)² || 0.0025

(3.2 - 3.85)² || 0.4225

( 4.2 - 3.85)² || 0.1225

( 3.8 - 3.85)² || 0.0025

Total || 3.7975

Variance = 3.7975/15 = 0.253167

Standard Deviation = √0.253167 = 0.50315703314174194

Standard Deviation = 0.5 ------- Approximated

The next step is to subtract the confidence level from 1, then divide by two.

i.e (1 - 0.95)/2 = 0.025

α = 0.025

Then we look up this answer to step in the t-distribution table.

For 14 degrees of freedom (df) and α = 0.025, my result is 2.145

The next step is to divide the sample standard deviation by the square root of the sample size.

0.5 / √15 = 0.129

Next is to multiply this result by step 2.145 (from the t table)

0.129 × 2.45 = 0.277

For the lower end of the range, subtract 0.277 from the sample mean.

3.85 – 0.277 = 3.573

Step 7: For the upper end of the range, add step 0.277 to the sample mean.

3.85 + 0.277 = 4.127

Patterson Electronics supplies microcomputer circuitry to a company that incorporates microprocessors into refrigerators and other home appliances. One of the components has an annual demand of 250 units, and this is constant throughout the year. Carrying cost is estimated to be $1 per unit per year, and the ordering cost is $30 per order.a. To minimize cost, how many units should be ordered each time an order is placed?


b. How many orders per year are needed with the optimal policy?


c. What is the average inventory if costs are minimized?


d. Suppose that the ordering cost is not $30, and B. Brady has been ordering 250 units each time an order is placed. For this order policy (of Q = 250 to be optimal, determine what the ordering cost would have to be.

Answers

Answer:

a) Q = 122 units/order

b) Number of orders = 2.05 orders/year

c) Average inventory = 61 units

d) Ordering costs = 125 $/order

Step-by-step explanation:

The economic quantity order (EOQ) formula allow us to minimize the ordering cost, in function of the demand, ordering cost and holding cost.

The EOQ formula is:

[tex]EOQ=\sqrt{\frac{2DS}{H} }[/tex]

where:

D: demand in units/year

S: Order costs, per order

H: holding or carrying cost, per unit a year

a) In this case:

D: 250 u/year

S: 30 $/order

H: 1 $/year-unit

[tex]EOQ=\sqrt{\frac{2DS}{H} }=\sqrt{\frac{2*250*30}{1} }=\sqrt{15000}=122.47\approx122[/tex]

b) If we have a demand of 250 units/year and we place orders of 122 units, the amount of orders/year is:

[tex]\#orders=\frac{D}{EOQ}=\frac{250\,units/year}{122\,units/order}=2.05\, \frac{orders}{year}[/tex]

c) We assume that there is no safety stock, so everytime the stock hits 0 units, a new order enter the inventory.

In this case, the average inventory can be estimated as the average between the inventory when a new order enters the inventory (122 u.) and the inventory right before a order enters (0 u.)

[tex]\#av.inventory=\frac{122+0}{2}=61[/tex]

The average inventory is 61 units.

d) If 250 units is the optimal quantity for an order, it means it is equal to the EOQ. We can calculate the new ordering costs as:

[tex]EOQ=\sqrt{\frac{2DS}{H} }=\sqrt{\frac{2*250*S}{1} }=250\\\\2*250*S=250^2\\\\S=250/2=125\,\$/order[/tex]

A) To minimize cost, the number of units that should be ordered each time an order is placed is; 122 units

B) The number of orders per year needed with the optimal policy is; 2 orders per year.

C)  The average inventory if costs are minimized is; 61 units

D) For the order policy of Q = 250 to be optimal, the ordering cost would have to be; $125 per order

The formula for economic quantity order (EOQ) is given as;

EOQ = √(2DS/H)

Where;

D is demand rate S is set up costs H is holding cost

We are given;

Annual demand; D = 250 units/year

Holding Cost; H = $1 per unit per year

Set up costs; S = $30 per order

A) EOQ here is;

EOQ = √(2 × 250 × 30/1)

EOQ = 122.47

But EOQ has to be a whole number and so we approximate to the nearest whole number to get;

EOQ = 122

B) With the optimal policy, the number of orders per year is gotten from the formula;

n = D/EOQ

Plugging in the relevant values gives;

n = 250/122

n = 2.049

But number of orders has to be a whole number. Thus, we approximate to the nearest whole number to get;

n = 2 orders per year

C) If costs are minimized, the average inventory is defined as the average between of the inventory when a new order enters and the inventory just before a new order enters.

Before a new order enters the inventory is 0 if we assume that there is no safe stock. Thus;

average inventory = (122 + 0)/2 = 61 units

D) We are told that ordering cost is not $30 but Optimal order EOQ is 250 and so;

EOQ = √(2DS/H)

⇒ 250 = √(2 × 250 × S/1)

Square both sides to get;

250² = 500S

S = 250²/500

S = $125 per order

Read more about economic quantity order (EOQ) at; https://brainly.com/question/16395657

what is the function equation in function notation?
enter your answer in the box show your work. explain how you found numbers for the slope and y intercept ​

Answers

Answer:

[tex] y= 2x +1[/tex]

By direct comparison we can see that m =2 (slope) and b =1 (intercept)

Step-by-step explanation:

Assuming the following function:

[tex] y-2x =1[/tex]

We want to find the following general equation for a linear model:

[tex]y = mx +b [/tex]

On this case we just need to add 2x on both sides of the original equation and we got:

[tex] y= 2x +1[/tex]

By direct comparison we can see that m =2 and b =1

[tex] mx + b = 2x +1[/tex]

[tex]mx=2x , m =2[/tex]

[tex] b =1[/tex]

the value of m on this case represnt the slope and b the intercept.

The slope is defined by the following formula:

[tex] m =\frac{\Delta y}{\Delta x}[/tex]

And is the interpretation is the rate of change of y respect to x, can be positive or negative. Or the increase/decrease of y when x increase 1 unit.

And the value b=1 represent the y intercept, that means if x=0 then y =1

What type of variable is the number of auto accidents reported in a given month?

Select one:
A. Interval
B. Ratio
C. Continuous
D. Discrete

Answers

Answer:

D. Discrete

Step-by-step explanation:

The number of reported car accidents is a countable variable, that can only be natural values.

You can have 0, 1, 2, 3, 4, ..., 100, ..., 1000 reported car accidents in a given month.

You cannnot have 4.5 reported car accidents in a given month, for example.

So the correct answer is:

D. Discrete

Final answer:

The type of variable that represents the number of auto accidents reported in a given month is a discrete variable, as it can only take certain values (0, 1, 2, etc.), and never a fraction or decimal.

Explanation:

The type of variable that best describes the number of auto accidents reported in a given month is Discrete.

In statistics, variables are classified into different types based on their properties. A discrete variable is one that can only take certain values. This is the case for the number of auto accidents in a month, which could be 0, 1, 2, 3, etc., but never a fraction or decimal value like 2.5.

In contrast, a continuous variable could take any value within a certain range, including fractions and decimals. Meanwhile, interval and ratio are types of data measurements that don't apply in this context.

Learn more about Discrete Variable here:

https://brainly.com/question/28397043

#SPJ3

The time that it takes a randomly selected job applicant to perform a certain task has a distribution that can be approximated by a normal distribution with a mean value of 150 sec and a standard deviation of 25 sec. The fastest 10% are to be given advanced training. What task times qualify individuals for such training? (Round the answer to one decimal place.)

________ seconds or less

Answers

Final answer:

The cutoff time to be in the fastest 10% of job applicants is approximately 118.0 seconds or less, calculated using a z-score of the 10th percentile in a normal distribution.

Explanation:

The student is asking about finding the cutoff time for the fastest 10% of job applicants performing a certain task, given that the time taken is normally distributed with a mean of 150 seconds and a standard deviation of 25 seconds. To solve this problem, we will use the z-score corresponding to the fastest 10% (the 10th percentile) in a normal distribution.

First, we look up the z-score for the 10th percentile in the z-table, which is approximately -1.28. Then we use the z-score formula:

z = (X - μ) / σ

Plugging in the known values:

-1.28 = (X - 150) / 25

Now, we solve for X:

X = -1.28 × 25 + 150

X = -32 + 150

X = 118 seconds

So, job applicants must complete the task in approximately 118.0 seconds or less to qualify for the advanced training.

Which of the following is a polynomial function? Select all correct answers. Select all that apply: f(x)=4⋅11x f(x)=3⋅18x f(x)=10⋅17x f(x)=−4x3−4x2+5x+1 f(x)=−2x−1

Answers

Answer:

All of them are polynomial functions

Step-by-step explanation:

Remember that a polynomial function of x is a function whose value f(x) is always equal to [tex]f(x)=a_0+a_1x+a_2x^2+\cdots a_nx^n[/tex] for a fixed n≥0 (the degree of f) and fixed coefficients [tex]a_i\in\mathbb{R}[/tex]

For example, [tex]f(x)=x^2+3x[/tex] is a polynomial function, but [tex]g(x)=2^x+x[/tex] is not because [tex]2^n[/tex] is not a nonnegative power of x. Another example of a non-polynomial function is [tex]g(x)=x^{-1}=\frac{1}{x}[/tex].

f(x)=4⋅11x is polynomial with degree 1 and [tex]a_0=0,a_1=4\cdot 11[/tex]. For the same reasons, f(x)=3⋅18x and f(x)=10⋅17x are polynomial functions.

f(x)=−4x³−4x²+5x+1 is a polynomial function of degree 3 with [tex]a_0=1,a_1=5, a_2=a_3=-4[/tex]. and f(x)=−2x−1 is a polynomial function of degree 1 and coefficients [tex]a_0=-1,a_1=-2[/tex].

Final answer:

In mathematics, a polynomial function involves operations of addition, subtraction, multiplication, and non-negative, whole-number exponents of variables. Here, the polynomial functions from the given list are: f(x)=−4x3−4x2+5x+1 and f(x)=−2x−1.

Explanation:

In the realm of mathematics, a polynomial function is an expression consisting of variables and coefficients, using only the operations of addition, subtraction, multiplication, and non-negative, whole-number exponents of variables. When asked to determine which of the given functions are polynomial functions, we can apply this definition. Your options were: f(x)=4⋅11x, f(x)=3⋅18x, f(x)=10⋅17x, f(x)=−4x3−4x2+5x+1, and f(x)=−2x−1.

By our definition, the polynomial functions from the list are:  f(x)=−4x3−4x2+5x+1 and f(x)=−2x−1. The other three functions are not polynomial functions as they do not comply with the characteristics of polynomial functions.

Learn more about Polynomial Functions here:

https://brainly.com/question/31908293

#SPJ3

The Scholastic Aptitude Test (SAT) is a standardized test for college admissions in the U.S. Scores on the SAT can range from 600 to 2400.

Suppose that PrepIt! is a company that offers classes to help students prepare for the SAT exam. In their ad, PrepIt! claims to produce "statistically significant" increases in SAT scores. This claim comes from a study in which 427 PrepIt! students took the SAT before and after PrepIt! classes. These students are compared to 2,733 students who took the SAT twice, without any type of formal preparation between tries.

We also conduct a hypothesis test with this data and find that students who retake the SAT without PrepIt! also do significantly better (p-value < 0.0001). So now we want to determine if PrepIt! students improve more than students who retake the SAT without going through the PrepIt! program. In a hypothesis test, the difference in sample mean improvement ("PrepIt! gain" minus "control gain") gives a p-value of 0.004. A 90% confidence interval based on this sample difference is 3.0 to 13.0.

What can we conclude?

A. The PrepIt! claim of statistically significant differences is valid. PrepIt! classes produce improvements in SAT scores that are 3% to 13% higher than improvements seen in the comparison group.

B. Compared to the control group, the PrepIt! course produces statistically significant improvements in SAT scores. But the gains are too small to be of practical importance in college admissions.

C. We are 90% confident that between 3% and 13% of students will improve their SAT scores after taking PrepIt! This is not very impressive, as we can see by looking at the small p-value.

Answers

Answer:

A. The PrepIt! claim of statistically significant differences is valid. PrepIt! classes produce improvements in SAT scores that are 3% to 13% higher than improvements seen in the comparison group.

False, We conduct a confidence interval associated to the difference of scores with additional preparation and without preparation. And we can't conclude that the results are related to a % of higher improvements.

B. Compared to the control group, the PrepIt! course produces statistically significant improvements in SAT scores. But the gains are too small to be of practical importance in college admissions.

Correct, since we net gain is between 3.0 and 13 with 90% of confidence and if we see tha range for the SAT exam is between 600 to 2400 and this gain is lower compared to this range of values.

C. We are 90% confident that between 3% and 13% of students will improve their SAT scores after taking PrepIt! This is not very impressive, as we can see by looking at the small p-value.

False, we not conduct a confidence interval for the difference of proportions. So we can't conclude in terms of a proportion of a percentage.

Step-by-step explanation:

Notation and previous concepts

[tex]n_1 [/tex] represent the sample after the preparation

[tex]n_2 [/tex] represent the sample without preparation  

[tex]\bar x_1 =678[/tex] represent the mean sample after preparation

[tex]\bar x_2 =1837[/tex] represent the mean sample without preparation

[tex]s_1 =197[/tex] represent the sample deviation after preparation

[tex]s_2 =328[/tex] represent the sample deviation without preparation

[tex]\alpha=0.1[/tex] represent the significance level

Confidence =90% or 0.90

The confidence interval for the difference of means is given by the following formula:  

[tex](\bar X_1 -\bar X_2) \pm t_{\alpha/2}\sqrt{(\frac{s^2_1}{n_s}+\frac{s^2_2}{n_s})}[/tex] (1)  

The point of estimate for [tex]\mu_1 -\mu_2[/tex]

The appropiate degrees of freedom are [tex]df=n_1+ n_2 -2[/tex]

Since the Confidence is 0.90 or 90%, the value of [tex]\alpha=0.05[/tex] and [tex]\alpha/2 =0.025[/tex], and we can use excel, a calculator or a table to find the critical value. The excel command would be: "=-T.INV(0.025,df)  

The standard error is given by the following formula:  

[tex]SE=\sqrt{(\frac{s^2_1}{n_1}+\frac{s^2_2}{n_2})}[/tex]  

After replace in the formula for the confidence interval we got this:

[tex]3.0 < \mu_1 -\mu_2 <13.0 [/tex]

And we need to interpret this result:

A. The PrepIt! claim of statistically significant differences is valid. PrepIt! classes produce improvements in SAT scores that are 3% to 13% higher than improvements seen in the comparison group.

False, We conduct a confidence interval associated to the difference of scores with additional preparation and without preparation. And we can't conclude that the results are related to a % of higher improvements.

B. Compared to the control group, the PrepIt! course produces statistically significant improvements in SAT scores. But the gains are too small to be of practical importance in college admissions.

Correct, since we net gain is between 3.0 and 13 with 90% of confidence and if we see tha range for the SAT exam is between 600 to 2400 and this gain is lower compared to this range of values.

C. We are 90% confident that between 3% and 13% of students will improve their SAT scores after taking PrepIt! This is not very impressive, as we can see by looking at the small p-value.

False, we not conduct a confidence interval for the difference of proportions. So we can't conclude in terms of a proportion of a percentage.

Sydney is playing a game on a map with a marked grid. To start, she places a game piece at (1, 4). She moves 3 units east and 2 units north and places a second game piece at (4, 6). She continues playing game pieces so that each piece is 3 units east and 2 units north in relation to the previous piece. What is the location of the third game piece she places?

Answers

Answer:

(7, 8)

Step-by-step explanation:

If Sidney places each piece 3 units east and 2 units north of the last one, we can figure out which coordinate comes first by subtracting the position of the second piece (S) by the position of the first piece (F):

[tex]S - F = (4,6) - (1,4) = (3,2)[/tex]

We can conclude that coordinates are in the (East, North) format.

Therefore, the location of the third piece (T) is:

[tex]T = S(E,N) +(3,2)= (4,6)+(3,2)\\T = (7,8)[/tex]

The Consumer Price Index​ (CPI) is a measure of the change in the cost of goods over time. If 1982 is used as the base year of comparison in some country, (CPI =100 in​ 1982), then the CPI of 191.2 in 2006 would indicate that an item that cost $ 1.00 in 1982 would cost $ 1.91 in 2006 in this country. It is known that the CPI in this country has been increasing at an approximately linear rate for the past 30 years.

a. Use this information to determine a linear function for this​ data, letting x be the years since 1982.

b. Based on your​ function, what was the CPI in​ 2000? Compare this estimate to the actual CPI of 167.5 for this country.

c. How is the annual CPI​ changing?

Answers

Answer:

a) [tex]y = 3.8 x +100[/tex]

b) [tex]Abs. change= |168.4-167.5|=0.9[/tex]

So the calculated value is 0.9 points above the actual value.

[tex]Relative. Change =\frac{|168.4 -167.5|}{167.5}x100 =0.537[/tex]%

And the calculated value it's 0.537% higher than the actual value.

c) For this case we can use the slope obtained from the linear model to answer this question, and we can conclude that the CPI is increasing at approximate 3.8 units per year.

Step-by-step explanation:

Data given

1982 , CPI=100

1986, CPI = 191.2

Notation

Let CPI the dependent variable y. And the time th independent variable x.

For this case we want to adjust a linear model givn by the following expression:

[tex]y=mx+b[/tex]

Solution to the problem

Part a

For this case we can find the slope with the following formula:

[tex] m =\frac{CPI_{2006}-CPI_{1982}}{2006-1982}[/tex]

And if we replace we got:

[tex] m =\frac{191.2-100}{2006-1982}=3.8[/tex]

Let X represent the number of years after. Then for 1982 t = 0, and if we replace we can find b:

[tex] 100 = 3.8(0)+b[/tex]

And then [tex]b=100[/tex]

So then our linear model is given by:

[tex]y = 3.8 x +100[/tex]

Part b

For this case we need to find the years since 1982 and we got x = 2000-1982=18, and if we rpelace this into our linear model we got:

[tex]y = 3.8(18) +100=168.4[/tex]

And the actual value is 167.5 we can compare the result using absolute change or relative change like this:

[tex]Abs. change= |168.4-167.5|=0.9[/tex]

So the calculated value is 0.9 points above the actual value.

And we can find also the relative change like this:

[tex]Relative. Change =\frac{|Calculated -Real|}{Real}x100[/tex]

And if we replace we got:

[tex]Relative. Change =\frac{|168.4 -167.5|}{167.5}x100 =0.537[/tex]%

And the calculated value it's 0.537% higher than the actual value.

Part c

For this case we can use the slope obtained from the linear model to answer this question, and we can conclude that the CPI is increasing at approximate 3.8 units per year.

In which of the following situations would the use of sampling be most appropriate?Multiple Choice
a. The need for precise information is less important.
b. The number of items comprising the population is smaller.
c. The likelihood of selecting a representative sample is relatively low.
d. The use of sampling would be appropriate in all of these situations.

Answers

Final answer:

Sampling is most appropriate

option c

Explanation:

In the given multiple choice situations, the use of sampling would most probably be appropriate in the situation where 'The need for precise information is less important'. Sampling is a procedure of statistical analysis where a predetermined number of observations are taken from a larger population. It is typically used when it is impracticable or expensive to study the entire population. It's an ideal method when having precise and exact information is not as crucial, however, the results will be sufficient to make accurate predictions or conclusions about a larger group.

On the other hand, sampling may not be substantially beneficial for smaller populations or where the likelihood of selecting a representative sample is low because the results might be skewed or non-representative of the larger group. In such conditions, examining the entire population or utilizing another form of data collection would be more advantageous.

Learn more about Sampling here:

https://brainly.com/question/31577848

#SPJ3

The Chapin Social Insight Test evaluates how accurately the subject appraises other people. In the reference population used to develop the test, scores are approximately normally distributed with mean 25 and population standard deviation five. The range of possible scores is between 0 to 41. Determine the standardized value (z-value) for the score of 28.

Answers

Answer: 0.6

Step-by-step explanation:

Formula to get the standardized value :

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]  (1)

, where x= random variable , [tex]\mu[/tex] = Population mean and [tex]\sigma[/tex] = population standard deviation.

As per given , we have

[tex]\mu=25[/tex]

[tex]\sigma=5[/tex]

To find standardized value for the score of x=28

[tex]z=\dfrac{28-25}{5}=0.6[/tex]   (substitute values in (1))

Hence, the standardized value for the score of 28 is 0.6 .

Suppose that prices of a gallon of milk at various stores in one town have a mean of $3.73$⁢3.73 with a standard deviation of $0.10$⁢0.10. Using Chebyshev's Theorem, what is the minimum percentage of stores that sell a gallon of milk for between $3.43$⁢3.43 and $4.03$⁢4.03? Round your answer to one decimal place.

Answers

Answer: At-least 88.89%

Step-by-step explanation:

As per given , we have

Population mean : [tex]\mu=\$3.73[/tex]

Standard deviation :  [tex]\sigma=\$0.10[/tex]

Now , $3.43= $⁢3.73- 3(0.10) = [tex]\mu-3\sigma[/tex]

$⁢4.03 = $⁢3.73+3(0.10) = [tex]\mu+3\sigma[/tex]

i.e. $3.43 is 3 standard deviations below mean and $⁢4.03 is 3 standard deviations above mean .

To find :  the minimum percentage of stores that sell a gallon of milk for between $3.43 and $4.03.

i.e. to find minimum percentage of stores that sell a gallon of milk  lies within 3 standard deviations from mean.

According to Chebyshev, At-least [tex](1-\dfrac{1}{k^2})[/tex] of the values  lies with in [tex]k\sigma[/tex] from mean.

For k= 3

At-least [tex](1-\dfrac{1}{3^2})[/tex] of the values lies within [tex]3\sigma[/tex] from mean.

[tex]1-\dfrac{1}{3^2}=1-\dfrac{1}{9}=\dfrac{8}{9}[/tex]

In percent = [tex]\dfrac{8}{9}\times100\%\approx88.89\%[/tex]

Hence, the minimum percentage of stores that sell a gallon of milk for between $3.43 and $4.03 =  At-least  88.89%

Final answer:

Using Chebyshev's Theorem, the minimum percentage of stores selling a gallon of milk between $3.43 and $4.03 is at least 88.9% when the mean price is $3.73 and the standard deviation is $0.10.

Explanation:

Using Chebyshev's Theorem, we can determine the minimum percentage of stores selling a gallon of milk within a certain range of prices given the mean and standard deviation. The theorem states that for any number k, where k > 1, at least (1 - 1/k²) of the data values will fall within k standard deviations of the mean. In this case, the range of prices is from $3.43 to $4.03, which is $0.30 away from the mean of $3.73 on either side.

To find k, we divide the distance from the mean by the standard deviation: k = 0.30 / 0.10 = 3. Thus, at least (1 - 1/3²) or (1 - 1/9) of the stores sell a gallon of milk within this range. Calculating this, we get at least (1 - 1/9) = 8/9 or approximately 88.9% of stores.

Therefore, according to Chebyshev's Theorem, the minimum percentage of stores that sell a gallon of milk for between $3.43 and $4.03 is at least 88.9%.

Golf course designer Roberto Langabeer is evaluating two sites, Palmetto Dunes and Ocean Greens, for his next golf course. He wants to prove that Palmetto Dunes residents (population 1) play golf more often than Ocean Greens residents (population 2). Roberto plans to test this hypothesis using a random sample of 81 individuals from each suburb. His alternative hypothesis is __________.

Answers

Answer:

a) Null hypothesis:[tex]\mu_{1} \leq \mu_{2}[/tex]

Alternative hypothesis:[tex]\mu_{1} > \mu_{2}[/tex]

b) [tex]z_{crit}=2.33[/tex]

And since the calculated value is lower than the critical value we have enough evidence at 0.01 of significance to FAIL to reject the null hypothesis.

Step-by-step explanation:

Part a

A hypothesis is defined as "a speculation or theory based on insufficient evidence that lends itself to further testing and experimentation. With further testing, a hypothesis can usually be proven true or false".  

The null hypothesis is defined as "a hypothesis that says there is no statistical significance between the two variables in the hypothesis. It is the hypothesis that the researcher is trying to disprove".

The alternative hypothesis is "just the inverse, or opposite, of the null hypothesis. It is the hypothesis that researcher is trying to prove".

We want to test this:

Null hypothesis:[tex]\mu_{1} \leq \mu_{2}[/tex]

Alternative hypothesis:[tex]\mu_{1} > \mu_{2}[/tex]

Part b

Golf course designer Roberto Langabeer is evaluating two sites, Palmetto Dunes and Ocean Greens, for his next golf course. He wants to prove that Palmetto Dunes residents (population 1) play golf more often than Ocean Greens residents (population 2). Roberto commissions a market survey to test this hypothesis. The market researcher used a random sample of 64 individuals from each suburb, and reported the following:  X 1 = 15  times per month and  X 2 = 14  times per month. Assume that  σ 1 = 2  and  σ 2 = 3 . With  α = .01 , the critical z value is _____.

Data given and notation

[tex]\bar X_{1}=15[/tex] represent the mean for the sample 1

[tex]\bar X_{2}=14[/tex] represent the mean for the sample 2

[tex]\sigma_{1}=2[/tex] represent the population deviation for 1

[tex]\sigma_{2}=3[/tex] represent the population deviation for 2

[tex]n_{1}=64[/tex] sample size selected for 1

[tex]n_{2}=64[/tex] sample size selected for 2

[tex]\alpha=0.01[/tex] represent the significance level for the hypothesis test.

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value for the test (variable of interest)

The statistic is given by:

[tex]z=\frac{\bar X_{1}-\bar X_{2}}{\sqrt{\frac{\sigma^2_{1}}{n_{1}}+\frac{\sigma^2_{2}}{n_{2}}}}[/tex]     (1)

[tex]z=\frac{15-14}{\sqrt{\frac{2^2}{64}+\frac{3^2}{64}}}}=2.22[/tex]  

In order to find the critical value we need a value that accumulates 0.01 of the area on the right tail, since we are conducting a right tailed test. And the critical value is:

[tex]z_{crit}=2.33[/tex]

And since the calculated value is lower than the critical value we have enough evidence at 0.01 of significance to FAIL to reject the null hypothesis.

Find the quotient of 74.4 divided by 0.8

Answers

Answer:

93

Step-by-step explanation:

Using long division, this is the correct answer. Here are the steps:

remove decimal points: 744 ÷ 8

divide using long division: 93

Answer:

93

Step-by-step explanation:

Given number = 74.4

Divisor = 0.8

[tex]\[\frac{74.4}{0.8} = \frac{74.4*10}{0.8*10}\][/tex]

[tex]\[= \frac{744}{8}\][/tex]

Simplifying,

[tex]\[= \frac{744\div 4}{8\div 4}\][/tex]

[tex]\[= \frac{186}{2}\][/tex]

[tex]\[= 93\][/tex]

Validating by multiplying the quotient and divisor,

[tex]\[93 * 0.8\][/tex]

[tex]\[= 74.4\][/tex]

This is equal to the dividend.

A newsletter for investors recently reported that the average stock price for a blue chip stock over the past 12 months was​ $72. No standard deviation was given. Is the standard deviation more likely to be​ $6, $26, or​ $60? Explain.

Answers

Answer:

$6

Explanation:

The standard deviation gives an idea of the dispertion of values in those 12 month. A hight value of standard deviation means that the prices changed in big increments ( for example one month is $20, other month is $60 and other $85). If that  would be the case, is important to investors to know it and the deviation should be reported.

So, given that it isnt reported, we can say that the price vary but only a few dollars, resulting in a small standard deviation such as $6.

Final answer:

A standard deviation of $6 for a blue chip stock is more likely than $26 or $60, as blue chip stocks are typically stable with less price volatility.

Explanation:

Regarding the standard deviation of the blue chip stock price, it is unlikely that the standard deviation would be very high considering the nature of blue chip stocks. Blue chip stocks are known for their stability and are typically less volatile than other types of stocks. Therefore, a standard deviation of $60 would suggest a very high level of volatility, which is uncharacteristic of blue chip stocks. A standard deviation of $6 is more plausible because it indicates minor fluctuations around the average price of $72, which is more in line with the expected behavior of blue chip stocks. A standard deviation of $26 is possible but less likely than $6, given that such a value still represents a fairly high level of volatility for blue chip stocks, which are commonly considered as safe, long-term investments with relatively steady prices.

You collect a random sample of 28 adult golfers and record two scores for each: one taken before the subject receives professional coaching and one taken after. What test statistic should you use in a significance test for the difference between the before-coaching scores and the after-coaching scores?

Answers

Answer:

Paired  t test

Step-by-step explanation:

Given that you collect a random sample of 28 adult golfers and record two scores for each: one taken before the subject receives professional coaching and one taken after.

Here subject of interest is to study whether the professional coaching really improves the scores.

For this two groups are taken from golfers and they were given chances to play and scores were recorded before and after coaching.  The same subject with two different scores recorded and the difference calculated.  Hence here the appropriate test is paired t test

Statistic should be t because population std devition is not known.

Hence paired t test for comparison of mean differences before and after should be done.

Help me please and thank you

Answers

Answer:

Based on the model, the length of the wall is [tex]\frac{9}{8}[/tex] ft, the width of the wall is [tex]\frac{1}{2}[/tex] ft,  and the height of the wall is [tex]\frac{11}{8}[/tex] ft. The volume of the portion of security wall that  Tim has constructed so far is [tex]\frac{99}{128}[/tex]  cu ft.

Step-by-step explanation:

Given:

The figure constructed shows a rectangular prism made up of small wooden cubes of length [tex]\frac{1}{8}\ ft[/tex].

Width of the prism = [tex]\frac{1}{2}\ ft[/tex].

To find length , height and volume of the figure.

Solution:

From the figure we can conclude that :

Length side of the prism counts 9 cubes.

Thus, length of the prism will be given as :

⇒ [tex]\textrm{Length of each cube}\times \textrm{Number of cubes}[/tex]

⇒ [tex]\frac{1}{8}\ ft\times 9[/tex]

⇒ [tex]\frac{9}{8}\ ft[/tex]  (Answer)

Height side of the prism counts 11 cubes.

Thus, height of the prism will be given as :

⇒ [tex]\textrm{Length of each cube}\times \textrm{Number of cubes}[/tex]

⇒ [tex]\frac{1}{8}\ ft\times 11[/tex]

⇒ [tex]\frac{11}{8}\ ft[/tex] (Answer)

Volume of the prism can be given as :

⇒ [tex]Length\times width\times height[/tex]

⇒ [tex]\frac{9}{8}\ ft\times \frac{1}{2}\ ft\times \frac{11}{8}\ ft  [/tex]

⇒ [tex]\frac{99}{128}\ ft^3[/tex] (Answer)

Use a parameterization of the lower portion cut from the sphere x squared plus y squared plus z squared equals 4x2+y2+z2=4 by the conez equals StartFraction 1 Over StartRoot 3 EndRoot EndFraction StartRoot x squared plus y squared EndRootz=13x2+y2 to express the area of the surface as a double integral. Then evaluate the integral.

Answers

Substituting [tex]z[/tex] from the cone's equation,

[tex]z=\dfrac13\sqrt{x^2+y^2}[/tex]

into the equation of the sphere,

[tex]x^2+y^2+z^2=4[/tex]

gives the intersection of the two surfaces,

[tex]x^2+y^2+\left(\dfrac13\sqrt{x^2+y^2}\right)^2=4\implies x^2+y^2=\dfrac{18}5[/tex]

which is a circle of radius [tex]\sqrt{\frac{18}5}[/tex] centered at [tex]\left(0,0,\frac13\sqrt{\frac{18}5}\right)[/tex].

We parameterize this part of the sphere outside the cone (call it [tex]S[/tex]) by

[tex]\vec s(u,v)=\langle2\cos u\sin v,2\sin u\sin v,2\cos v\rangle[/tex]

with [tex]0\le u\le2\pi[/tex] and [tex]\cos^{-1}\frac1{\sqrt{10}}\le v\le\pi[/tex].

Take the normal vector to [tex]S[/tex] to be

[tex]\dfrac{\partial\vec s}{\partial v}\times\dfrac{\partial\vec s}{\partial u}=\langle4\cos u\sin^2v,4\sin u\sin^2v,4\cos v\sin v\rangle[/tex]

Then the area of [tex]S[/tex] is

[tex]\displaystyle\iint_S\mathrm dA=\int_0^{2\pi}\int_{\cos^{-1}\frac1{\sqrt{10}}}^\pi\left\|\dfrac{\partial\vec s}{\partial v}\times\dfrac{\partial\vec s}{\partial u}\right\|\,\mathrm dv\,\mathrm du[/tex]

[tex]=\displaystyle2\pi\int_{\cos^{-1}\frac1{\sqrt{10}}}^\pi4\sin v\,\mathrm dv=\boxed{\frac{40+4\sqrt{10}}5\pi}[/tex]

A random sample of 250 men yielded 175 who said they'd ridden a motorcycle at some time in their lives, while a similar sample of 215 women yielded only 43 that had done so. Find a 99% confidence interval for the difference between the proportions of men and women who have ridden motorcycles.

a. .5 ± .103

b. .5 ± .085

c. .5 ± .112

d. .4688 ± .085

e. .5 ± .078

Answers

Answer:

Option a is right

Step-by-step explanation:

Given that a random sample of 250 men yielded 175 who said they'd ridden a motorcycle at some time in their lives, while a similar sample of 215 women yielded only 43 that had done so.

For proportions since binomial and sample size large we can use  z critical values.

Sample             I            II

N                    250        215     465

X                     175           43    218

p                       0.7          0.2    0.4688

p difference = 0.5

Std error of difference = [tex]\sqrt{p(1-p)(\frac{1}{n_1}+  \frac{1}{n_2} }\\=\sqrt{0.4688*0.5312)(\frac{1}{250} + \frac{1}{215} )}\\=0.0409[/tex]

Margin of error for 99% = 2.58*std error =  0.105

Confidence interval 99% = (0.5±0.105)            

Option a is right.

Other Questions
A 2.5-kg book slides horizontally and falls from a shelf 3.0 m above the floor. How much work does the force of gravity do on the book as it falls 3.0 m? how to solve 4x + 7 = -2x + 19 Math word problem we need help? The car is purchase for $18,000 after each year the resell value decreases by 25% what will the resale value be after three years Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar.Determine the equation for the parabola graphed below.y = x2 + x + Jane wishes to forward X-Windows traffic to a remote host as well as POP3 traffic. She is worried that adversaries might be monitoring the communication link and could inspect captured traffic. She would like to tunnel the information to the remote end but does not have VPN capabilities to do so. Which of the tool can she use to protect the link? During the early 19th century, there was a large population growth caused by the improvements of the Agricultural Revolution of the 18th century. Many historians believe this population increase is due to ____. In which of the following does the voter get a chance to choose from only democratic candidates? A stone is thrown upward from the top of a building at an angle of 30 to the horizontal and with an initial speed of 20 m/s. The point of release is 45 m above the ground. How long does it take for the stone to hit the ground? What is the stone's speed? What does it mean to look for an authors argument?A) Find the authors claim and support B) Examine the authors credentials C) Follow the narrative progression D) Identify the authors bias about the subject What does the man need? Necesita son el paciente. Necesita hacer una cita con el doctor. Necesita hablar con la secretaria. Necesita tomar un mensaje. A particular guitar string is supposed to vibrate at Assume the current equilibrium level of income is $200 billion as compared to the full-employment income level of $240 billion. If the MPC is 0.625, what change in aggregate expenditures is needed to achieve full employment? The charter of Vista West Corporation specifies that it is authorized to issue 300,000 shares of common stock. Since the company was incorporated, it has sold a total of 160,000 shares (at $16 per share) to the public. It has bought back a total of 25,000. The par value of the stock is $3. When the stock was bought back from the public, the market price was $40. Required: 1. Determine the authorized shares. 2. Determine the issued shares. 3. Determine the outstanding shares. Which characteristic of a protein may change during a DNA mutation?ill give brainliest to the first person with correct answerbtw its science find the domain of the function below if the domain is {-1,0,2} f(x)=x^2 -2x+3 A recession tends to cause the federal budget deficit to ________ because tax revenues ________ and government spending on transfer payments ________. increase; rise; falls decrease; fall; rises increase; fall; rises decrease; rise; falls' What kind of molecule is represented in the diagram?Fatty AcidGlycerolFatty AcidFatty AcidA. A nucleic acidB. A lipidC. A nucleotideD. A carbohydrate HOLAn example of a visual text is a:OA. T-shirt with an image.OB. radio broadcast.OC. text messageOD. magazine article. A worker at a snack stand opened a new box of cups. The first day he used 30 cups , the second day the worker used 15 percent of the remaining cups. A total of 90 cups were used the second day.what was the original amount of cups in the box before any were used?plz help asap will give u brainliest :)