Answer:
The largest reservoir of phosphorous is sedimentary rock.
Major sources of phosphorous to aquatic ecosystems are fertilizer runoff, sewage leaks, and industrial wastes.
Eccess phosphorous can lead to eutrophication
Explanation:
Phosphorus come from different sources such as aquatic ecosystems and fertilizers used for plants. When these substances containing phosphorus and those from industrial wastes find their way into water bodies, they tend to cause eutrophication, which is the natural enrichment of water bodies.
Also, it is known that a very small portion of phosphoric acid contribute to acid rain in the atmosphere.
Answer:
The statements that are true are:
-The largest reservoir of phosphorous is sedimentary rock
- Major sources of phosphorous to aquatic ecosystems are fertilizer runoff, sewage leaks, and industrial wastes.
- Excess phosphorous can lead to eutrophication.
Explanation:
In nature, phosphorous is found in form of phosphate ions PO₄⁻³, which are forming part of sedimentary rocks. Upon the action of wind and rain, phosphorous is washed into the soil (it dissolves and its passes into the soil in form of phosphate compounds). So, the largest reservoir of phosphorous is sedimentary rock.
Phosporous in the soil is absorbed by animal and plants and it is transformed in biological components (like nucleic acids, phospholipids, etc), and when animal and plants die, phosphorous return to the soil. So, the most of the phosphorous cycle occurs in the Earth (soil, water, living beings). In fact, phosphorous does not circulate through atmosphere.
Human activities such as farming and industry impact in phosphorous cycle. Fertilizers, wastes from human activities and phosphorous-containing products are poured in oceans and they feed the cycle.
But the excess of phosphorous often leads to an overgrowth of algae, which causes a lack of oxygen in water and consequenty the death of aquatic organisms. This fenomena is called eutrophication.
Finally, the major acid found in acid rain is sulphuric acid (it is not phosphoric acid).
The fungus Penicillium reproduces asexually and forms genetically identical spores. Which of the following processes does Penicillium use to form its spores?
Group of answer choices
fertilization
mitosis
osmosis
transcription
Mitosis
Penicillium reproduces asexually and forms genetically identical spores by mitosis.
Explanation:
In fungi, spores are produced in a structure called sporangium. This is a bulb-like structure at the tip of the sporangiophore. The parent cells (usually haploid because the fungi spend most of their life cycle in the haploid phase) divides and produces spores by mitosis. This produces haploid spores that are dispersed and readily germinate into haploid hyphae.
Learn More:
For more on asexual reproduction in fungi check out;
https://brainly.com/question/3180938
https://brainly.com/question/12110653
#LearnWithBrainly
NEED HELP ASAP!!!
What happens when you push against a brick wall?
A.)The wall pushes back on you with the same force.
B.)The wall noticeably accelerates away from you.
C.)The force of your push is cancelled out by the wall.
D.)The wall pulls you toward it with the same force.
Answer:
The answer is A)
Explanation:
The wall pushes back on you with the same force.
This is easily analyzed since when pushing or applying force toward the wall it does not move, it can be said that the system is in balance, this mathematically corresponds to that the sum of forces will be equal to zero, for this to be true the wall must apply an equal force and opposite to the force applied on the wall.
The above corresponds to newton's third law which says: Newton's Third Law also known as the principle of action and reaction tells us that if a body A exerts an action on another body B, it performs on another action-equal and of opposite sense.
An example of this can be seen in the attached image.
When you push against a brick wall, the wall pushes back with the same force, according to Newton's third law of motion.
Explanation:When you push against a brick wall, according to Newton's third law of motion, the answer is A.) The wall pushes back on you with the same force. Newton's third law of motion states that for every action, there is an equal and opposite reaction.
This means that any force exerted on a body will produce a reaction force from the body that is equal in size but opposite in direction. Therefore, when you push on a brick wall, the wall pushes back with the same force, but the wall is firmly in place, due to its high mass and the friction between the wall and its foundation, which makes it seem immovable.
Learn more about Newton's third law here:https://brainly.com/question/2057822
#SPJ6
I an exthermic reaction, why does the chemical reaction give off energy in the form of heat or light
Answer:
Because the chemical reaction cools down, releasing excessive heat into its surroundings, which we interpret as heat.
Explanation:
What causes some objects' motion to change?
Answer:
Forces affect how objects move. They may cause motion; they may also slow, stop, or change the direction of motion of an object that is already moving. Since force cause changes in the speed or direction of an object, we can say that forces cause changes in velocity. ... So forces cause acceleration.
Answer:
Its called force
Explanation:
Which part of the light waves does color correspond to ?
Answer:
The color corresponds to the electromagnetic spectrum of light waves.
Explanation:
The group electromagnetic waves are called the electromagnetic spectrum. They have been arranged according to the frequency as well as the wavelength. Further these have been grouped in sections like radio waves, microwaves, infrared waves, ultraviolet rays, X- rays and gamma rays. The graph formed are in form of radiant colors. Every color has some specific response pattern. The shortest wave is the violet color where the longest one is red. Being the shortest wave have the highest energy for all the visible light spectrum. The energy is high as well as the frequency and vibration are shortest. The energy of red is least.
Suppose you throw a rock off a cliff on Earth with an initial horizontal velocity of 3 m/s. Assuming minimal drag and no wind, the horizontal velocity of the rock A. increases as it falls. B. decreases as it falls. C. is 0 m/s just before it lands. D. remains constant throughout the fall.
Answer:
D. remains constant throughout the fall.
Explanation:
Horizontal Launching
We can launch an object in free air in three forms: vertically, horizontally or inclined. In any case, the only acting force to modify the object's velocity and make it go back to the ground is the force of gravity and it's always directed downwards. Unless friction or air resistance is considered, the horizontal motion is not affected because no force is acting in that direction.
The rock described in the question was launched at 3 m/s pointed horizontally. Immediately after launching, the rock starts to fall to the ground and gain vertical velocity, but the horizontal component remains the same until it completes the flight.
The D option is correct: the horizontal velocity of the rock remains constant throughout the fall
Which substance boils first: pure water or petroleum ? Why ?
Answer:
Petroleum
Explanation:
Water has a boiling point of 100°C meaning it will start to boil once the temperature reach 100° Celsius meanwhile
Petroleum's boiling point will change based on which petroleum product it is.
For example
LPG (which is a petroleum product)will boil at 40°C.
Answer:
Petroleum
Explanation:
A hypothetical planet has a mass of 1.66 times that of Earth, but the same radius. What is gravitiy near its surface?
Answer:
[tex]g=16.28m/s^2[/tex]
Explanation:
The gravitational acceleration on the surface of the earth is
[tex]g_{e}=\frac{Gm_{e}}{R_{e}^2}[/tex]
where G is the universal gravitational constant, [tex]m_{e}[/tex] is the mass of earth, and [tex]R_{e}[/tex] is the radius of earth,
in general for any object the gravitational acceleration or gravity on its surface is:
[tex]g=\frac{Gm}{R^{2}}[/tex]
in this case we know that the mass is 1.66 times the mass of earth:
[tex]m=1.66*m_{e}[/tex]
and the radius is the same as for earth:
[tex]R=R_{e}[/tex]
so the gravity for this planet is
[tex]g=\frac{G(1.66m_{e})}{R_{e}^2}[/tex]
which can be written in the following form:
[tex]g=(1.66)\frac{Gm_{e}}{R_{e}^2}[/tex]
where we know that [tex]g_{e}=\frac{Gm_{e}}{R_{e}^2}[/tex] , so:
[tex]g=(1.66)g_{e}[/tex]
and the acceleration of gravity on earth is: [tex]g_{e}=9.81m/s^2[/tex]
so the acceleration or gravity on the planet is:
[tex]g=(1.66)(9.81m/s^2)\\g=16.28m/s^2[/tex]
The gravity on the surface of a hypothetical planet with a mass of 1.66 times that of Earth and the same radius would be 1.66 times that on Earth, or approximately 16.28 m/s². Thus, the person would weigh about 1.66 times as much on this planet as they do on Earth.
Explanation:The gravity on the surface of a hypothetical planet that has a mass of 1.66 times that of Earth but the same radius can be determined by the equation g = GM/r², where G is the gravitational constant, M is the mass of the object, and r is the radius.
Given that the mass (M) of this planet is 1.66 times that of Earth, and the radius (r) is the same, the gravitational force (g) will be 1.66 times that of Earth. On Earth, the average gravitational force at the surface is approximately 9.8 m/s². Therefore, for this hypothetical planet, the gravity would be approximately 1.66 * 9.8 = 16.28 m/s².
This means a person would weigh approximately 1.66 times as much on the surface of this planet as they do on Earth, assuming that their mass remains constant.
Learn more about Surface Gravity here:https://brainly.com/question/32055590
#SPJ3
Gravity is needed to determine an object's _____. A. mass only B. weight only C. mass and weight
Answer:
B
Explanation:
Mass is the amount of matter in an object. Weight is the force of gravity on an object.
Which of the following correctly describes the number of protons and electrons in an atom?
The number of protons is higher than the number of electrons
The number of protons is equal to the number of neutrons
The number of electrons is higher than the number of protons
When protons are present electrons are absent
(O). The number of protons is equal to the number of electrons. None of the options is correct.
What are atoms?Atoms are the basic building blocks of matter. They are the smallest particles of an element that retain the chemical properties of that element. An atom consists of a nucleus, which is composed of positively charged protons and neutral neutrons, surrounded by a cloud of negatively charged electrons.
Atoms are electrically neutral, which means that the number of positively charged protons in the nucleus is equal to the number of negatively charged electrons in the electron cloud surrounding the nucleus. This balance of charges results in an overall neutral charge for the atom. The number of neutrons in an atom can vary, but it is not directly related to the number of protons and electrons. Neutrons are neutral particles that help to stabilize the nucleus, but they do not contribute to the overall charge of the atom.
Learn more about atoms here:
https://brainly.com/question/13518322
#SPJ6
a man has five 60w bulb and a 240w water heater in his apartment. if the bulb and water heater are switched on for four hours daily and the cost of electricity is $1.50 per kwh. calculate his bill for 30days.
Answer: $97.20
Explanation:
Convert 60w(x5 because he has 5 bulbs) and 240w to kw to get 0.3kw and 0.24kw and add these together to get 0.54kw. Next multiply 0.54kw with 4 for 4 hours which is 2.16kw then multiply this by 30 to get 64.8kw. Finally multiply 64.8kw by 1.50 to get $97.20
The total bill for 30 days would be $259.20, considering the energy consumed by the bulbs and water heater. We need to calculate the energy consumed by the bulbs and water heater in kilowatt-hours (kWh) and multiply it by the cost per kWh. The energy consumed by the bulbs is 4800Wh per day and the energy consumed by the water heater is 960Wh per day.
Explanation:To calculate the bill for 30 days, we need to determine the total energy consumed by the bulbs and water heater in kilowatt-hours (kWh) and then multiply it by the cost per kWh.
The energy consumed by the bulbs can be calculated as follows:
Total energy = power of one bulb * number of bulbs * time = 60W * 5 * 4 hours/day = 1200W * 4 hours/day.
So, the total energy consumed by the bulbs each day is 4800Wh.
The energy consumed by the water heater can be calculated as follows:
Energy = power * time = 240W * 4 hours/day.
So, the total energy consumed by the water heater each day is 960Wh.
To convert it to kWh, divide by 1000:
Total energy consumed each day = (4800 + 960)Wh / 1000 = 5.76kWh.
Finally, calculate the total bill for 30 days:
Total bill = total energy consumed each day * cost per kWh * number of days = 5.76kWh * $1.50/kWh * 30 days = $259.20.
Which of these was important at the beginning of the Industrial Revolution but is no longer important to highly developed countries?
Access to large markets
Technological monopolies
Transportation infrastructure
Proximity to sources of energy
A well-trained workforce
30. Light has been described as a ___ and a ___
Answer:
Explanation: light has been described as a particle and a wave
will mark as brainliest if answered correctly!!!!!!!!!!!!!
Which letter on the diagram below represents the angle of reflection?
A. A
B. B
C. C
D. D
Answer:
C
Explanation:
Because...
A= Incideant ray
B= Angle of inciderance
C= angle of reflection
D= reflection ray
Answer:
B
Explanation:
Which statement can be made about amplitude of any tranverse waves
Answer:
Amplitude is the vertical distance between a ridge and the midpoint of the wave.
Explanation:
A mechanical wave is a disturbance that travels through a material or substance that is a medium of the wave. For example, when a tense string is pressed, the disturbance caused spreads along it in the form of a wave pulse. The disturbance in this case consists in the variation of The Shape of the string from its equilibrium state
it is important to know:
Crest: the crest is the highest point of this amplitude.
Period: the period is the time it takes the wave to go from one point of maximum amplitude to the next.
Amplitude: amplitude is the vertical distance between a crest and the midpoint of the wave.
Frequency: number of times that vibration is repeated.
Valley: it is the lowest point of a wave.
Wavelength: distance between two consecutive ridges of this size.
Transverse wave velocity.-
The propagation speed of a wave on a string (v) is proportional to the square root of the string tension (T) and inversely proportional to the square root of the linear density (μ) of the string:
[tex]v = \sqrt{\frac{T}{μ} }[/tex]
Answer:
A
Explanation:
what is newton's disc ?How does it show that light is composed of many colours?
Answer:
What is Newton's Disc?
This is a type of disc that is divided into the rainbow colors (red, orange,yellow, green, blue, indigo and violet).
How does it show that light is composed of many colours?
When the Newton disc is spun, it produces a white light. This means that light is made up of rainbow colors.
Explanation:
Newton's disc is commonly used in experiments. This is an idea introduced to us by Isaac Newton, an influential scientist who greatly contributed to science. The disc is described as a color wheel, in which the different rainbow colors are shown. Once you spin the wheel, you'd be able to see the different colors blending in. It turns into one color and that is "white."
During the move from A to B, the velocity decreases by half. Determine vectors for the average acceleration, average Fnet, and average velocity during the trip?
Answer:
[tex]\displaystyle \vec a=-\frac{0.5\vec v_o}{t}[/tex]
[tex]\displaystyle \vec F_{net}=-\frac{0.5\vec v_om}{t}[/tex]
[tex]\vec v_f-\vec v_o=-0.5\vec v_o[/tex]
Explanation:
Dynamics
The dynamics of an object on which a net force is applied are explained by Newton's laws. The net force equals the product of the mass of the object by its acceleration
[tex]\vec F_{net}=m\vec a[/tex]
The formulas for the accelerated motion gives us other relevant magnitudes like the velocity
[tex]\vec v_f=\vec v_o+\vec a\ t[/tex]
Since all the magnitudes are vectors, given an initial state and a final state, their average values only depend on the difference of their states.
We know during the move from A to B, and object decreases its veclocity by half. It means
[tex]\vec v_f=0.5\vec v_o[/tex]
It that happened in a time t, then the average acceleration was
[tex]\displaystyle \vec a=\frac{\vec v_f-\vec v_o}{t}[/tex]
[tex]\displaystyle \vec a=\frac{0.5\vec v_o-\vec v_o}{t}[/tex]
[tex]\displaystyle \vec a=-\frac{0.5\vec v_o}{t}[/tex]
If the object has a mass m, the net force is
[tex]\displaystyle \vec F_{net}=m\vec a=-m\ \frac{0.5\vec v_o}{t}[/tex]
[tex]\displaystyle \vec F_{net}=-\frac{0.5\vec v_om}{t}[/tex]
Finally, the average velocity was
[tex]\vec v_f-\vec v_o=-0.5\vec v_o[/tex]
Average acceleration can be found using Δv/Δt and is negative if the particle is slowing down. Average net force requires the particle's mass and acceleration, which is calculated using Newton's second law. Average velocity is zero if the net displacement is zero.
Explanation:The question deals with finding the average acceleration, average net force (Fnet), and average velocity of a particle during a motion where the velocity decreases by half.
For the average acceleration, one would typically use the formula a_avg = Δv / Δt, where Δv is the change in velocity and Δt is the change in time. Since the velocity is decreasing and acceleration is given as negative when the particle is slowing down, the acceleration vector will also be negative.
To determine average Fnet, one could use Newton's second law, F = ma, once the mass of the object and the average acceleration are known. However, without the mass, we cannot calculate the average net force.
In terms of average velocity, it would be calculated as the total displacement divided by the total time. In a scenario where the net displacement is zero (such as a round trip), the average velocity would also be zero.
4. An object falls from the top of a storage cabinet 2 meters high. How
long does it take to reach the floor?
Answer:
Time = 0.64 s
Explanation:
Given:
Displacement of the storage cabinet is, [tex]S=2\ m[/tex]
As the object falls from the top, so initial velocity is, [tex]u=0\ m/s[/tex]
Also, the acceleration of the storage cabinet is due to gravity only.
So, acceleration of the storage cabinet is, [tex]a=9.8\ m/s^2[/tex]
Now, in order to find the time taken to reach the floor, we have to use the equation of motion that relates displacement, initial velocity, acceleration and time.
So, the equation of motion used is given as:
[tex]S=ut+\frac{1}{2}at^2[/tex]
Plug in the given values and solve for time 't'. This gives,
[tex]2=0+\frac{1}{2}(9.8)(t^2)\\\\2=4.9t^2\\\\t^2=\frac{2}{4.9}\\\\t^2=0.4082\\\\t=\sqrt{0.4082}\\\\t=0.64\ s[/tex]
Therefore, the storage cabinet takes 0.64 seconds to reach the floor.
draw a schematic diagram with four lights in parallel
Answer:
The four ligths will share the same voltage.
Explanation:
Parallel connected circuits stand out for sharing the same voltage between nodes, the voltage source is connected to two nodes and each node shares the same common point between lights.
In the attached image we can see four lights connected between two nodes, and sharing the same voltage of the voltage source.
James threw a ball vertically upward with a velocity of 41.67ms-1 and after 2 second David threw a ball vertically upward with a velocity of 55.56ms-1.Which ball will reach the ground first?
The first ball reaches the ground first
Explanation:
We can solve the problem by using suvat equations, since the motion of both balls is a free fall motion (with constant acceleration, [tex]g=9.8 m/s^2[/tex], towards the ground).
The equation of motion that represents the y-position of the first ball at time t is
[tex]y_1 = u_1 t + \frac{1}{2}at^2[/tex]
where
[tex]u_1 = 41.67 m/s[/tex] is the initial vertical velocity of the ball
[tex]a=-g=-9.8 m/s^2[/tex] is the acceleration (downward, therefore negative)
Substituting [tex]y_1 = 0[/tex] and solving for t, we find the corresponding time at which the ball reaches the ground:
[tex]0=u_1 t + \frac{1}{2}at^2\\0=t(u_1 + \frac{1}{2}at)[/tex]
The two solutions are:
t = 0 (starting moment)
[tex]u_1 + \frac{1}{2}at=0\\t=-\frac{2u_1}{a}=-\frac{2(41.67)}{-9.8}=8.5 s[/tex]
So, the first ball reaches the ground after 8.5 s.
Similarly, for the second ball
[tex]y_2 = u_2 t + \frac{1}{2}at^2[/tex]
where
[tex]u_2 = 55.56 m/s[/tex] is the initial vertical velocity of the ball
[tex]a=-g=-9.8 m/s^2[/tex] is the acceleration (downward, therefore negative)
Substituting [tex]y_2 = 0[/tex] and solving for t, we find the corresponding time at which the ball reaches the ground:
[tex]0=u_2 t + \frac{1}{2}at^2\\0=t(u_2 + \frac{1}{2}at)[/tex]
The two solutions are:
t = 0 (starting moment)
[tex]u_2 + \frac{1}{2}at=0\\t=-\frac{2u_2}{a}=-\frac{2(55.56)}{-9.8}=11.3 s[/tex]
So, the second ball reaches the ground after 11.3 s. However, the ball has been thrown 2 seconds after the first ball, so the actual time is
t = 11.3 + 2 = 13.3 s
This means that the first ball reaches the ground first.
Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly
The magnitude of the frictional force along the plane is most nearly
Answer:
F = N*μ or F =m*g*μ
Explanation:
The friction force is defined as the product of the normal force by the corresponding friction factor.
When a body is in equilibrium over a horizontal plane its normal force value shall be equal to:
[tex]N = m*g\\where:\\m=mass [kg]\\g=gravity [m/s^2]\\N= normal force [N][/tex]
if we simplify this formula more for a balanced body on a horizontal plane, we will have.
[tex]F=m*g*u[/tex]
The magnitude of the frictional force along a plane depends on the normal force and the coefficient of friction between the two surfaces. The force opposes motion in scenarios involving inclines or sliding objects and can be adjusted using the object's weight components and the coefficients of friction. In cases of rolling motion without slipping, the static friction force helps keep the object rolling smoothly.
Explanation:The magnitude of the frictional force along a plane is determined by the normal force (the force exerted by the surface) and the coefficient of friction between both surfaces. This friction force can oppose the motion on a surface which inclines in the case of a skier or a sliding block as mentioned in the examples. To calculate it, you would multiply the normal force (N) by the coefficient of friction (µ). For example, in a scenario where a block is sliding on a horizontal surface, if the gravitational force is 40N and the coefficient of friction is 0.20, then the magnitude of the frictional force would be 40N x 0.20 = 8N.
If the plane is inclined, you must project the object’s weight into components that are parallel and perpendicular to the surface. For instance, the normal force would be perpendicular and the frictional force parallel to the slope. The magnitude of the frictional force (f) is less than the component of the object's weight that is parallel to the slope (W ||), causing it to accelerate downslope. This can be adjusted using coefficients of friction and weight components.
In the case of a cylinder rolling without slipping, the rolling motion is due to the static friction force, and thus, the magnitude of this force would be less than or equal to the product of the static friction coefficient (µs) and the normal force (N). This keeps the cylinder rolling without skidding.
Learn more about Frictional Force here:https://brainly.com/question/33562642
#SPJ3
Help me please :(((((((
Answer: A.
Explanation: Roughly 180 - 200 million years ago, just before the first dinosaurs evolved. Mammals themselves evolved from a group or reptiles which exhibited mammal-like traits. One of them was specialized teeth. Reptiles tend to have teeth all the same shape. The mammal-like reptiles evolved tiny teeth in front of the jaw and two pairs of over sized fangs along the the sides. Like modern mammals, the head was large in proportion to the rest of the body. The jaws were also evolving another mammal trait, the ability to move sideways. Despite the lack of specialized teeth, acute hearing and the ability to chew, the dinosaurs evolved an adaptation which made them far more successful than mammals--modified leg bones. These limbs could be articulated directly under their bodies. This enabled the legs to support more weight, since the limbs were now under the body instead of at the sides. Then dinosaurs did something which secured their dominance for the next 120 million years - they began to stand on two legs. Although the back was still parallel to the ground, running on two legs greatly increased the dinosaur's speed. Mammals could simply not compete with swift, giant predators and were forced to remain small, and most became nocturnal to evade dinosaurs which were probably active during the day. Despite that they managed to survive which allowed the further evolution of mammals into us, humans.
In the Cenozoic period only mammals were alive. All dinosaurs had gone extinct leaving animals such as cave lions, woolly mammoths, and cave bears. Considering that Dinosaurs had gone extinct roughly 66 million years ago in the Cretaceous era and the Cenozoic era was 66 million years ago, the beginning of the Cenozoic era started with the extinction of dinosaurs.
Answer: D
Neva swam 3 complete laps in a 50 meter pool (1 lap is to the other side and back) express your answer in meters.
What is the distance and displacement
Answer:
Distance covered by Neva = 300 m
Displacement of Neva = 0 m
Explanation:
Given:
Length of the pool = 50 meter
Number of laps Neva swam = 3
1 lap is to swim to the other side and back.
To find the distance and displacement.
Solution:
To calculate the distance swum by Neva we will find the total length covered by Neva in 3 laps.
1 lap is 50 meters to the other side and 50 meters back
So, the length of 1 lap = [tex]50\ m+50\ m=100\ m[/tex]
Total length of 3 laps = [tex]3\times 100\ m = 300\ m[/tex]
To calculate the displacement we will find the distance between initial position and final position.
We, see that on completing 3 laps Neva returns to her starting point. Thus the initial and final position are the same. Do, the distance between initial position and final position will be = 0 m
Distance covered by Neva = 300 m
Displacement of Neva = 0 m
The distance Neva swam is 300 meters, while her displacement is zero meters.
To determine the distance Neva swam:
One lap in a 50-meter pool is defined as swimming to the other side and back, which means one lap is 100 meters.Neva swam 3 complete laps.Therefore, the total distance Neva swam is:3 laps × 100 meters/lap = 300 meters.
Displacement refers to the change in position from the starting point.
Since Neva ends up at the same point where she started after swimming 3 laps, her displacement is zero meters.
Hence,
Distance: 300 metersDisplacement: 0 metersA 0.35 kg ball moving in a circle at the end of a string has a centripetal acceleration of 5 m/s^2. What is the magnitude of the centripetal force exerted by the string on the ball to produce this acceleration?
Answer:
1.75 N
Explanation
centripetal force = mass × centripetal acceleration
= 0.35×5
= 1.75 N
Centripetal force is 1.75N
ConceptCentripetal force is the force acting on an object in curvilinear motion directed towards the axis of rotation or center of curvature.Centripetal force is calculated by mass* centripetal acceleration.How to solve this Problem?The mass of the ball given is 0.35kgThe centripetal acceleration given is 5m/s^2We need to calculate the magnitude of the centripetal force .
Therefore.
Centripetal force = mass*centripetal acceleration
= 0.35*5
= 1.75N
Hence , the centripetal force is 1.75N
Learn about centripetal force here
https://brainly.com/question/898360
#SPJ2
What travels faster, light or sound?
Answer:
light travels faster than sound
22. A race car accelerates from 0.0 m/s to 5 m/s with a displacement of 2.5 m. What is the
car's acceleration? a. 5 m/s? b. 7.5 m/s2 c. 12.5 m/s2 d. 2.5 m/s2
5-6
Answer:
Option A
[tex]5 m/s^{2}[/tex]
Explanation:
From fundamental equation of motion
[tex]v^{2}=u^{2}+2as[/tex] where v is the final velocity, u is the initial velocity, a is the acceleration of the body and s is the displacement.
Since the initial velocity is zero
[tex]v^{2}=2as[/tex]
Making acceleration, a the subject of the formula then
[tex]a=\frac {v^{2}}{2s}[/tex]
Substituting 5 m/s for v and 2.5 m for s then
[tex]a=\frac {5^{2}}{2\times 2.5}=5 m/s^{2}[/tex]
working of electric generator
Answer:
An electric generator is a device that converts mechanical energy obtained from an external source into electrical energy as the output. ... Instead, it uses the mechanical energy supplied to it to force the movement of electric charges present in the wire of its windings through an external electric circuit.
Explanation:
Answer:
The difference in electrical potential is the difference of electrons from one site with respect to another, when this occurs those of the site where there is more they move to the site where there is less. This is what is known as electric current. The difference of electrons from one site to another is measured in Volts, the more volts the more difference there is in the amount of electrons from one site to the other and therefore more electrons will run to there as soon as they can.
The upper vessel has a potential (in this case gravitational) and the one below another. If the two are joined with a pipe, a stream of water starts from one to another container. This happens, for example, with any electric (electric-generated) battery, by joining the two (+) and (-) poles as they are at different electric potential an electric current (of electrons) starts between them.
An electric generator maintains a difference in electrical charges between two points, called poles, terminals or terminals, so this electrical energy can be converted into other forms of energy.
How much of a 100 g sample of radon-222 will remain unchanged after 7.64
days?
The half-life of a substance describes the time in which it takes for half of the radioactive isotope to decay into another form. In your question, it says that the half life of radon-222 is 3.82 days; in a 100g sample of radon, 3.82 days pass and 50g of that isotope is left.
7.64 days is the equivalent to two half lives (7.64/3.82), so only half of half of 100%, or 25%, of the isotope would remain. The answer is D
Hope that helps
in a hydraulic press the small cylinder has a diameter 10.0cm while the large has 25cm if the force of 600N is applied to the small cylinder. find the force exacted on the large cylinder
Answer:
3750 N
Explanation:
Pressure on the small cylinder = pressure on the large cylinder
P₁ = P₂
F₁ / A₁ = F₂ / A₂
F₁ / (π d₁² / 4) = F₂ / (π d₂² / 4)
F₁ / d₁² = F₂ / d₂²
600 N / (10.0 cm)² = F / (25.0 cm)²
F = 3750 N
Answer:
3751.34N
Explanation:
Pressure in large piston = pressure in smaller piston
P2 = P1
Pressure = Force / Area
Area = pi * r²
r1= d1/2 = 10/ 2 = 5cm = 0.05m
Area(A1) = 22/7 * (0.05)² = 0.00785m²
r2 = d2 / 2 = 25/2 = 12.5cm = 0.125m
Area(A2) = 22/7 * (0.125)² = 0.04908m²
Pressure = Force / Area
F1/A1 = F2/A2
600 / 0.00785 = F2 / 0.04908
F2 = (600 * 0.04908) / 0.00785
F2 = 3751.34N
A 30.9 kg rocket has an engine
that creates a 790 N upward force
("thrust"). What is its acceleration?
(Don't forget its weight!)
(Unit = m/s)
Answer:
acceleration = 15.8 m/s^2
Explanation:
Weight of rocket which acts downward is W = mass × acceleration due to gravity
w = 30.9 × 9.81
W = 303.129 N
force of 790 N acts upward and it is greater than W hence acceleration is in upward direction and is given by Newton's second law of motion as
790 - W = mass × acceleration
790 - 303.129 = 30.9 × acceleration
486.871 = 30.9 × acceleration
acceleration = 486.871 / 30.9
acceleration = 15.756 m/s^2
acceleration = 15.8 m/s^2