The amount of sheet tin needed to make the roof of the farm silo is approximately 25132.74125 square feet.
Explanation:The roof of the farm silo is in the shape of a hemisphere, which means it is like half of a sphere. The diameter of the silo is given as 126.5 feet. To find the amount of sheet tin needed to make the roof, we need to calculate the surface area of the hemisphere.
The surface area of a hemisphere can be calculated using the formula: SA = 2πr^2, where SA is the surface area and r is the radius of the hemisphere.
Since the diameter is given, we can find the radius by dividing the diameter by 2. So, the radius is 126.5/2 = 63.25 feet. Plugging this value into the formula, we get:
SA = 2π(63.25^2)
Using a calculator to find the surface area, we get:
SA ≈ 2π(4005.0625) ≈ 25132.74125 square feet
Therefore, approximately 25132.74125 square feet of sheet tin is needed to make the roof of the farm silo.
Learn more about Surface area of a hemispherehttps://brainly.com/question/14314143
#SPJ12
The amount of sheet tin needed to make the roof of a farm silo, in the shape of a hemisphere, with a diameter of 126.5 feet is approximately 25,132.741 square feet.
Explanation:To calculate the sheet tin needed to make the roof of a farm silo shaped like a hemisphere, we need to find the hemisphere's surface area. The surface area of a hemisphere is given by the formula 2πr2, where r is the radius of the hemisphere.
The diameter of the silo provided is 126.5 feet, meaning the radius, r, would be half of the diameter, or 63.25 feet.
Now, substitute 63.25 feet into the formula:
2 * π * (63.25)2 = 2 * π * 3996.0625.
The total sheet tin needed to make the roof is approximately 25,132.741 square feet.
Learn more about the Surface Area of the Hemisphere here:https://brainly.com/question/24316529
#SPJ12
What is the General form of the parabola of (y-3)^2=6(x+8)
Answer:
x = 1.5[tex]t^{2}[/tex] , y = 3 + 2at.
Step-by-step explanation:
For the parabola [tex]Y^{2}[/tex] = 4aX ,
General form will be
(X = a[tex]t^{2}[/tex] , Y = 2at) ,
Thus , for the parabola [tex](y-3)^{2}[/tex] = 6(x +8)
Here , a = 1.5 and Y from the above equation should be substituted by y - 3 and X must be substituted by x + 8. After substitution of the same we can use the general equation formula for this parabola also.
Thus , general equation comes out to be :-
x + 8 = 1.5[tex]t^{2}[/tex] , y - 3 = 2at
x = 1.5[tex]t^{2}[/tex] , y = 3 + 2at.
Find the value of x.
30
3. 4. 6. 8
Answer:
x=8
Step-by-step explanation:
BE=1/2(CD) (it's a theorem that you can find in Google)
So you get:
3x=24
x=8
The question lacks sufficient information to solve for x. An equation or context for x is needed to determine its value.
Explanation:The question seems to lack sufficient information to provide an accurate solution. When asked to find the value of x, usually an equation or expression involving x is given. This question doesn't provide such an equation or a context for solving for x. It is possible that the information got cut off or may have been miss-transcribed. Please specify the given equation or problem involving x and I will be glad to help.
Learn more about Solving for x here:
https://brainly.com/question/32490578
#SPJ2
(i wont ask anymore after this)
How many solutions does each equation have? a) 7(2+5v)=3v+14 b) -3 (3-6b)=6b+5 c) 2 (a-2)=2a-4
Answer:
a) v = 0
b) b = 7 / 6
c) a = any number
Step-by-step explanation:
a) 7(2+5v)=3v+14
7 x 2 + 7 x 5v = 3v + 14 .... distributive
14 + 35v = 3v + 14
35v - 3v = 14 - 14
32v = 0
v = 0 ...... only v value can fit
b) -3 (3-6b)=6b+5
-9 + 18b = 6b + 5
18b - 6b = 5 + 9
12b = 14
b = 14 / 12 = 7 / 6
c) 2 (a-2)=2a-4
2a - 4 = 2a - 4
2a -4 + 4 = 2a -4 + 4
2a = 2a
a = a ........ a cab be any number
Multiplying (-9)(-6)(2)=
Answer:
108
Step-by-step explanation:
what is the answer to the pic
Answer:
[tex]7[/tex]
Step-by-step explanation:
[tex]\frac{7^{-1}}{7^{-2}}[/tex]
[tex]7^{-1-(-2)}[/tex]
[tex]7^{-1+2}[/tex]
[tex]7^{1}[/tex]
[tex]7[/tex]
I used the following rules:
[tex]\frac{a^m}{a^n}=a^{m-n}[/tex]
[tex]a^1=a[/tex]
[tex]a \neq 0[/tex]
Given the following diagram, if m ∠ COF = 150°, then m ∠ BOC = AD ⊥ BF
150 °
90 °
45 °
30 °
Answer:
[tex]m\angle BOC=30^o[/tex]
Step-by-step explanation:
step 1
Find the measure of angle COD
we know that
[tex]m\angle COF=m\angle COD+m\angle DOF[/tex] ---> by addition angle postulate
we have
[tex]m\angle COF=150^o[/tex] ----> given problem
[tex]m\angle DOF=90^o[/tex] ----> because AD is perpendicular to BF
substitute the given values
[tex]150^o=m\angle COD+90^o[/tex]
[tex]m\angle COD=150^o-90^o[/tex]
[tex]m\angle COD=60^o[/tex]
step 2
Find the measure of angle BOC
we know that
[tex]m\angle BOC+m\angle COD=90^o[/tex] ---> by complementary angles
we have
[tex]m\angle COD=60^o[/tex]
substitute
[tex]m\angle BOC+60^o=90^o[/tex]
[tex]m\angle BOC=90^o-60^o[/tex]
[tex]m\angle BOC=30^o[/tex]
short answer: 30 degrees :)
A class is made up of 12 boys and 13 girls. What fraction of the class is boys?
Answer:
12/25 of the class are boys.
Step-by-step explanation:
12+13=25
12/25
Answer:
12/25, I hope this helped!
Two angle measures in a triangle are 47° and 43°. What type of triangle is it?
acute
obtuse
right
isosceles
Answer:
It is a right angled triangle
Step-by-step explanation:
Since we know that the angles in a triangle always add up to 180°, we take 180°-47°-43° = 90°, a right angle is 90°, thus we know it is a right angled triangle.
Answer:
it is a right triangle
Step-by-step explanation:
Each end of a glass prism is a triangle with a height that is 1 inch shorter than twice the base. If the area of the triangle is 60 square inches, how long are the base and height?
Answer:
Step-by-step explanation:
Let the base = x inches
So, h = 2x - 1
Area of triangle = 60 square inches
(1/2) * base *height = 60
(1/2) * x * (2x-1) = 60
x *(2x-1) = 60*2
2x² - x = 120
2x² - x - 120 = 0
2x² - 16x + 15x - 15*8 = 0
2x ( x - 8) + 15 (x -8) = 0
(x-8) (2x + 15 ) = 0
x- 8 = 0 {ignore 2x +1 as it will give negative value}
x = 8
Base = 8 inches
Height = 2*8 - 1 16 - 1 = 15 inches
A gasoline generator provides the power to
light a construction project at night. The generator uses 5.5 gallons of gasoline for every 3 1/3 hours of operation.
Is of operation. How much
gasoline is used in 11 hours?
Answer:
The quantity of gasoline used for 11 hours is 18.37 gallons .
Step-by-step explanation:
Given as :
The quantity of gasoline use by generator = 5.5 gallons
The generator use 5.5 gallons of gasoline for duration = 3 [tex]\dfrac{1}{3}[/tex] hours
I.e The generator use 5.5 gallons of gasoline for duration = [tex]\dfrac{10}{3}[/tex] hours
Let The quantity of gasoline use by generator for 11 hours = x gallons
Now, According to question
Applying unitary method
∵For [tex]\dfrac{10}{3}[/tex] hours of power generate ,The quantity of gasoline use = 5.5 gallons
So For 1 hour of power generate ,The quantity of gasoline use = [tex]\frac{5.5}{\frac{10}{3}}[/tex] gallons
∴ For 11 hours of power generate ,The quantity of gasoline use = [tex]\frac{5.5}{\frac{10}{3}}[/tex] × 11 gallons
i.e For 11 hours of power generate ,The quantity of gasoline use = 1.67 × 11
Or, For 11 hours of power generate ,The quantity of gasoline use = 18.37 gallons
Hence,The quantity of gasoline used for 11 hours is 18.37 gallons . Answer
Solve the system of equations using any method.
6x + 4y = −8
4x − 2y = 2
A) (11/7, 2/7)
B) (2/7, 11/7)
C) (-2/7, 11/7)
D) (-2/7, -11/7)
PLEASE HELP!!!!
Answer:
My answer what I came up with is B And B
16. Afla numărul necunoscut:
x + 7 = 36
X-9 = 83
X + (13- 8) = 74
a - (14 - 6) = 67
34 - X= 8
82 - x = 9
114
Answer:
9
Step-by-step explanation:
4*7=28
zyz hope that helps
Which is the same as 73?
CLEAR CHECK
A 7÷13
B 3÷7
C 17 of 3
D 7 divided by 3
Answer: Neither of them.
Step-by-step explanation: 7 divided by 3 is 2.3. So that's not right.
3 divided by 7 is 0.42. Also incorrect. 17 of 3? What does that mean? 17 percent of 3? I'm not sure but that's not the answer either be cause 17% or 3 is not 73. None of these choices are correct nor do they make sense.
Answer:
D) 7 divided by 3
Step-by-step explanation:
I need help with algebra 2a
Answer:
31
Step-by-step explanation:
[tex]\bf \displaystyle\sum\limits_{j=1}^{10}~2j+7\implies \displaystyle\sum\limits_{j=1}^{10}~2j+\displaystyle\sum\limits_{j=1}^{10}~7\implies 2\displaystyle\sum\limits_{j=1}^{10}~j+\displaystyle\sum\limits_{j=1}^{10}~7 \\\\\\ 2\cdot \cfrac{10(10+1)}{2}~~+~~(10)(7)\implies 2\cdot 55+70\implies 110+70\implies 180[/tex]
Which of the following shows the expression in factored form x2 + 2x - 8
A) (x-2)(x+4)
B) (x+2)(x+4)
C) (x-2)(x+8)
D) (x+1)(x-8)
Answer:
A) (x-2)(x+4)
Step-by-step explanation:
a concert venue can hold 200 people. student tickets are 50% less than adult tickets. Adult tickets at $50.00. The venue was sold out and made a revenue of $9125 for one event. How many adults vs. student tickets were sold?
The number of adult tickets sold is 165 and number of students tickets sold were 35
Solution:
Let "a" be the number of adult tickets sold
Let "s" be the number of student tickets sold
Cost of 1 adult ticket = $ 50.00
Student tickets are 50% less than adult tickets
Cost of 1 student ticket = Cost of 1 adult ticket - 50 % of Cost of 1 adult ticket
[tex]\rightarrow 50.00 - 50 \% \text{ of } 50.00\\\\\rightarrow 50 - \frac{50}{100} \times 50\\\\\rightarrow 50 - 25 = 25[/tex]
Thus Cost of 1 student ticket = $ 25
Given that a concert venue can hold 200 people
So we get,
number of adult tickets sold + number of student tickets sold = 200
a + s = 200 ----- eqn 1
The venue was sold out and made a revenue of $9125 for one event
So we can frame a equation as:
number of adult tickets sold x Cost of 1 adult ticket + number of student tickets sold x Cost of 1 student ticket = $ 9125
[tex]a \times 50.00 + s \times 25 = 9125[/tex]
50a + 25s = 9125 ---- eqn 2
Let us solve eqn 1 and eqn 2 to find values of "a" and "s"
From eqn 1,
a = 200 - s --- eqn 3
Substitute eqn 3 in eqn 2
50(200 - s) + 25s = 9125
10000 - 50s + 25s = 9125
-25s = 9125 - 10000
-25s = -875
s = 35Substitute s = 35 in eqn 3
a = 200 - 35
a = 165Thus the number of adult tickets sold is 165 and number of students tickets sold were 35
Tatiana wants to give friendship bracelets for 32 classmates. She already has 5 bracelets, and she can buy more bracelets in packages of 4. Will Tatiana have enough bracelets if she buy 5 packages? A. Yes, she will have enough for all 32 classmates if she orders 5 more packages of bracelets. Or b. No she will not have enough bracelets for all 32 classmates if she orders 5 more packages of bracelets
Answer:
b. No she will not have enough bracelets for all 32 classmates if she orders 5 more packages of bracelets
Step-by-step explanation:
write out the equation
p=the number of packages she needs to buy
32=5+4p
subtract five from both sides
32-5=5-5+4p
27=4p
dived both side by 4
27/4=4p/4
6.75=p round to 7
Check your answer:
4 x 7 = 28
add the number of bracelets she already has
28 + 5 = 33 bracelets
33>32
So 7 packages is the minimum number of packages she needs to buy
Karli and her friend can paint 6/7 of a picture in 3/14 of an hour. How many pictures can they paint in a full hour?
If James borrows $4,200 to pay his college tuition. He signs a 5 year simple interest loan. If monthly payments are $78.40, what is the interest rate on the loan?
Answer:
The rate of interest applied on the loan is 2.4%
Step-by-step explanation:
Given as :
The principal amount borrows as loan = p = $4200
The time period of loan = t = 5 years = 5 × 12 = 60 months
The monthly payment for loan = $78.40
So, The payment for 60 months = $78.40 × 60 = $4704
i.e Amount after 60 months = $4704
Let The rate of interest = r at simple interest
Now, From Simple Interest method
Simple interest = [tex]\dfrac{\textrm principal\times \textrm rate\times \textrm time}{100}[/tex]
Or, s.i = [tex]\dfrac{\textrm p\times \textrm r\times \textrm t}{100}[/tex]
Or, (Amount - principal) = [tex]\dfrac{\textrm p\times \textrm r\times \textrm t}{100}[/tex]
Or, $4704 - $4200 = [tex]\dfrac{\textrm 4200\times \textrm r\times \textrm 5}{100}[/tex]
Or,504 × 100 = 21,000 × r
∴, r = [tex]\dfrac{50400}{21000}[/tex]
i.e r = 2.4
So, The rate of interest = r = 2.4%
Hence, The rate of interest applied on the loan is 2.4% Answer
15 points!! Please help! please explain how you got you answers
We observe that a line will pass through 3 points, but to find a slope we only need two.
We see that it passes through points (assuming the scale of graph is 1 : 1) [tex]P_1(x_1,y_1)=P_1(0,1)[/tex] and [tex]P_2(x_2,y_2)=P_2(2,-1)[/tex].
We can use slope formula that applies for any line and produce the same slope for any two different points on the line
[tex]m=\dfrac{\Delta{y}}{\Delta{x}}=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{-1-1}{2-0}=-1[/tex]
So the slope is -1 also it intersects y-axis at [tex]n=1[/tex] so the general form of the linear function is
[tex]f(x)=mx+n[/tex]
That is in your case
[tex]\boxed{f(x)=-x+1}[/tex]
Hope this helps.
Which statement is correct? The range of the graph is all real numbers less than or equal to 0. The domain of the graph is all real numbers less than or equal to 0. The domain and range of the graph are the same. The range of the graph is all real numbers.
Answer:
Option B on edge 2020 guys
Step-by-step explanation:
:)
Use the net to find the surface area of the square pyramid.
A) 95 ft2
B) 130 ft2
C) 205 ft2
D) 333 ft2
Answer: D
Step-by-step explanation:
9x9=81 (base)
(14x9) divided by 2= 63 (one triangular face)
63x4=252 (all triangular faces)
81+252= 333ft2
Answer:
the answer is D, i know i am right.
Step-by-step explanation:
At a zoo, youth tickets cost $5 and adult tickets cost $9. A group that purchased x youth tickets and y adult tickets spent $90 on tickets.
What is the domain of the relationship?
A.
x ≤ 5
B.
0 ≤ x ≤ 5
C.
0 ≤ x ≤ 18
D.
x ≤ 18
Answer:
Each person buys there own so there are elderly costs.
Step-by-step explanation:
A.
x ≤ 5
B.
0 ≤ x ≤ 5
C.
0 ≤ x ≤ 18
D.
x ≤ 18
Answer:
The answer is option C.
0 <= x <= 18
Step-by-step explanation:
To find the domain of the relationship in respect to x, we need to find the value of x.
Since;
youth tickets = $5 and
Adult tickets = $9.
Purchased x youth tickets and y adult tickets cost $90
Purchased x youth tickets and y adult tickets = 5x + 9y = 90
5x = 90 - 9y
to find x we divide both side by 5
x = (90-9y)/5
x = 90/5 - 9y/5
x = 18 - 9y/5
Note that in this equation x and y can only be positive value because that are representing number of legible item (ticket)
Therefore:
X can only fall between 0 and 18.
0 <= x <= 18
A drawing is 12 inches long by 9 inches wide. If the new drawing is 8 inches long, how wide will it be?
what is two hundred and eighteen divided by thurty one
Hi there! In this problem, two hundred and eighteen divided by thirty one would be 7.032258064516129. Like this:
281 / 31 = 7.032258064516129
Hope this answers your question!
(P.S. I could really use Brainliest.....)
Answer:
200+18÷31=200.58062452
200÷31=6.451612903
18÷31=0.5806451613
what is y=-4/3x+2 in point slope form?
Answer:
[tex]y-2=-\frac{4}{3}(x-0)[/tex]
Step-by-step explanation:
we know that
The equation of the line in point slope form is equal to
[tex]y-y1=m(x-x1)[/tex]
we have
[tex]y=-\frac{4}{3}x+2[/tex] ---> equation in slope intercept form
so
Convert to point slope form
subtract 2 both sides
[tex]y-2=-\frac{4}{3}x[/tex]
Rewrite as
[tex]y-2=-\frac{4}{3}(x-0)[/tex]
the slope is [tex]m=-\frac{4}{3}[/tex]
the point is [tex](0,2)[/tex]
Simpliftly(-8.5)(-5)( -2)
how do i simplify it
Answer:
-85
Step-by-step explanation:
(-8.5)(-5)(-2)
Multiply
(42.5)(-2)
-85
Hope this helps :)
please help 10 point + brainlyiest = one big thank u
which of these is the algebraic expression for "five more than the product of ten and some number?
10 + 5x
5 + 10 + x
10x + 5
5 + 10 ÷ x
A college bookstore charges $60 for a yearly membership. The first book is free with membership and any book after that costs $7.60 including tax. How much money, m, does a student spend after buying b books and a yearly membership.
Answer:
The equation representing Total money spend being as a member is [tex]m = 60+7.6(b-1)[/tex]
Step-by-step explanation:
Given:
Memberships charges = $60
Cost of 1 book = $7.60
Let number of books be 'b'.
We need to find Total money 'm' spend yearly on buying books after becoming member.
Now we know that 1 book is free for a member.
Total money spend 'm' will be equal to Sum Memberships charges and Cost of 1 book multiplied by number of books bought yearly minus 1.
Framing in equation form we get;
[tex]m = 60+7.6(b-1)[/tex]
Hence The equation representing Total money spend being as a member is [tex]m = 60+7.6(b-1)[/tex]
Therefore, the final expression for the total cost [tex]\( m \)[/tex] as a function of the number of booksx [tex]\( m \)[/tex] is:
[tex]\[ \boxed{m = \frac{262 + 38b}{5}} \][/tex]
The total cost \( m \) that a student spends after buying \( b \) books and a yearly membership can be calculated using the following formula:
[tex]\[ m = \text{Cost of membership} + (\text{Number of books} - 1) \times \text{Cost per book} \][/tex]
Given that the yearly membership costs $60 and each book after the first free book costs $7.60, we can substitute these values into the formula:
[tex]\[ m = \$60 + (b - 1) \times \$7.60 \][/tex]
Now, let's simplify the expression by converting $7.60 to a fraction to avoid decimals in our calculation:
[tex]\[ m = \$60 + (b - 1) \times \frac{760}{100} \][/tex]
[tex]\[ m = \$60 + (b - 1) \times \frac{38}{5} \][/tex]
[tex]\[ m = \$60 + \frac{38b - 38}{5} \][/tex]
To combine the terms, we need a common denominator, which is 5:
[tex]\[ m = \frac{\$60 \times 5}{5} + \frac{38b - 38}{5} \][/tex]
[tex]\[ m = \frac{300}{5} + \frac{38b - 38}{5} \][/tex]
[tex]\[ m = \frac{300 + 38b - 38}{5} \][/tex]
[tex]\[ m = \frac{262 + 38b}{5} \][/tex]
The probability of drawing 2 defective pieces one after the other on the first and second samples, without replacement, from a lot of 50 pieces containing 5 defective pieces is approximately
Answer: The required probability is 0.004.
Step-by-step explanation:
Since we have given that
Number of pieces = 50
Number of defective pieces = 5
So, we need to draw 2 defective pieces.
So, the probability of drawing 2 defective pieces one after the other on the first and second samples would be
[tex]\dfrac{5}{50}\times \dfrac{4}{49}\\\\=\dfrac{20}{2450}\\\\=0.004[/tex]
Hence, the required probability is 0.004.
Final answer:
Calculating the probability of drawing two defective pieces sequentially from a set of 50 pieces with 5 defectives.
Explanation:
The probability of drawing 2 defective pieces one after the other without replacement:
Find the probability of drawing the first defective piece: 5/50 = 1/10.
Since the pieces are drawn without replacement, the probability of drawing the second defective piece after the first is: 4/49.
Multiply the probabilities: (1/10) * (4/49) = 4/245.