Final answer:
The positive ion found in aqueous sulfuric acid (H2SO4) is the hydronium ion (H3O+), which forms during the acid's ionization in water.
Explanation:
The positive ion found in H2SO4(aq) is the hydronium ion (H3O+). When sulfuric acid (H2SO4) is dissolved in water, the first ionization results in the formation of hydronium ions (H3O+) and hydrogen sulfate ions (HSO4−). The second ionization of the hydrogen sulfate ion can produce more hydronium ions and sulfate ions (SO42−). Since we are discussing only positive ions, the hydronium ion is the relevant ion in both ionization steps of sulfuric acid in an aqueous solution.
The ammonium ion (NH4+), sulfide ion (S2−), and hydroxide ion (OH−) are not relevant in the context of sulfuric acid in aqueous solution.
In aqueous sulfuric acid, the only positive ion present is the 2. hydronium ion (H₃O⁺).
In the aqueous solution of sulfuric acid, H₂SO₄(aq), the only positive ion that is found is the hydronium ion (H₃O⁺).
When sulfuric acid (H₂SO₄) is dissolved in water, it undergoes ionization:
First ionization: H₂SO₄(aq) + H₂O(l) ⇒ H₃O+(aq) + HSO₄⁻(aq)
Second ionization: HSO₄⁻(aq) + H₂O(l) ⇒ H₃O⁺(aq) + SO₄²⁻(aq)
This ionization process results in the formation of hydronium ions (H₃O⁺), making them the only positive ions in the solution. The correct answer is 2.
Describe and explain the stages of making copper chloride crystals and acid.
Answer:
Add excess copper carbonate to hydrochloric acid in a beaker, stirring until there is no further reaction. Filter the mixture to remove the remaining copper carbonate, then heat the remaining solution to the point of crystallisation. Leave the solution to cool and collect the crystals formed by filtration.
Explanation:
Answer:
CHICKEN
Explanation:
EGG
LEG
PIC
In Hawaii, the mongoose was brought to the islands to control the snake population. It thrived, and now the mongoose population is rampant. Which threat to biodiversity describes this situation?
Answer:
Introduced species (invasive species)
A student prepares 150.0 mL of 1.40 M HCl using 35.0 mL of a stock solution. What is the concentration of the stock solution? Use M subscript i V subscript i equals M subscript f V subscript f..
Answer:6.0M
Explanation:see attached photo
The concentration of the stock HCl solution used to prepare 150.0 mL of 1.40 M HCl from 35.0 mL of the stock solution is 6.00 M.
To find the concentration of the stock solution of HCl used to prepare a diluted solution, we can use the dilution equation MiVi = MfVf, where Mi and Vi are the concentration and volume of the initial stock solution, and Mf and Vf are the concentration and volume of the final diluted solution.
In this case, the student has prepared 150.0 mL of 1.40 M HCl by diluting 35.0 mL of a stock solution. To find the concentration of the stock solution (Mi), we rearrange the equation to solve for Mi:
Mi = (MfVf) / Vi
Substituting the given values:
Mi = (1.40 M × 150.0 mL) / 35.0 mL
Mi = (210.0 × mL) / 35.0 mL
Mi = 6.00 M
Therefore, the concentration of the stock HCl solution is 6.00 M.
Multiple Choice
A scientist performs an experiment on an unknown element. She finds that the unknown element forms an ionic bond with beryllium (Be). She concludes that the unknown element must belong in group 2 of the periodic table. State whether or not you think this result supports her conclusion, and why.
A) No. Beryllium is in Group 2 and is unlikely to react with another Group 2 element.
B) No. Group 2 elements are generally unlikely to react at all.
C) Yes. In an ionic bond, elements share an electron, so this is a logical conclusion.
D) Yes. Ionic bonds only form between elements of the same group.
Answer:
A
Explanation:
I Took the test
A metal does not form ionic bond with other metals. All the group 2 elements are metals. They cannot form compounds with each other. Therefore, option A is correct.
What is ionic bonding ?Ionic bonds are formed between metals and non-metals. Metals are all electropositive and they easily loss electrons to form corresponding cations.
Non -metals are mostly electron deficient and will gain electrons from metals to achieve octet. Non-metals form their anions and they combine with the cations electrostatically form the ionic bond.
No two metals can form a compound together. They both form positive ions and repel each other. Therefore, beryllium cannot form compounds with elements of its own group which are all metals. Hence, option A is correct.
Find more on ionic bonding:
https://brainly.com/question/11527546
#SPJ3
Which sample would have the same number of molecules as 11.2L of He (g) at 273K and 202kPa?
1) 11.2L of N2(g) at 300K and 202kPa
2) 22.4L of Ne(g) at 546K and 404K
3) 11.2L of CH4(g) at 273K and 202kPa
Answer: 11.2 L of [tex]CH_4(g)[/tex] at 273K and 202kPa
Explanation:
According to ideal gas equation:
[tex]PV=nRT[/tex]
P = pressure of gas = 202 kPa = 1.99 atm ( 1kPa= 0.0098 atm)
V = Volume of gas = 11.2 L
n = number of moles = ?
R = gas constant =[tex]0.0821Latm/Kmol[/tex]
T =temperature =[tex]273K[/tex]
[tex]n=\frac{PV}{RT}[/tex]
[tex]n=\frac{1.99\times 11.2}{0.0821 L atm/K mol\times 273K}=0.99moles[/tex]
According to avogadro's law, equal number of moles occupy equal volumes and contain equal number of molecules at same temperature and pressure conditions.
As 11.2 L of [tex]CH_4(g)[/tex] at 273K and 202kPa will have same moles as 11.2L of He (g) at 273K and 202kPa, thus they have same number of molecules.
Using Avogadro's Law which states that equal volumes of gas at the same temperature and pressure have the same number of molecules, the gas that has the same number of molecules as 11.2L of He (g) at 273K and 202kPa would be 11.2L of CH4(g) at 273K and 202kPa.
Explanation:The concept we need to understand to answer this question is the Avogadro's law, which states that equal volumes of all gases, at the same temperature and pressure, have the same number of molecules. Thus, regardless of the specific gas, 11.2L of any gas at 273K and 202kPa will have the same number of molecules.
Therefore, the sample that would have the same number of molecules as 11.2L of He (g) at 273K and 202kPa would be 11.2L of CH4(g) at 273K and 202kPa. The other two samples have different conditions and thus would not have the same number of molecules.
Learn more about Avogadro's Law here:https://brainly.com/question/4133756
#SPJ3
Which of the following is NOT involved in recording climate data?
A. Investigating air bubbles trapped in ice cores.
B. Analyzing species of pollen.
C. Identifying phosphorus levels in fossils.
D. Studying tree rings.
The method not involved in recording climate data is identifying phosphorus levels in fossils. Climate scientists commonly use ice cores, pollen analysis, and dendrochronology to understand past climate conditions.
So, the correct answer is C. Identifying phosphorus levels in fossils.
Explanation:The option that is NOT involved in recording climate data is indentifying phosphorus levels in fossils. Phosphorus levels in fossils are typically not used to record historical climate data. Instead, they may be more relevant in studies of biogeochemical cycles or ancient ecosystems.
Climate scientists use various methods to reconstruct past climates, known as proxy data. Some of the common proxies include:
Investigating air bubbles trapped in ice cores to analyze atmospheric composition and temperature from the past.Analyzing species of pollen to infer the types of vegetation and therefore the climate of the time.Studying tree rings, also known as dendrochronology, which can indicate the age of a tree and provide information about historical weather patterns and climate conditions.Each of these methods contributes to the understanding of Earth's climate history and changes over time.
So, the correct answer is C. Identifying phosphorus levels in fossils.
Final answer:
Identifying phosphorus levels in fossils is NOT involved in recording climate data. Tree rings, ice cores, and pollen analysis are used to study past climates. Phosphorus levels give geochemical information not directly related to climate.
Explanation:
Of the options provided, the one that is NOT involved in recording climate data is C. Identifying phosphorus levels in fossils. The other options, like investigating air bubbles trapped in ice cores, analyzing species of pollen, and studying tree rings, are all common proxy methods used by scientists to reconstruct past climates. Phosphorus levels in fossils generally provide information related to the geochemistry of the environments where the organisms lived, rather than direct climate data.
Both tree rings and ice cores are essential proxies in paleoclimatology. Tree rings provide annual records that can be used to infer temperature and precipitation patterns, while ice cores can reveal atmospheric composition and temperature data over longer time periods. Pollen analysis helps in reconstructing past vegetation and therefore, the climate that supported such vegetation.
What is the mass of 2.64 moles of water
Answer:
47.5603392 grams
Explanation:
If there was a high pressure system in your area and a bunch of clouds were blown in from a different direction, how would the pressure system in your area change? Would it change or stay the same
The pressure system in the area would likely change due to the introduction of clouds from a different direction.
Clear skies in a high-pressure system occur because descending air inhibits cloud formation; cloud movement suggests a different air mass.
Arrival of a cloudy air mass can disrupt the existing high-pressure system by weakening it.
The high-pressure system might shift position, moving away or being displaced by the incoming low-pressure system.
Persistence of the high-pressure system depends on its strength and reinforcement by other atmospheric conditions; clouds may be temporary.
Interaction between high and low pressure can form a frontal boundary, triggering weather changes like precipitation.
Cloud introduction from another direction indicates a weather pattern change, affecting the area's pressure system.
Outcome varies based on the strengths and characteristics of both pressure systems and the associated air masses.
Identify the acid-conjugate base pair in this balanced equation:
H2SO4 + 2NaOH → 2H2O + Na2SO4
H2SO4/H2O
H2SO4/Na2SO4
NaOH/H2O
NaOH/Na2SO4
Answer:
The answer is B. H2SO4/Na2SO4
Explanation:
Answer:
b
Explanation:
Choose the phrases that you think of when you hear the word Sun. Check all that apply.
center of the solar system
hot
sunburn
solar energy
star
source of energy for life
solar radiation
Answer:
The answer is all of the above
A) Center of the solar system
B) hot
C) sunburn
D) solar energy
E) star
F) source of energy for life
G) solar radiation
The study of stars and planets is called cosmology.
The correct answer is all of them.
Sun is the celestial body that gives us the energy to make all the things on the earth.
All the option is justified as follows:-
Sun is the center of the solar system and all planets revolve around it.Sun is very hot its surface temperature is 15000CSun can cause sunburnThe energy which is produced by the sun is called solar energy.Sun itself a starThe source of energy on earth is the sun because it is used by plants.Sun emits solar radiation.Hence, the correct option is all of them.
For more information, refer to the link:-
https://brainly.com/question/19200238
What is the coefficient?
A. A whole number that appears in front of a compound or element in a balanced chemical equation.
B. A whole number that appears as a subscript in front of a formula in a balanced chemical equation
C. A whole number that appears as a subscript at the end of a formula in a balanced chemical equation.
D. A whole number that appears as a subscript at the end of a formula in a balanced chemical equation
Answer:
A. A whole number that appears in front of a compound or element in a balanced chemical equation.
Explanation:
That's the definition of a coefficient.
B, C, and D are wrong. Subscripts are not coefficients.
Tritium is an isotope of hydrogen (H) that has:
A. 1 proton and 0 neutrons
B. 2 protons and 1 neutron
C. 1 proton and 2 neutrons
D. 1 proton and 1 neutron
Answer:
D.1 proton and 1 neutron is the correct answer
Explanation:
Which phase of matter completely fills its container?
A. Gas
B. None of these
C. Liquid
D. All of these
Answer:
C. Liquid
Explanation:
Gas has no definite shape but liquid takes form of whatever container it is placed in
The best definition of a proxy record is:
A. Scientific measurements that are indirect and not recorded with instruments.
B. Scientific measurements that use one set of data to represent another set of data in a calculation.
C. Scientific measurements made using proximal distances between data points.
D. Scientific measurements that contain data points that are average approximations of specific measurements.
D. Scientific measurements that contain data points that are average approximations of specific measurements.
What is a proxy indicator for the climate?A proxy climate indicator is a local record that is interpreted using physical or biophysical principles to represent some combination of climate-related variations back in time.
These proxy data are preserved physical characteristics of the environment that can stand in for direct measurements. Paleoclimatologists gather proxy data from natural recorders of climate variability such as corals, pollen, ice cores, tree rings, caves, pack rat middens, ocean and lake sediments, and historical data.
Learn more about the proxy records here: https://brainly.com/question/13072510
#SPJ2
Which strutcure capture enegry from sunlight ?
Answer:
Chloroplasts
Explanation:
Chloroplasts contain disc-shaped structures called thylakoids, which contain the pigment chlorophyll. Chlorophyll absorbs certain portions of the visible spectrum and captures energy from sunlight.
A diver has a lung capacity of 2.4 L when the pressure is 0.8 atm. What is the volume of the diver’s lungs when the pressure changes to 1.2 atm?
a) 1.60 L
b) 2.50 L
c) 3.60 L
d) 1.40 L
Answer:
The final volume is 1.6 L.
Explanation:
It is given that,
A diver has a lung capacity of 2.4 L when the pressure is 0.8 atm. We need to find the volume of the diver’s lungs when the pressure changes to 1.2 atm. Let V₂ is volume.
It is based on Boyle's law. According to this law,
[tex]PV=K[/tex]
K is constant
[tex]P_1V_1=P_2V_2[/tex]
[tex]V_2=\dfrac{P_1V_1}{P_2}\\\\V_2=\dfrac{0.8\times 2.4}{1.2}\\\\V_2=1.6\ L[/tex]
So, the final volume is 1.6 L.
If i have a 50 liter container that holds 45 moles of gas at a temperature of 200 degrees C, what is the pressure inside the container? Step by step answer please.
Answer:
34.91 atm
Explanation:
Step 1:
Data obtained from the question include:
Volume (V) = 50L
Number of mole (n) = 45 moles
Temperature (T) = 200°C
Pressure (P) =?
Note: Gas constant (R) = 0.082atm.L/Kmol
Step 2:
Conversion of celsius temperature to Kelvin temperature.
T (K) = T (°C) + 273
T (°C) = 200°C
T (K) = 200°C + 273
T (K) = 473K
Step 3:
Determination of the pressure.
The pressure inside the container can be obtained by using the ideal gas equation as follow:
PV = nRT
Divide both side V
P= nRT / V
P = (45 x 0.082 x 473) / 50
P = 34.91 atm
Therefore, the pressure inside the container is 34.91 atm
The pressure inside a 50 liter container that holds 45 moles of gas at a temperature of 200 degrees is 34.90 atm.
What is ideal gas equation?Ideal gas equation is a hypothesis which shows the behavior of gas at different conditions and it will be represented as:
PV = nRT, where
P = pressure of gas = to find?
V = volume of the container = 50 L
n = moles of gas = 45 moles
R = universal gas constant = 0.082atm.L/Kmol
T = temperature = 473 K
On putting all these values on the above equation, we get
P = (45)(0.082)(473) / (50)
P = 34.90 atm
Hence required pressure is 34.90 atm.
To know more about ideal gas equation, visit the below link:
https://brainly.com/question/20348074
What is the hydroxide ion concentration of an acidic solution with a pH of 4.50
Answer:
0.000032 mol/l
Explanation:
A solution that has a higher concentration of hydrogen ions than water is known as an acidic solution and basic or alkaline solutions have a lower concentration of hydrogen ions than water.
The nucleus of a hydrogen atom separated from its electron is known as a hydrogen ion.
pH of an acidic solution (n) = 4.50
Hydroxide ion concentration of an acidic solution = [tex]10^{-n}=10^{-4.50}=0.000032\,\,mol\,/\,l[/tex]
A 1.5L sample of a gas at 150kPa and 250K is changed to STP. What is the new volume?
Answer: The new volume is 2.4 L
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 150 kPa
[tex]P_2[/tex] = final pressure of gas = 101 kPa (at STP)
[tex]V_1[/tex] = initial volume of gas = 1.5 L
[tex]V_2[/tex] = final volume of gas = ?
[tex]T_1[/tex] = initial temperature of gas = 250 K
[tex]T_2[/tex] = final temperature of gas = 273 K ( at STP)
Now put all the given values in the above equation, we get:
[tex]\frac{150\times 1.5}{250}=\frac{101\times V_2}{273}[/tex]
[tex]V_2=2.4L[/tex]
Thus the new volume is 2.4 L
To find the new volume at STP, the combined gas law is used. The initial conditions (150kPa, 1.5L, and 250K) are set equal to the final conditions at STP (101.3kPa, V2, and 273K), then solved for V2 to get the new volume in liters which is 2.42L.
To determine the new volume of the gas at standard temperature and pressure (STP), we can use the combined gas law which states that the ratio of the product of pressure and volume and the absolute temperature of a gas is constant, provided the amount of gas remains constant. For the 1.5L sample of a gas at 150kPa and 250K when changed to STP, we assume the STP conditions to be 0°C (or 273K) and 101.3kPa.
First, we convert the initial pressure to kPa if it is not already, and we confirm that the initial temperature is in Kelvin. Then we can plug our known values into the formula:
P1 * V1 / T1 = P2 * V2 / T2
Where P1 and V1 are the initial pressure and volume, T1 is the initial temperature, P2 and V2 are the final pressure and volume, and T2 is the final temperature at STP.
In this case, we have:
150kPa * 1.5L / 250K = 101.3kPa * V2 / 273K
When we solve for V2, we get:
V2 = (150kPa * 1.5L / 250K) * 273K / 101.3kPa
V2= 2.42L
Performing the calculation we get the new volume of the gas at STP which is 2.42L.
1) What does a steep gradient and a shallow gradient mean on a graph of time (x-axis) and volume of gas produced mean?
Answer:
precise meaning in mathematics than the way it is often used in science. ... gradient at any point along the line is the same. For a curve ... Many graphs have 'time' as the variable on the horizontal axis, and indeed the language that ... represents the relationship between the volume of a fixed mass of gas and its temperature.
Explanation:
Why is a 13 placed in front of the oxygen on the perodic table
A) It is a subscript representing that there are 13 oxygen atoms in an oxygen molecule
B) It is a coefficient representing that there are 13 oxygen atoms in the reactants
C) It is a coefficient representing that there are 13 oxygen molecules in the reactants
D) It is a subscript representing that there are 13 oxygen atoms in the reactants
Final answer:
A number placed in front of a compound or an element in a chemical equation, such as 13 in front of oxygen, is a coefficient that indicates the number of molecules present, meaning there are 13 oxygen molecules in the reactants.
Explanation:
When you see a number placed in front of a compound or an element in a chemical equation, such as the number 13 placed in front of oxygen, this number is referred to as a coefficient. Coefficients are used in chemical equations to indicate the number of molecules or atoms involved in the reaction. Unlike subscripts, which denote the number of atoms of an element within a molecule, coefficients tell us how many units of a molecule or an elemental atom are present. Therefore, if we see a 13 in front of oxygen in a chemical equation, it indicates the presence of 13 oxygen molecules. This means that the correct answer is "C) It is a coefficient representing that there are 13 oxygen molecules in the reactants".
Oxygen decays to form nitrogen.
150
15N + ºe
This type of nuclear decay is called
DONE
Answer: beta plus decay
Explanation:
just did it on edge :)
Answer:
The answer is C) beta plus decay
Explanation:
I took the assignment, i hope it helps
What mass of H₂O is formed when excess H₂ reacts with 64 g of O₂? *
2H2+O2 -->2H2O
Answer: 72g
Answer:
72g of H2O.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
2H2 + O2 —>2H2O
Next, we'll determine the mass of O2 that reacted and the mass of H2O produced from the balanced equation.
This is illustrated below:
Molar Mass of O2 = 16x2 = 32g/mol
Molar Mass of H2O = (2x1) + 16 = 18g/mol
Mass of H2O from the balanced equation = 2 x 18 = 36g
Summary:
From the balanced equation above,
32g of O2 reacted to produce 36g of H2O.
Now, we can obtain the mass of H2O produced when 64g of O2 react as follow:
From the balanced equation above,
32g of O2 reacted to produce 36g of H2O.
Therefore, 64g of O2 will react to produce = (64 x 36)/32 = 72g of H2O.
From the calculations made above, 72g of H2O is produced from the reaction.
Which of the following always changes when transmutation occurs?
The number of electrons
The mass number
The atomic number
The number of neutrons
Answer:
The atomic number
Explanation:
Transmutation refers to the conversion of one chemical element into another. A transmutation usually involves a change in the structure of atomic nuclei and this may be induced by a nuclear reaction.
Transmutation was first achieved in 1919 by Lord Rutherford when he successfully changed a nitrogen nucleus to an oxygen-18 isotope, producing a proton in the process.
Since transmutation often involves changing one atom into another, the atomic number or mass number of the original element always changes (to form a new element) in the process.
(PLEASE HELP ASAP!!!!!!)
Which statement best describes resistance? Resistance is:
A: how well a current will flow in a material and is measured in volts
B: how well a material conducts an electrical charge and is measured in ohms
C: the ability of a material to attract a positive charge to create a current
D: the ability of a material to repel neutral charges and is measured in ohms
Answer:
A. How well a current will flow in a material and it's measured in volts.
how energy is conserved?
Answer:
The law of conservation of energy states that the total energy is constant in any process. Energy may change in form or be transferred from one system to another, but the total remains the same.
Explanation:
5. If there is 7.7 moles of gaseous nitric acid at a pressure of 0.09 atm and
at a temperature of 56 OC, what is the volume of the container that the
w
gas is in?
Answer: Thus the volume of the container that the gas is in 2311 L
Explanation:
According to ideal gas equation:
[tex]PV=nRT[/tex]
P = pressure of gas = 0.09 atm
V = Volume of gas = Volume of container = ?
n = number of moles = 7.7
R = gas constant =[tex]0.0821Latm/Kmol[/tex]
T =temperature =[tex]56^0C=(56+273)K=329K[/tex]
[tex]V=\frac{nRT}{P}[/tex]
[tex]V=\frac{7.7mol\times 0.0821Latm/K mol\times 329K}{0.09atm}=2311L[/tex]
Thus the volume of the container that the gas is in 2311 L
somebody who know this science humor pleaseeee
If you only have 50% of something, which element
must you have? (Remember, this is science
HUMOR!!! Yesterday's answer was Argon - because
if there are no bananas left it means they "are
gone"- get it?!)
Answer:
Hafnium
Explanation:
I'm guessing based on the sound of the name, because hafnium kind of sounds like the word half, or 50%. Hope this helps!
Answer:
Hafnium
Explanation:
You exert the same force on two objects of different masses. Which object will have the greater acceleration? Explain your answer.
When the same force is applied to two objects with different masses, the object with the smaller mass will experience a greater acceleration.
How to get the objectThis is in accordance with Newton's second law of motion, which states that acceleration is inversely proportional to mass when force is constant.
Less massive objects accelerate more easily in response to a given force, while more massive objects require a greater force to achieve the same acceleration.
Read more on acceleration here https://brainly.com/question/460763
#SPJ3
The object with the smaller mass will have the greater acceleration.
According to Newton's second law of motion, the acceleration of an object is directly proportional to the net force applied to it and inversely proportional to its mass. This relationship is given by the equation:
[tex]\[ a = \frac{F}{m} \][/tex]
where [tex]a[/tex] is the acceleration, [tex]F[/tex] is the force applied, and [tex]m[/tex] is the mass of the object.
Given that the same force [tex]F[/tex] is applied to two different objects, the acceleration [tex]\( a \)[/tex] of each object will depend on its mass [tex]\( m \).[/tex] If we denote the force as \( F \), and the masses of the two objects as [tex]\( m_1 \) and \( m_2 \),[/tex] with [tex]\( m_1 < m_2 \)[/tex], the accelerations [tex]\( a_1 \) and \( a_2 \)[/tex] can be calculated as:
[tex]\[ a_1 = \frac{F}{m_1} \][/tex]
[tex]\[ a_2 = \frac{F}{m_2} \][/tex]
Since [tex]\( m_1 < m_2 \)[/tex], the fraction [tex]\( \frac{F}{m_1} \)[/tex] will be greater than [tex]\( \frac{F}{m_2} \),[/tex]which means that \[tex]( a_1 > a_2 \).[/tex]
Therefore, the object with the smaller mass [tex]\( m_1 \)[/tex] will have the greater acceleration [tex]\( a_1 \)[/tex] when the same force [tex]\( F \)[/tex] is applied to both objects.
This conclusion is consistent with the inverse relationship between mass and acceleration as described by Newton's second law.
Initial temperature of metal =
°C
Initial temperature of water =
Final temperature of both =
DONE
Answer:
the correct answers is 100 22.7 and 24.6
Explanation:
did it on edgunity
The metal is initially heated to a temperature of 100°C. The water's original temperature is 22.4 °C. Both have a final temperature of 27.1°C.
What is the initial temperature?The initial temperature, which is established following the movement or movement of the full and closed container, is indeed the average temperature of the lowest container to be taken into account at the start of the hot temperature cycle.
Initial temperature refers to the average interior temperature of the coldest processing container at the start of the thermal processing cycle, as assessed following a thorough stir or shake of the filled and sealed containers.
Thus, the metal is initially heated to a temperature of 100°C. The water's original temperature is 22.4 °C. Both have a final temperature of 27.1°C.
Learn more about Initial temperature, here:
brainly.com/question/14996178
#SPJ7
Your question is incomplete, most probably the complete question is:
Measure the initial temperature of the water to the nearest 0.1c record in the date table.
Initial temperature of metal =
°C
Initial temperature of water =
Final temperature of both =