Answer: 28 and 18
Step-by-step explanation:
I used the guess and test strategy to find that:
28 - 10 = 18
28 + 18 = 46
Find an equation of variation where y varies directly as x and y = 15 when x = 5, find y when x is 19.
Answer:
[tex]y=3x[/tex]
y=57, when x is 19.
Step-by-step explanation:
We are asked to write an equation of variation where y varies directly as x.
Since we know that a directly proportional equation is in form: [tex]y=kx[/tex], where k is the constant of proportionality.
Upon substituting x=5 and y= 15 in our equation of variation we will get,
[tex]15=k*5[/tex]
[tex]k=\frac{15}{5}[/tex]
[tex]k=3[/tex]
Upon substituting k=3 in the standard equation of variation we will get our desired equation of variation as: [tex]y=3x[/tex].
Now let us find y, when x is 19.
[tex]y=3*19[/tex]
[tex]y=57[/tex]
Therefore, y equals 57, when x is 19.
Simplify: (3–a)·2+a =
Answer:
The simplified form of the given expression is 6-a.
Step-by-step explanation:
The given expression is
[tex](3-a)\cdot 2+a[/tex]
According to distributive property.
[tex]a\cdot (b+c)=ab+ac[/tex]
Use distributive property.
[tex]3(2)-a(2)+a[/tex]
[tex]6-2a+a[/tex]
Combine like terms.
[tex]6+(-2a+a)[/tex]
[tex]6-a[/tex]
Therefore the simplified form of the given expression is 6-a.
Help me with these math questions.......
Answer: 118.40, 300, $18,000
Step-by-step explanation:
a) p(x) = [tex]-\frac{1}{5} (8) + 120[/tex]
p(8) = [tex]-\frac{8}{5} + 120[/tex]
= -1.60 + 120
= 118.40
b) R(x) = x * p(x)
= [tex]x(-\frac{1}{5}x + 120)[/tex]
= [tex]-\frac{1}{5}x^{2} + 120x[/tex]
a=[tex]-\frac{1}{5}[/tex], b=120
x = [tex]\frac{-b}{2a}[/tex]
= [tex]\frac{-120}{-\frac{2}{5}}[/tex]
= [tex]\frac{-120(5)}{-2}[/tex]
= 300
c) R(x) = [tex]-\frac{1}{5}x^{2} + 120x[/tex]
R(300) = [tex]-\frac{1}{5}(300)^{2} + 120(300)[/tex]
= -18,000 + 36,000
= 18,000
***********************************************************************
sec θ = [tex]\sqrt{6}[/tex]
[tex]\frac{hypotenuse}{adjacent} = \frac{\sqrt{6}}{1}[/tex]
adjacent² + opposite² = hypotenuse²
1² + opposite² = (√6)²
1 + opposite² = 6
opposite² = 5
opposite = √5
csc θ = [tex]\frac{hypotenuse}{opposite} = \frac{\sqrt{6}}{\sqrt{5}} = \frac{\sqrt{30}}{5}[/tex]
cot θ = [tex]\frac{adjacent}{opposite} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}[/tex]
sin θ = [tex]\frac{opposite}{hypotenuse} = \frac{\sqrt{5}}{\sqrt{6}} = \frac{\sqrt{30}}{6}[/tex]
cos θ = [tex]\frac{adjacent}{hypotenuse} = \frac{1}{\sqrt{6}} = \frac{\sqrt{6}}{6}[/tex]
tan θ = [tex]\frac{opposite}{adjacent} = \frac{\sqrt{5}}{1} = \sqrt{5}[/tex]
**********************************************************************
Answer: 144°
Step-by-step explanation:
[tex]\frac{\pi}{180}=\frac{4\pi}{5(x)}[/tex]
π(5x) = 180(4π)
x = [tex]\frac{180(4\pi)}{5\pi}[/tex]
= 36(4)
= 144
What is an equation of the line, in point-slope form, that passes through the given point and has the given slope?
Answer: [tex]y -3 = \frac{4}{11} (x - 11)[/tex]
Step-by-step explanation:
We can use the point-slope formula to write the equation of a line given a point on the line and the slope of the line:
Slope = m
Given point (x₁,y₁)
Formula = (y-y₁) = m(x-x₁)
Given point: (11,3); slope: 4/11
Answer : [tex]y - 3 = \frac{4}{11} (x - 11)[/tex]
[tex]\textit{\textbf{Spymore}}[/tex]
someone help i cant do math bc im pretty
Answer:
52
Step-by-step explanation:
One way is to simply count the number of yellow squares.
I count 52, so the area is 52 square units.
Another way is to find the area of the larger rectangle and subtract from it the area of the smaller rectangle.
The larger rectangle is 11 by 6. Area = 11 * 6 = 66.
The smaller rectangle is 7 by 2. Area 7 * 2 = 14.
Area shaded in yellow = 66 = 14 = 52
Answer: area = 52 square units
Answer:
"i cant do math cuz im pretty" such pick me vibes LOL
Step-by-step explanation:
Sketch the plane curve represented by the given parametric equations. Then use interval notation to give the relation's domain and range. X = 2t, y = t2 + t + 3
Answer:
Domain: [tex]( -\infty,\infty )[/tex] and Range: [tex][ -1,\infty )[/tex]
Step-by-step explanation:
We have the parametric equations [tex]x= 2t[/tex] and [tex]y=t^{2}+t+3[/tex].
Now, we will find the values of 'x' and 'y' for different values of 't'.
t : -3 -2.5 -2 -1.5 -1 0 1 1.5 2
[tex]x= 2t[/tex] : -6 -5 -4 -3 -2 0 2 3 4
[tex]y=t^{2}+t+3[/tex] : 9 6.75 5 3.75 3 3 5 6.75 9
Now, we can see that these parametric equations represents a parabola.
The general form of the parabola is [tex]y=ax^{2}+bx+c[/tex].
Now, we have the point ( x,y ) = ( 0,3 ). This gives that c = 3.
Also, we have the points ( x,y ) = ( -2,3 ) and ( 2,5 ). Substituting these in the general form gives us,
4a - 2b + 3 = 3 → 4a - 2b = 0 → b = 2a.
4a + 2b + 3 = 5 → 4a + 2b = 2 → 2a + b = 1 → 2a + 2a = 1 ( As, b = 2a ) → 4a = 1 → [tex]a=\frac{1}{4}[/tex].
So, [tex]b=\frac{1}{2}[/tex].
Therefore, the equation of the parabola obtained is [tex]y=\frac{x^{2}}{4}+\frac{x}{2}+3[/tex].
The graph of this function is given below and we can see from the graph that domain contains all real numbers and the range is [tex]y\geq -1[/tex].
Hence, in the interval form we get,
Domain is [tex]( -\infty,\infty )[/tex] and Range is [tex][ -1,\infty )[/tex]
Answer:
Domain:
[tex](-\infty,\infty)[/tex]
Range:
[tex][2.75,\infty)[/tex]
Step-by-step explanation:
we are given parametric equation as
[tex]x=2t[/tex]
[tex]y=t^2+t+3[/tex]
We can change into rectangular equation
we can eliminate t from first equation and plug into second equation
[tex]x=2t[/tex]
[tex]t=\frac{x}{2}[/tex]
now, we can plug that into second equation
[tex]y=(\frac{x}{2})^2+\frac{x}{2}+3[/tex]
now, we can draw graph
Domain:
we know that
domain is all possible values of x for which any function is defined
we can see that our equation is parabolic
and it is defined for all values of x
so, domain will be
[tex](-\infty,\infty)[/tex]
Range:
we know that
range is all possible values of y
we can see that
smallest y-value is 2.75
so, range will be
[tex][2.75,\infty)[/tex]
You are going to flip a coin 8 times. The first 3 times you flip the coin you get tails. What is the probability that all the remaining flips will also be tails?
Answer:
So when you flip the coin 8 times and you get tails 3 of the times then you should do 3 plus 5 and you will get 8 as your total again so then the answer is 5 out of 8 total.
Step-by-step explanation:
The probability that all the remaining flips will be tails is 1/32, or approximately 0.03125.
Explanation:The probability of getting tails on each coin flip is 50 percent since a fair coin has two equally likely outcomes: heads or tails.
If the first three coin flips resulted in tails, the remaining five coin flips are independent events. The probability of getting tails on each of the remaining flips is still 50 percent.
The probability of getting all the remaining flips to be tails is calculated by multiplying the probabilities of each individual flip. Since there are five remaining flips, the probability is 0.5 raised to the power of 5, or 1/32 (approximately 0.03125).
Learn more about probability here:
https://brainly.com/question/32117953
#SPJ12
Ryan will rent a car for the weekend. He can choose one of two plans. The first plan has an initial fee of $59 and costs an additional $0.08 per mile driven. The second plan has an initial fee of $46 and costs an additional $0.10 per mile driven.A) for what amount of driving do the two plans cost the same? B) What is the cost when the two plans cost the same
David and Jillian are playing a board game together. Jillian wants to trade her wool cards for David's ore cards. The double number line shows that David will trade 33 ore cards to Jillian for 66 wool cards. Based on the ratio shown in the double number line, how many wool cards does Jillian need to trade for 44 ore cards?
Answer:8
Step-by-step explanation:6%3=2
4x2=8
I swear its 8 check if i'm wrong I dare you
Can someone give 2 examples of a logarithmic equation with infinite solutions?
Assuming what is meant by "infinite solutions" are infinite number of solutions of a logarithmic equation.
[tex]\frac{1}{2}\log x^2 - \log \sqrt{x} - \log \sqrt{x} = 0[/tex]
and
[tex]\frac{1}{2}x-2\ln e^x=-\frac{3}{2}x[/tex]
Logarithmic equations with infinite solutions have graphs that look like dying-out exponentials. They can have infinite solutions because there are infinitely many values of y that satisfy the equation.
Examples of Logarithmic Equations with Infinite Solutions:
1. Logarithms to the base 10 (common logarithms):
In the equations below, y is the exponent to which 10 must be raised to equal x, so y is the common logarithm (log) of x.
x = 10^y
x = 10^y+1
2. Logarithms to the base e (natural logarithms):
In the equations below, y is the power to which e must be raised to equal x, so y is the natural logarithm (ln) of x.
x = e^y
x = e^y+1
Both of these equations have graphs that look like dying-out exponentials. They have infinite solutions because there are infinitely many values of y that satisfy the equation. Whenever the base is positive and not equal to 1, logarithmic equations can have infinite solutions.
Order the numbers from least to greatest. A) 1.5, 1.66, 2.4, 3.25, 3.33 B) 1.5, 1.66, 2.4, 3.33, 3.25 C) 1.66, 1.5, 2.4, 3.25, 3.33 D) 3.25, 3.33, 2.4, 1.66, 1.5
solve 14^x+1=36
Round to the nearest ten-thousandth.
Answer:
x = 1.3472 to the nearest ten thousandth.
Step-by-step explanation:
14^x + 1 = 36
14^x = 35
Taking logarithms:-
x ln 14 = ln 35
x = ln 35 / ln 14
= 1.3472.
The solution, rounded to the nearest ten-thousandth, is x = 1.5404.
To solve the equation [tex]14^x + 1 = 36[/tex], we first isolate the exponential term by subtracting 1 from both sides of the equation, which gives us [tex]14^x = 35.[/tex]
The next step is to take the logarithm of both sides of the equation.
We could use any base for the logarithm, but it's common to use base 10 or the natural logarithm base (e). In this case, let's use the natural logarithm:
[tex]ln(14^x) = ln(35)[/tex]
We can then use the property of logarithms which allows us to bring the exponent down as a multiplier:
[tex]x * times ln(14) = ln(35)[/tex]
Now, you can solve for x by dividing both sides by ln(14):
[tex]x = ln(35) / ln(14)[/tex]
Using a calculator, we find the quotient and then round to the nearest ten-thousandth:
x = 1.5404
This value is the solution to the original equation.
Jupiter has 11 more than 4 times as many moons has Neptune. Neptune has 14 moons. Let j equal the number of moons Jupiter has.
Final answer:
Jupiter has 67 moons.
Explanation:
To solve this problem, let's define j as the number of moons Jupiter has. According to the given information, Jupiter has 11 more than 4 times as many moons as Neptune, which has 14 moons. So, we can set up an equation: j = 4n + 11, where n is the number of moons Neptune has. Since Neptune has 14 moons, we can substitute that value into the equation: j = 4(14) + 11. Simplifying further, we get j = 56 + 11 = 67. Therefore, Jupiter has 67 moons.
The measure of an angle is 78 less than the measure or its complement.What is the measure of the angle
Answer:
84°
Step-by-step explanation:
2 complementary angles sum to 90°
let x be the angle then complement = x - 78, hence
x + x - 78 = 90 ( add 78 to both sides )
2x = 168 ( divide both sides by 2 )
x = 84
hence the angle is 84°
There are 65 students who walk to West Middle School each day. This is 12.5% 0f the total student at the school. How many students attend West Middle School
What is the graph of this function?
Answer:
See attachment.
Step-by-step explanation:
The main part of the function is an absolute value function and so it forms a V with the center of the V at (0,0). The sides of the V go up and over 1 unit at a time. However, since 2 is added to the it outside of the absolute value, the center of the V moves from (0,0) to (0,2). The sides stay the same. The division by 2 changes the sides. The sides move from up and over 1 unit to up 1 unit and over two units. It spreads or widens the graph. Lastly, the interval selects a specific part of the graph only from 0 to 6 on the x-axis. This takes just one side of the V and looks like a line segment. See attachment.
Answer:
We are given a function,
[tex]y=\frac{|x|+2}{2}[/tex] if 0 ≤ x < 6
We need to draw the graph of the function.
We know that Parent function of the given function is Modulus function | x |.
Consider given function,
[tex]y=\frac{|x|+2}{2}[/tex]
[tex]y=\frac{|x|}{2}+\frac{2}{2}[/tex]
[tex]y=\frac{|x|}{2}+1[/tex]
So, the given function is translated 1 unit upward and compressed by factor of 1/2.
So the obtained graph is attached.
River rambler charges $25 per day to rent a kayak. How much will it cost to rent a kayak for 5 days? Write and solve an equation to solve this problem.
Answer:
C=25d
Step-by-step explanation:
We write an equation where C or cost is my output and d or days is my input. I should be able to put in any number of days and find the cost. Let's gather some data:
River Ramble
Day 1 $25(1)=25 cost
Day 2 $25(2)=50 cost
Day 3 $25(3)=75 cost
Day d $25(d)=C.
Our equation is C=25d.
Solve for x: 5 over quantity x squared minus 4 plus 2 over x equals 2 over quantity x minus 2.
x = 8
x = –4
x = 8 and x = –4
No Solution
[tex]\text{The domain}\\\\x\neq0\ \wedge\ x\neq-2\ \wedge\ x\neq2[/tex]
[tex]\dfrac{5}{x^2-4}+\dfrac{2}{x}=\dfrac{2}{x-2}\qquad\text{subtract}\ \dfrac{2}{x-2}\ \text{from obth sides}\\\\\dfrac{5}{x^2-2^2}+\dfrac{2}{x}-\dfrac{2}{x-2}=0\\\\\dfrac{5}{(x-2)(x+2)}+\dfrac{2}{x}-\dfrac{2}{x-2}=0\\\\\dfrac{5x}{x(x-2)(x+2)}+\dfrac{2(x-2)(x+2)}{x(x-2)(x+2)}-\dfrac{2x(x+2)}{x(x-2)(x+2)}=0\\\\\dfrac{5x+2(x^2-4)-2x(x+2)}{x(x-2)(x+2)}=0\\\\\dfrac{5x+2x^2-8-2x^2-4x}{x(x-2)(x+2)}=0\\\\\dfrac{x-8}{x(x-2)(x+2)}=0\iff x-8=0\to\boxed{x=8}\in D[/tex]
Janine has 93 beads. She uses 7 beads for each bracelet. She makes as many bracelets as possible. How many beads will Janine have left over?
What is 6,3.6,2.16,1.296,...
a common ratio of r
Answer:
r=0.6
Step-by-step explanation:
Consider geometric sequence
[tex]b_1=6,\\ \\b_2=3.6,\\ \\b_3=2.16,\\ \\b_4=1.296,...[/tex]
In geometric sequence
[tex]b_i=b_{i-1}\cdot r,[/tex]
then
[tex]b_2=b_1\cdot r[/tex]
and
[tex]3.6=6r,\ r=\dfrac{3.6}{6}=0.6.[/tex]
Note that
[tex]2.16=3.6\cdot 0.6,\\ \\1.296=2.16\cdot 0.6.[/tex]
This means that ratio r=0.6.
Help plz 30 points!!
Answer:
the answer is a
Step-by-step explanation:
Need help ASAP! Brainliest promised!
Lines y and z are parallel.
What is the measure of angle 2?
Answer:
28 degrees
Step-by-step explanation:
180 = 10x + 5 + 65 because they are supplementary. x = 11.
Angle 2 = 180 - (Angle 1 + (4x - 7))
Angle 2 = 180 - ((180 - 65) + 4x - 7)
Angle 2 = 180 - (115 + 4x - 7)
Angle 2 = 180 - 152
Angle 2 = 28 degrees
How wide is a rectangular strip of land with a length of 3/4 miles and an area of 1/2 square mile?
The width of the rectangular strip of land is 2/3 miles whose the width of the rectangular strip of land is 2/3 miles.
To find the width of the rectangular strip of land, we can use the formula for the area of a rectangle, which is:
Area = Length × Width
Given that the length of the rectangular strip of land is 3/4 miles and the area is 1/2 square mile, we can plug these values into the formula and solve for the width (W):
Area = 1/2 square mile
Length = 3/4 miles
1/2 = (3/4) × Width
To solve for the width (W), divide both sides by 3/4:
Width = (1/2) ÷ (3/4)
When dividing by a fraction, you can multiply by its reciprocal:
Width = (1/2) × (4/3)
Now, multiply the numerators and denominators:
Width = 4/6
The fraction 4/6 can be simplified by dividing both the numerator and denominator by their greatest common divisor, which is 2:
Width = 2/3
So, the width of the rectangular strip of land is 2/3 miles.
To know more about rectangular strip click here :
https://brainly.com/question/5031874
#SPJ2
The expression 1/2bh gives the area of a triangle where b is the base of the triangle and h is the height of the triangle. What is the area of a triangle with the base of 7cm and a height of 4 cm?
[tex]A_{\triangle}=\dfrac{1}{2}bh\\\\\text{We have}\ b=7cm,\ h=4cm\\\\\text{Substitute:}\\\\A_{\triangle}=\dfrac{1}{2}(7)(4)=\dfrac{28}{2}=\boxed{14\ cm^2}[/tex]
Banu is 20 years older than binu. In 5 years, Banu will be twice as old as binu. Find their present age.
Answer:
15?
Step-by-step explanation:
If Binu is 15, in 5 years they will be 20. And if Banu is 20 years older, in 5 years they will be 40 (becuase 15 + 20 = 35 and then + the 5 years) Thats twice Binu's age. So Binu is 15 I would assume?
Shryia read a 480480-page-long book cover to cover in a single session, at a constant rate. After reading for1.51.5 hours, she had 402402 pages left to read.Let P(t)P(t) denote the number of pages to read PP as a function of time tt (measured in hours).Write the function's formula.P(t)=
Answer:
Function formula P(t) = -52t +480
Step-by-step explanation:
here, P(t) denotes the number of pages to read and t represents the time in hour.
Given the statement: Shryia read a 480-page-long book cover to cover in a single session, at a constant rate. After reading for 1.5 hours, she had 402 pages left to read.
⇒Total number of page in a long book = 480
After reading for 1.5 hours, she had 402 pages left to read.
Then,
Total number of page Shryia read in 1.5 hours is:
[tex]480-402 = 78[/tex]
Constant rate at which she is reading her book = [tex]\frac{78}{1.5} = 52[/tex] page per hour
Then, the function formula is given by:
P(t) = -52t + 480 ; where t is in hours.
Check:
P(t) = -52t + 480
P(1.5) = -52(1.5) + 480 = -78 + 480 = 402 True.
PLEASE HELP ME! What is the equation of a line that passes through the point (6, 1) and is perpendicular to the line whose equation is y=−2x−6?
Enter your answer in the box.
Answer:
y=0.5x-2
Step-by-step explanation:
if it is perpendicular to the line y=-2x-6, then you know that its slope is the negative reciprocal of that line, and it has a different y intercept which you need to solve for using the point given. You solve by plugging in the x and y values from the point and plugging in the slope into the standard equation, and solving for b, the y intercept
y=0.5x+b
1=0.5(6)+b
1=3+b
-2=b
The equation of the line that passes through the point (6, 1) and is perpendicular to the line whose equation is y=−2x−6 is y = 0.5x - 2.
How to find equation of straight line from concept of perpendicular line ?From the classic definition of straight lines, we know that if we have to find an equation of a straight line being perpendicular to another straight line then the slope of the new equation of straight lines becomes negative reciprocal of the slope of given perpendicular line.
Finding the equation of the required straight line -Mathematically, let m1 be the slope of the new straight line and m be the slope of the given perpendicular line, then we have
m1 = -(1/m)
Now, we have given equation y = -2x - 6
Thus slope of the required equation is say (m1) = -(-1/2) = 0.5
Thus the equation formed is y = (m1)x + c [where c is the y-intercept]
∴ y = 0.5x + c
The point given is (6,1) , thus y = 1 and x = 6
Thus the given equation can be formed as
⇒ 1 = 0.5*6 + c
∴ c = 1 - 0.5*6 = -2
The value of y-intercept of the required straight line is -2
The equation of straight line formed is y = 0.5x - 2.
Thus the equation of the line that passes through the point (6, 1) and is perpendicular to the line whose equation is y = − 2x − 6 is y = 0.5x - 2.
To learn more about equation of straight line, refer -
https://brainly.com/question/7669240
#SPJ2
A satellite travels about 2272 miles in 8 minutes about how many miles does a satellite travel in 3 minutes
Answer:
852 miles
Step-by-step explanation:
We presume the speed is constant, so the satellite will travel 3/8 the distance in 3/8 the time.
... d = (3/8)·(2272 miles) = 852 miles
_____
1 minute is 1/8 of 8 minutes, so 3 minutes is 3/8 of 8 minutes.
Last year my family decided to put on a play It was A Great success . 200 people attended and we earned a total of 800 . If adults tickets cost 4 and children coat 2 dollar , how many adults were there
Answer:
200 adults
Step-by-step explanation:
We can set-up a system of equations to find the number of adults. We know children and adults attended. We will let c be the number of children and a be the number of adults. Since 200 people attended, then c+a=200.
We also know they made $800 and adult tickets cost $4 and child tickets cost $2. We can write 2c+4a=800.
We will solve by substituting one equation into the other. We start by solving the first equation for c. c+a=200 becomes c=200-a.
Now we substitute c=200-a into 2c+4a=800. Simplify and isolate the variable a.
2(200-a)+4a=800400-2a+4a=800400+2a=800400-400+2a=800-4002a=400a=200This means that 200 adults attended and 0 children attended.
A research study is done to find the average age of all U.S. factory workers. The researchers asked every factory worker in Ohio what their birth year is. This research is an example of a ______.
census
survey
convenience sample
simple random sample
Answer: Census.
Step-by-step explanation:
Given statement:- A research study is done to find the average age of all U.S. factory workers. The researchers asked every factory worker in Ohio what their birth year is.
This research is an example of a census because research in which information is obtained through the responses that all available members of an entire population give to questions.
In other words "Census is an official survey of population in a certain area and records various details about the individuals".
The study querying every factory worker in Ohio for their birth year to determine the average age of all U.S. factory workers is a census, as it attempts to gather data from every member of the entire population of interest. (First option)
The research study done to find the average age of all U.S. factory workers where the researchers asked every factory worker in Ohio their birth year is an example of a census. A census involves gathering information about every individual in the entire population of interest.
In this case, the population of interest would be all factory workers, and by querying every one of them (assuming it was indeed every single factory worker in Ohio), it constitutes a census, not a survey, which typically involves a representative sample.
It is not a convenience sample since that would imply a non-random selection based on ease of access, and it's not a simple random sample because not all members of the larger population (nationwide factory workers) have an equal chance of being included.