The point where the blue line intercepts the temperature axis is…
the temperature where actual volume of gas reduces to zero
or
the theoretical zero volume temperature of a gas
Answer:
The theoretical zero volume temperature of a gas.
Explanation:
The experimental data for effect of temperature on Volume of a gas is plotted in the graph. The graph is a straight line. It has been extrapolated where dash line meets the temperature axis. This point shows the temperature that the gas would have if it had zero volume. Experimentally, this data is not obtained but theoretically measured by extrapolating the volume versus temperature curve.
Thus, the point where blue line meets is the theoretical zero volume temperature of a gas.
Dopamine is a substance released into a synapse to carry an inhibitory message. It is therefore classified as a (n)
Inhibitory neurotransmitter
Explanation;Dopamine is a special neurotransmitter since it is considered to be both excitatory and inhibitory. The function of Dopamine depends on the location in the brain adn the particular receptor site it binds to. Excitatory neurotransmitters stimulate the brain while the inhibitory neurotransmitter balance mood and are easily depleted when the excitatory neurotransmitters are overactive.A box has a weight of 120 lbs and the bottom of the box is 12 in2 . What is the pressure the box exerts on the floor?
The box exerts a pressure of 10 pounds per square inch (lbs/in²) on the floor, calculated by dividing the weight of the box (120 lbs) by the area of its bottom (12 in²).
The pressure exerted by the box on the floor can be calculated using the formula for pressure, which is the force applied (in this case, the weight of the box) divided by the area over which the force is distributed.
The weight of the box is given as 120 lbs, and the area of the bottom of the box in contact with the floor is 12 in². To find the pressure, we divide the weight by the area:
Pressure = Weight / Area
Pressure = 120 lbs / 12 in² = 10 lbs/in²
Therefore, the box exerts a pressure of 10 pounds per square inch (lbs/in²) on the floor.
how do i calculate the mass of CO2 emitted per Kj of heat produced in a combustion reaction?
The method for calculation of the mass of CO2 emitted per Kj of heat produced in a combustion reaction has been explained below..
To answer this, let us use the combustion reaction of methanol which is;
CH3OH (l) + (3/2)O2 (g) = CO2 (g) + 2H2O (g)
We can find the enthalpy of combustion of this reaction from tables or it will be given to us. Let us use; ΔH = -638.54 KJ
This means for every 1 mole of CO2, the heat released is -638.54 KJ
Now, Molar mass of CO2 is 44 g/mol
Thus;
Mass of CO2 per Kj of heat produced is;
44 g/mol × 1 mol/-638.54 KJ
>> 6.89 × 10^(-2) g/kJ
Read more at; https://brainly.com/question/12996596
Why does gas take the shape and volume on its container
13C and 14C are isotopes of 12C, which has 6 electrons, 6 protons, and 6 neutrons. What is the arrangement of subatomic particles in 14C?
The formula K₂S indicates that _______.
How many valence electrons does chlorine have?
The effect acids have on most metals is called: dehydration coating corrosion ionization
Which of the following is the best definition of baryonic material?
A. form of hypothetical energy that makes up most of the universe
B. type of matter that we cannot see but that we believe makes up more than 20% of the universe C. matter made of ordinary atoms, such as hydrogen or helium atoms ...?
suppose an atom has a mass number of 23. which statement is true beyond any doubt? A.the atom has an odd number of neutrons.
B.the atomic number is less then 11.
C.the atom is not an isotope.
D.the number of protons in the nucleus dose not equal the number of neutrons.
if an atom has a mass of 15 and an atomic number of 9. How many neutrons are in the atoms?
For the reaction shown, calculate how many grams of each product form when the following amounts of reactant completely react to form products. Assume that there is more than enough of the other reactant.
2Al(s)+Fe2O3(s)→Al2O3(s)+2Fe(l)
4.3 gAl
Using stoichiometry, we find that when 4.3 g of Al reacts, 8.14 g of Aluminium Oxide and 8.89 g of Iron are formed.
Explanation:To calculate the grams of products formed in a reaction, we use stoichiometry, which is based on the law of conservation of mass. Here, for every 2 moles of Al (Aluminium, 26.98 g/mol) reacted, 1 mole of Al2O3 (Aluminium oxide, 101.96 g/mol) and 2 moles of Fe (Iron, 55.85 g/mol) are formed.
To calculate the amount in grams of each product for 4.3 g of Al reacted, we first need to convert this amount into moles of Al by dividing by its molecular weight. Then we use the stoichiometry of the reaction to find the amount of product formed.
(4.3 g Al) * (1 mol Al / 26.98 g Al) = 0.159 moles Al
For Aluminium oxide: (0.159 mol Al) * (1 mol Al2O3 / 2 mol Al) * (101.96 g Al2O3 / 1 mol Al2O3) = 8.14 g Al2O3
For Iron: (0.159 mol Al) * (2 mol Fe / 2 mol Al) * (55.85 g Fe / 1 mol Fe) = 8.89 g Fe
Learn more about Stoichiometry here:https://brainly.com/question/30215297
#SPJ12
Which statement about crystal lattice energy is best supported by the information in the table?
A.The lattice energy increases as cations get smaller, as shown by LiF and KF.
B.The lattice energy increases as the charge of anions increases, as shown by LiF and LiCl.
C.The lattice energy decreases as anions get smaller, as shown by NaCl and NaF.
D.The lattice energy decreases as the charge of cations decreases, as shown by NaF and KF.
Answer:the answer is b
Explanation:got it right on ed
What country was overrun by the Japanese
Chemical energy in burning wood is changed into thermal energy. The thermal energy is absorbed by water, which boils to produce steam. The thermal energy is changed into kinetic energy in the moving steam. The kinetic energy is used to turn a turbine, which converts the kinetic energy into electricity. Which sentence best describes this system?
A. It involves only energy transfer.
B. It involves only energy transformation.
C. It involves both energy transformation and energy transfer.
D. It does not involve either energy transformation or energy transfer.
This system describes, the involvement of both energy transformation and energy transfer. Hence option C is correct.
What is Energy transfer and Energy Transformation ?Energy transfer is nothing but the phenomenon of gaining or losing the amount of energy by a point from which we are taking or giving the energy. Energy transfer is the movement of energy from one point to other. for example, when we want to increase the temperature of the body from room temperature to certain temperature, then we have to transfer certain amount of energy to gain that temperature.
According to law of thermodynamic, energy neither be created nor be destroyed, it can be transferred from one form into another form. Energy transformation is when energy changes from one type to another. for example when mechanical energy gets converted into electric energy in generator, there is transformation of energy from mechanical to electric energy. Vice verse is true for electric fan.
In this system, everything is gaining temperature hence it is gaining energy, means there is transfer of energy. and first chemical energy is changed to thermal energy, thermal energy is transferred to kinetic energy and last into electric energy, hence there is of course transformation of energy from one form into another form.
Hence option C is Correct.
To know more about Energy click :
https://brainly.com/question/1932868
#SPJ7.
electrons in the first energy level of an atom
(A) have no energy
(B) have the lowest possible energy
(C) have the highest possible energy
(D) are in an excited state
(E) are in an unstable state
Electrons in the first energy level of an atom have the lowest possible energy, known as the ground state, which is the most stable configuration before any additional energy is introduced. Option B is correct.
Electrons in the first energy level of an atom have the lowest possible energy. This state is known as the ground state, which is the most stable configuration for an atom. Electrons in this lowest energy orbit maintain minimal energy before any external energy is introduced.
If the atom receives energy from an outside source, electrons may absorb this energy and transition to a higher energy level, or excited state, which is less stable. Upon returning to the ground state, the atom releases energy, often in the form of electromagnetic radiation such as light. This fundamental behavior is attributed to the quantized nature of electron energy levels, as described by quantum mechanics.
Hence, B. is the correct option.
What happens to the atomic size of the elements as one goes from the bottom to the top of a group?
A) Atomic size stays the same as one moves from bottom to top in a group.
B) Atomic size decreases as one moves from bottom to top in a group.
C) Atomic size increases as one moves from bottom to top in a group.
D) Atomic size changes randomly as one moves from bottom to top in a group.
Answer: Option (B) is the correct answer.
Explanation:
When we move from top to bottom in a group then size of elements keep of increasing due to the addition of more number of electrons into new shells.
But when we move across a period then there occurs a decrease in size of the elements due to the addition of electrons into the same shell.
So, if we move from bottom to top then it means there is decrease in size of atoms as number of electrons decreases then.
Thus, we can conclude that atomic size decreases as one moves from bottom to top in a group.
What is the Lewis Dot Structure for C2H3? ...?
The most important lab safety rule is
Final answer:
The most important lab safety rule is to follow all safety instructions and guidelines given by your teacher and lab instructions.
Explanation:
The most important lab safety rule is to follow all safety instructions and guidelines given by your teacher and lab instructions.
By following safety rules, you ensure your own safety as well as the safety of others in the laboratory.
For example, one important safety rule is to never eat or drink in the laboratory and to avoid using laboratory glassware for eating or drinking. This is because table tops and counters could have dangerous substances on them and leftover substances in glassware could interact with future experiments.
N2(
g. 3h2(
g. 2nh3(
g., what will happen if more nitrogen gas is added?
The dipole moment (μ) of hbr (a polar covalent molecule) is 0.797d (debye), and its percent ionic character is 11.8 % . estimate the bond length of the h−br bond in picometers.note that1 d=3.34×10−30 c⋅m andin a bond with 100% ionic character, q=1.6×10−19
c.
The bond length of H-Br in the HBr molecule, estimated using the dipole moment and the percent ionic character, is approximately 159 picometers.
Explanation:The dipole moment (μ) of a molecule is given by the product of the charge (q) and the distance between the charges (d). In this case, you have been provided with the dipole moment, the physical constants, and the percent ionic character. Let's use these details to estimate the bond length. According to the given data, the dipole moment (μ) is 0.797 D, which is equivalent to 0.797 * 3.34*10^-30 C.m (as 1 D = 3.34*10^-30 C.m).
Since HBr has 11.8% ionic character, the effective charge (q_eff) is 11.8% of the charge of one electron, which is 1.6*10^-19 C. Therefore, q_eff = 0.118 * 1.6*10^-19 C. Thus, using the definition μ = q_eff . d (d = bond length), we can solve for d = μ / q_eff. Substituting the given and calculated values, we get d is approximately equal to 159 picometers.
Learn more about Bond Length here:https://brainly.com/question/35458389
#SPJ3
The estimated bond length of the [tex]\( \text{H-Br} \)[/tex] bond in picometers is approximately [tex]21 Pm[/tex].
To estimate the bond length of [tex]\( \text{HBr} \),[/tex] we will use the given dipole moment and percent ionic character.
Given.
- Dipole moment [tex](\( \mu \))[/tex] of [tex]\( \text{HBr} \)[/tex] = 0.797 d [tex](debye)[/tex]
- Percent ionic character = 11.8%
First, convert the dipole moment from debye to SI units coulomb meters.
[tex]\[ \mu = 0.797 \text{ d} \][/tex]
Since [tex]\( 1 \text{ d} = 3.34 \times 10^{-30} \text{ C} \cdot \text{m} \),[/tex]
[tex]\[ \mu = 0.797 \times 3.34 \times 10^{-30} \text{ C} \cdot \text{m} \][/tex].
[tex]\[ \mu = 2.66198 \times 10^{-30} \text{ C} \cdot \text{m} \][/tex].
Calculate the bond moment in a purely ionic bond [tex](\( \mu_{\text{ionic}} \)):[/tex]
For a bond with 100% ionic character, the dipole moment is given by.
[tex]\[ \mu_{\text{ionic}} = \sqrt{q \cdot r^2} \][/tex]
where [tex]\( q \)[/tex] is the charge in coulombs and [tex]\( r \)[/tex] is the bond length in meters.
Given [tex]\( q = 1.6 \times 10^{-19} \) C (charge for 100% ionic character),\[ \mu_{\text{ionic}} = \sqrt{1.6 \times 10^{-19} \cdot r^2} \][/tex]
Solve for [tex]\( r \):[/tex]
[tex]\[ \mu_{\text{ionic}} = 2.66198 \times 10^{-30} \text{ C} \cdot \text{m} \][/tex]
[tex]\[ \sqrt{1.6 \times 10^{-19} \cdot r^2} = 2.66198 \times 10^{-30} \][/tex]
[tex]\[ 1.6 \times 10^{-19} \cdot r^2 = (2.66198 \times 10^{-30})^2 \][/tex]
[tex]\[ 1.6 \times 10^{-19} \cdot r^2 = 7.0865 \times 10^{-60} \][/tex]
Divide both sides by [tex]\( 1.6 \times 10^{-19} \)[/tex].
[tex]\[ r^2 = \frac{7.0865 \times 10^{-60}}{1.6 \times 10^{-19}} \][/tex]
[tex]\[ r^2 = 4.42906 \times 10^{-41} \][/tex]
Take the square root to find [tex]\( r \)[/tex]
[tex]\[ r = \sqrt{4.42906 \times 10^{-41}} \][/tex]
[tex]\[ r \approx 2.105 \times 10^{-21} \text{ m} \][/tex]
Convert meters to picometers
[tex]\[ r \approx 2.105 \times 10^{-21} \text{ m} \times 10^{12} \text{ pm/m} \][/tex]
[tex]\[ r \approx 21.05 \text{ pm} \][/tex]
Which statement best relates the strength and concentration of a base? At high enough concentrations, a weak base becomes strong. Even at low concentrations, a strong base is strong. A weak base always has a low concentration. The stronger the base, the higher its concentration.
Answer: Option (b) is the correct answer.
Explanation:
When there are more number of hydroxide ions in a solution then there will be high concentration of [tex]OH^{-}[/tex] or hydroxide ions. As a result, more will be the strength of base in that particular solution.
A base is strong when it readily dissociate into its ions in the solution. When a base is strong, then it does not matter at what concentration it is dissolved in the solution because despite of its low concentration it will remain a strong base.
Thus, we can conclude that out of the given options, the statement even at low concentrations, a strong base is strong best relates the strength and concentration of a base.
2N2H4 + N2O4 → 3N2 + 4H2O
How many grams of N2H4 will be consumed by 92 g of N2O4?
16 g
128 g
64 g
32 g
Answer : The amount of [tex]N_2H_4[/tex] will be, 64 g
Solution : Given,
Mass of [tex]N_2O_4[/tex] = 92 g
Molar mass of [tex]N_2O_4[/tex] = 92 g/mole
Molar mass of [tex]N_2H_4[/tex] = 32 g/mole
First we have to calculate the moles of [tex]N_2O_4[/tex].
[tex]\text{Moles of }N_2O_4=\frac{\text{Mass of }N_2O_4}{\text{Molar mass of }N_2O_4}=\frac{92g}{92g/mole}=1mole[/tex]
Now we have to calculate the moles of [tex]N_2H_4[/tex].
The balanced chemical reaction is,
[tex]2N_2H_4+N_2O_4\rightarrow 3N_2+4H_2O[/tex]
From the balanced reaction, we conclude that
1 mole of [tex]N_2O_4[/tex] react with 2 moles of [tex]N_2H_4[/tex]
and from the calculated moles,
1 mole of [tex]N_2O_4[/tex] react with 2 moles of [tex]N_2H_4[/tex]
Now we have to calculate the mass of [tex]N_2H_4[/tex]
[tex]\text{Mass of }N_2H_4=\text{Moles of }N_2H_4\times \text{Molar mass of }N_2H_4[/tex]
[tex]\text{Mass of }N_2H_4=(2mole)\times (32g/mole)=64g[/tex]
Therefore, the amount of [tex]N_2H_4[/tex] will be, 64 g
Is sodium benzoate soluble in NaOH, NaHCO3
Answer:
It's slightly soluble in an aqueous solution of [tex]NaHCO_{3}[/tex], and almost insoluble in an aqueous solution of NaOH.
Explanation:
Sodium benzoate comes from benzoic acid, which is a weak acid. It means that in an aqueous solution benzoic acid does not ionize easily to form the ions [tex]H_{3}O^{+}[/tex] and [tex]C_{7}H_{5}O_{2} ^{-}[/tex]
It also implies, according to the Le Châtelier's principle, that the ion [tex]C_{7}H_{5}O_{2}^{-}[/tex] tends to form the acid [tex]C_{7}H_{6} O_{2}[/tex] more easily. It can be seen in the following equation:
[tex]C_{7}H_{6} O_{2}[/tex] ⇔ [tex]C_{7}H_{5}O_{2}^{-}[/tex] + [tex]H_{3}O^{+}[/tex]
In an aqueous solution, the equilibrium shifts to the left, thus letting water dissolve sodium benzoate. But why? Because water in that case would produce enough [tex]H_{3}O^{+}[/tex] ions to facilitate the disolution of sodium benzoate. It's shown by its solubility in water at 15°C (62.78g/100mL, according to Wikipedia).
In contrast, the presence of NaOH or [tex]NaHCO_{3}[/tex], both chemical species producing the [tex]OH^{-}[/tex] ions in aqueous solution, would make the equilibrium shift to the right because it would be a higher need of [tex]H_{3}O^{+}[/tex] ions to offset the presence of [tex]OH^{-}[/tex].
However, the effect of NaOH is not the same due to [tex]NaHCO_{3}[/tex], because the first is a strong base and the other is a weak one. Thereby it is reasonable to think that solubility of sodium benzoate is greater in water than in [tex]NaHCO_{3}[/tex] and NaOH.
Solubility in water > solubility in [tex]NaHCO_{3}[/tex]> solubility in NaOH.
the application of scientific knowledge to benefit people is___. A. technology B. society C. ethics D. economics
How was the work of Newlands similar to that of Mendeleev on the periodic table?
1.They both arranged the elements in order of increasing atomic mass.
2.They both arranged elements that had similar properties into groups.
3.They both predicted the positions of undiscovered elements on the table.
4.They both placed the relative atomic mass of each element on the table.
Why is the half life of a radioactive substance independent of the initial amount of the substance that is present
If every oxygen ion (combined with an aluminum ion) has a charge of –2, what must the charge of each aluminum ion be? How can you tell this? Also, what has to happen to an uncharged aluminum atom so that it will bond with oxygen?
1.Which is a characteristic of nuclear fission?
-releases nonradioactive waste only
-involves the collision of two nuclei
releases small amounts of energy compared to -fossil fuels
-involves the splitting of an atom into two or more fragments
2.Both nuclear fusion and nuclear fission reactions
-release radioactive waste.
-involve the splitting of atoms.
-are utilized in nuclear power plants.
-release large amounts of energy.
3.Which type of reaction does this diagram represent? (see attachment)
1) The characteristics of nuclear fission reaction are [tex]\boxed{{\text{it involves splitting of an atom into two or more fragments}}}[/tex].
2) Both the nuclear fission and fusion reaction [tex]\boxed{{\text{release large amount of energy}}}[/tex].
3) The type of reaction shown in the diagram is [tex]\boxed{{\text{nuclear fission reaction}}}[/tex].
Further explanation:
Nuclear fission is defined as the splitting of heavy nucleus into two lighter ones. For example, a sample of uranium is bombarded with neutrons in an attempt to produce new elements with Z greater than 92. The lighter elements such as barium (Z = 56) were formed during the reaction and such products originate from the neutron-induced fission of uranium-235.
The reaction that shows nuclear fission is as follows:
[tex]_{{\text{92}}}^{{\text{235}}}{\text{U}} + _{\text{0}}^{\text{1}}{\text{n}} \to _{{\text{56}}}^{{\text{141}}}{\text{Ba}} + _{{\text{36}}}^{{\text{92}}}{\text{Kr}} +{\text{3}}_{\text{0}}^{\text{1}}{\text{n}}[/tex]
The krypton-92 is the fission product. In this, the nucleus usually divides asymmetrically rather than symmetrically dividing into two equal parts, and the fission of a given nuclide does not give the same products.
In a nuclear fission reaction, more than one neutron is released by each nucleus on division. When these neutrons collide and induce fission in other nuclei, a series of nuclear fission reactions known as a nuclear chain reaction occurs.
In nuclear fusion, two light nuclei join to produce a heavier and more stable nucleus. Nuclear fusion is the opposite phenomenon of nuclear fission. The reaction that shows nuclear fusion is as follows:
[tex]{\text{2}}_{\text{1}}^{\text{2}}{\text{H}} \to _{\text{2}}^{\text{3}}{\text{He}} + _{\text{0}}^{\text{1}}{\text{n}}[/tex]
Nuclear fission and fusion reactions both produce large amount of energy.
1)
The characteristics of nuclear fission reaction are that it involves splitting of an atom into two or more fragments because it is a process in which a heavy nucleus splits into two lighter ones.
2)
Both the nuclear fission and fusion reaction involves splitting and collision of atoms that produce large amount of energy. Hence, both the reaction releases a large amount of energy.
3)
The type of reaction shown in the diagram is nuclear fission. In the diagram, a large atom split into two small atoms and again the atom forms split into two smaller atoms include a series of reactions called nuclear chain reaction. The nuclear chain reaction is a series of nuclear fission reactions in which neutrons collide and induce fission in other nuclei.
Learn more
1. Identify the precipitate of compounds https://brainly.com/question/2094744
2. How many covalent bonds does nitrogen forms https://brainly.com/question/2094744
Answer details
Grade: Senior School
Subject: Chemistry
Chapter: Nuclear binding energy
Keywords: Nuclear fission, nuclear fusion, splits, bombardment, uranium, krypton, heavy nucleus, nuclear chain reaction.