Answer:
B
Explanation:
according to foemula
w=f/d
= 430/2
215
If 2.0j of work is done in raising 180g apple, how far was it lifted?
Work = (force)x(distance)
Since we're lifting, the 'force' is the weight of the apple.
Weight = (mass)x(gravity)
Weight = (0.180 kg)x(9.8 m/s^2)
Weight = 1.764 Newtons
2.0 J = (1.764 N) x (distance)
Distance = 2.0J / 1.764N
Distance = 1.13 meters
An apple is lifted "1.1337 meters" far.
Given values are:
Work done,
W = 2 JMass,
m = 180 gor,
= 0.18 kg
and,
g = 9.8As we know the formula,
→ [tex]Work \ done (W)= mgh[/tex]
or,
→ [tex]h = \frac{W}{mg}[/tex]
By substituting the values, we get
→ [tex]= \frac{2}{0.18\times 9.8}[/tex]
→ [tex]= \frac{2}{1.764}[/tex]
→ [tex]= 1.1337 \ meters[/tex]
Thus the above response is correct.
Learn more:
https://brainly.com/question/3329687
what is speed in your own words
Answer:
speed is defined as distance travelled per unit time
Answer: Speed is the measure of how fast an object is moving.
Explanation: Speed is expressed as the ratio of the distance travelled per unit time.
A hockey puck (m=0.2kg) is dragged by a force of 10N. What is it’s acceleration
Answer: a= 50 m/s²
Explanation: Acceleration is force per unit mass.
a= F/ m
= 10 N / 0.2 kg
= 50 m/s²
A free body diagram of a brick on an inclined plane is shown below. What is the mechanical advantage of the inclined plane?
The mechanical advantage of an inclined plane can be calculated using the formula: MA = length of incline / height of incline. For example, if the length of the incline is 10 meters and the height of the incline is 2 meters, then the mechanical advantage would be 5.
Explanation:The mechanical advantage of an inclined plane can be calculated using the formula:
Mechanical Advantage (MA) = length of incline / height of incline
In the case of a brick on an inclined plane, the length of the incline would be the distance along the surface of the plane and the height of the incline would be the vertical distance from the base of the incline to the top.
For example, if the length of the incline is 10 meters and the height of the incline is 2 meters, then the mechanical advantage would be 10 / 2 = 5.
Learn more about Mechanical Advantage of an Inclined Plane here:https://brainly.com/question/14490987
#SPJ12
The mechanical advantage of an inclined plane can be calculated using the length and height of the incline, which tells us how much the plane multiplies the effort force, simplifying tasks like lifting heavy objects.
Explanation:To calculate the mechanical advantage (MA) of an inclined plane, you can use the formula MA = Length of Incline / Height of Incline. The mechanical advantage tells you how much the inclined plane multiplies the effort force, allowing you to overcome the weight of the object with less force. This efficiency is due to the larger distance over which the force is applied when using the inclined plane as compared to lifting the object straight up.
The ideal mechanical advantage (IMA) is the theoretical maximum mechanical advantage you could get from an inclined plane if there were no energy losses due to friction. In reality, the actual mechanical advantage will be less than the ideal mechanical advantage because of frictional forces.
Applying this concept, pushing a brick up an inclined plane requires less force than lifting it vertically because the weight of the brick is distributed over a longer distance. The inclined plane, a simple machine, reduces the effort needed to raise the brick, similar to how ancient civilizations like the Egyptians used ramps to lift heavy blocks during pyramid construction.
Learn more about Mechanical Advantage of Inclined Plane here:https://brainly.com/question/14490987
#SPJ3
A weightlifter lifts a barbell above her head. Is there work done on the barbell?
Answer:
Yes
Explanation:
The work done on a body relies upon the force, displacement, and the angle made between the force and the displacement.
Here, the force acting on the barbell is vertically downwards while the vertical displacement is in the upward direction. The angle made between the force (weight) and the displacement is [tex]180^{\circ}.[/tex] Thus, a work will be done on the barbell by its weight.
The work done on a body relies upon the force, displacement, and the angle made between the force and the displacement.
What is force?
A force is a push or pull upon an object resulting from the object's interaction with another object. Whenever there is body with some mass than there is force.
Work in physics is the energy that is transferred to or from an item when a force is applied along a displacement. In its simplest form, it equals the product of the force's magnitude and the distance traveled for a constant force directed in the direction of motion.
Here, the force acting on the barbell is vertically downwards while the vertical displacement is in the upward direction. The angle made between the force (weight) and the displacement.
Thus, a work will be done on the barbell by its weight.
To learn more about force refer to the link:
brainly.com/question/13191643
#SPJ2
The water pressure at the bottom of the Marianas Trench is approximately 1,150 kPa. With how much force would the water pressure at the bottom of the trench push on a fish with a surface area of 0.65-m2 ?
Answer:
750 kN
Explanation:
Pressure = force / area
P = F / A
1,150,000 Pa = F / 0.65 m²
F = 747,500 N
Rounded to two significant figures, the force is 750,000 N, or 750 kN.
Using the right-hand rule from your lessons, determine the directions of the electrical current and magnetic field of the electromagnet. Create an illustration of these perpendicular forces and include it below. (You can take a picture of your illustration or use an online drawing program to make your illustration.)
Answer:
Hello there use something that looks like this
Explanation:
This is an accurate representation of something you are working on!
As you can see the wire and the core are represented on the left and is showing how it can be represented on your right hand and how they are similar!
A positive charge of 0.00047 C is 15 m from a negative charge of 0.00089 C. What is the force of one of the charges due to the other charge in units of Newtons?
Answer:
16.732 N
Explanation:
Given:
q1 = 0.00047 C = 4.7 x 10^-4 C
q2 = 0.00089 C = 8.9 x 10^-4 C
d = 15 m
k = 9 x 10^9 N m^2 / C^2
To Find:
F = ?
Solution:
F = k x q1 x q2/d^2
F = 9 x 10^9 x 4.7 x 10^-4 x 8.9 x 10^-4 / 15 x 15
F = 9 x 4.7 x 8.9 x 10^9 x 10^-4 x 10^-4 / 225
F = 9 x 4.7 x 8.9 x 10^9 x 10^-8 / 225
F = 9 x 4.7 x 8.9 x 10 / 225
F = 418.3/25
F = 1673.2/100
Therefore, F = 16.732 N
PLZ MARK ME AS BRAINLIEST!!!
A force of 600 N is acting on a motorcycle that has a mass of 240 kg. What is the acceleration of the motorcycle?
Answer:
2.5m/s2
Explanation:
The following were obtained from the question:
F = 600N
M = 240 kg
a =?
Recall: F = Ma
a = F/M
a = 600/240
a = 2.5m/s2
Therefore, the acceleration of the motorcycle is 2.5m/s2
Answer:
Explanation:
force(f)=600N
Mass(m)=240kg
Acceleration(a)=?
Acceleration=force/mass
Acceleration=600/240
Acceleration=2.5m/s^2
A student pulls a 2.0-kg object to the left with a force of 30 N, while another student is pulling against the object in the opposite direction with a force of 20 N. What is the acceleration of the object?
5 m/s2, left
5 m/s2, right
20 m/s2, left
20 m/s2, right
Answer:
5 m/s2, left
Explanation:
We can solve the problem by applying Newton's second law of motion, which states that:
[tex]\sum F=ma[/tex]
where:
[tex]\sum F[/tex] is the net force acting on an object
m is the mass of the object
a is its acceleration
In this problem, we have:
[tex]\sum F=30 N - 20 N = 10 N[/tex] (to the left) is the net force on the object
m = 2.0 kg is the mass
So, the acceleration is:
[tex]a=\frac{\sum F}{m}=\frac{10}{2.0}=5.0 m/s^2[/tex]
in the same direction as the force (left).
Help! I’m so confused by this
it is a transverse wave
A transverse wave is the one that sets the particles of medium into oscillations perpendicular to the direction of wave propagation. So yes, a transverse wave needs a materialistic medium to propagatee.
Examples of transverse waves include:
ripples on the surface of water.
vibrations in a guitar string.
a Mexican wave in a sports stadium.
electromagnetic waves – eg light waves, microwaves, radio waves.
transverse waves require a material medium and propogate by means of vibrations of the medium perpendicular to the direction of travel. ... Electromagnetic (EM) waves (such as light) are also transverse waves but they do not require a medium and thus can pass through a vacuum
What waves need molecules in order to transfer energy
Answer:
Mechanical waves
Explanation:
Waves are periodic oscillations, that carry energy, but not matter.
Waves are classified into two types:
- Mechanical waves: these waves are produced by the oscillations of the particles in a medium, which can oscillate along the direction of propagation of the wave (longitudinal wave) or perpendicular to the direction of motion of the wave (transverse wave). These waves can only propagate in a medium, so they cannot travel in a vacuum. Examples of mechanical waves are sound waves.
- Electromagnetic waves: these waves are produced by the oscillations of electric and magnetic field. They are transverse waves. They are the only type of wave able to propagate through a vacuum (so, through space).
Therefore, the waves that need molecules in order to transfer energy are mechanical waves.
when an object moves down and does not stop which force is acting more strongly on the object, friction or gravity? explain
Gravity acts more strongly on the object.
Explanation:
When an object is dropped from a height, it reaches the ground despite friction acting on it because the force of gravity acting on it is stronger than the air resistance and friction. Air resistance and friction acts upward and prevents the ball from falling. However, it is negligible. The gravity acting on the object is so strong that it pulls the object towards earth with a constant acceleration called as acceleration due to gravity which has a constant value of 9.8m/s².
How does mass affect the force of gravity between 2 objects?
Answer:
Force due to gravity increases on increasing the masses and decreases on decreasing the masses.
Explanation:
The force due to gravity (F) acting between any two given bodies can be expressed as,
[tex]F = G\frac{m_{1} m_{2}}{r^{2}}[/tex]
Here,
G = gravitational constant
[tex]m_{1}[/tex] = mass of the first body
[tex]m_{2}[/tex] = mass of the second body
[tex]r =[/tex] separation between the bodies
It is clear from the above expression that the force due to gravity acting between the two bodies is directly proportional to the product of the masses of the bodies.
what is another name for a business name or manufacture's name
Answer:
brand name, or company
Explanation:
a brand name is the kind of product they are selling. a company is the group of peaple that wok together.
Answer: maker or producer
Explanations:
One of the first scientists to theorize that heat is caused by the motion of objects or particles was Abū Rayhān al-Bīrūnī, who lived in the region of modern-day Iran during the 11th century. In addition to his studies in physics and mathematics, al-Birunī was extremely interested in the different cultures of his time. Because of his detailed study of peoples and cultures, he is considered by many to be the "father of anthropology." About 600 years later, an English scientist named Robert Hooke also argued that heat is caused by motion. Hooke made many discoveries in physics, but he was also an accomplished architect and surveyor. He applied these skills to help rebuild London after the great fire of 1666. The above example suggests that A. scientists with different backgrounds never reach similar conclusions. B. scientists tend to come from similar backgrounds. C. scientists possess varied talents and interests. D. scientists have similar talents and interests.
Answer:
C. scientists possess varied talents and interests.
Explanation:
The above passage suggests clearly that often times, scientists possess varied talents and interests.
Cases were made of Abū Rayhān al-Bīrūnī and Robert Hooke. Both were scientists and had the same time had interests in other disciplines.
Abū Rayhān al-Bīrūnī, a Persian made scientific contribution to the studies of heat, more so, his interest in cultures lucidly made him an erudite and foremost founding father of anthropology. Physics/mathematics and Anthropology are different fields with varied interests. Robert Hooke, was interested in physics. Besides this, he was skilled architect and surveyor. Physics and architecture/surveying are different fields. They are varied and dissimilar in nature.Therefore, we can argue that the tone set by the author conveys a clear focal point that often times, scientists possess varied talents and interests.
Answer:
c
Explanation:
A bee flies forward at 4.9m/s for 48s , lands on a flower and stays there for 28s , then flies back along its previous route at 5.1m/s for 38s . What is the total displacement of the bee? Round your answer to the nearest thousandth, if necessary.
"Displacement" is the distance and direction between the start-point and the end-point, regardless of the route taken on the way.
From this definition, it's easy to see that the bee's displacement at the end of the adventure is zero.
The bee's distance and average speed could also be calculated using the given information, but are not requested.
The total displacement of the bee is calculated by subtracting the return displacement from the forward displacement, resulting in a total displacement of 41.4 meters in the direction of the initial forward flight.
To calculate the total displacement of the bee, we need to consider the distance traveled in each direction and then sum these distances, taking into account the direction of travel. Initially, the bee flies forward at 4.9m/s for 48s, and then it returns along its previous route at 5.1m/s for 38s.
First, we calculate the forward displacement:
4.9m/s * 48s = 235.2m
Then, the return displacement:
5.1m/s * 38s = 193.8m
Since displacement is a vector quantity, we must consider the direction. The total displacement would be the forward displacement minus the return displacement because the bee returns along its previous route.
Total displacement = 235.2m - 193.8m = 41.4m
Therefore, the total displacement of the bee, rounded to the nearest thousandth if necessary, is 41.4m in the direction of the initial forward flight.
A block of mass 22 kg is sliding along the ice at constant speed 5.0 m/s. Just ahead of it is a block of mass 29 kg sliding in the
same direction at constant speed 4.6 m/s. When the two blocks collide, the 29-kg block travels at a new speed of 7.2 m/s. What is
the new speed of the 22-kg block?
The new speed of 22 kg block is 1.57 m/s
Explanation:
Given-
Mass, [tex]m_{1}[/tex]= 22 kg
speed, [tex]v_{1}[/tex] = 5 m/s
[tex]m_{2}[/tex] = 29 kg
[tex]v_{2i[/tex] = 4.6 m/s
New speed of [tex]m_{2}[/tex], [tex]v_{2f}[/tex] = 7.2 m/s
New speed of [tex]m_{1}[/tex], [tex]v_{1f}[/tex] = ?
This is the case of elastic collision.
So,
[tex]M_{1}[/tex] X [tex]V_{1i}[/tex]+ [tex]M_{2}[/tex] X [tex]V_{2i}[/tex] = [tex]M_{1}[/tex] X [tex]V_{1f}[/tex] + [tex]M_{2}[/tex] X [tex]V_{2f}[/tex]
22 X 5 + 29 X 4.6 = 22 X[tex]V_{1f}[/tex] + 29 X 7.2
22 [tex]V_{1f}[/tex] + 208.8 = 243.4
22 [tex]V_{1f}[/tex]= 34.6
[tex]V_{1f}[/tex]= 1.57 m/s
Therefore, the new speed of 22 kg block is 1.57 m/s
A 7.0kg skydiver is descending with a constant velocity
Answer:
The air resistance on the skydiver is 68.6 N
Explanation:
When the skydiver is falling down, there are two forces acting on him:
- The force of gravity, of magnitude [tex]mg[/tex], in the downward direction (where m is the mass of the skydiver and g is the acceleration due to gravity)
- The air resistance, [tex]R[/tex], in the upward direction
So the net force on the skydiver is:
[tex]F=mg-R[/tex]
where
m = 7.0 kg is the mass
[tex]g=9.8 m/s^2[/tex]
According to Newton's second law of motion, the net force on a body is equal to the product between its mass and its acceleration (a):
[tex]F=ma[/tex]
In this problem, however, the skydiver is moving with constant velocity, so his acceleration is zero:
[tex]a=0[/tex]
Therefore the net force is zero:
[tex]F=0[/tex]
And so, we have:
[tex]mg-R=0[/tex]
And so we can find the magnitude of the air resistance, which is equal to the force of gravity:
[tex]R=mg=(7.0)(9.8)=68.6 N[/tex]
- A line passing through D(5c, 10) and T[8,40]has a gradient of 3. Find the value of C
Answer:
- 2/5
Explanation:
Data obtained from the question include
x1 (x coordinate 1)= 5c
x2 (x coordinate 2) = 8
Δx (change in x coordinate) = x2 - x1 = 8 - 5c
y1 (y coordinate 1) = 10
y2 (coordinate 2) = 40
Δy (change in y coordinate) = y2 - y1 = 40 - 10 = 30
m (gradient) = 3
The gradient is also called the slope and it is represented mathematically as:
Gradient = (change in y coordinate)/(change in x coordinate)
M = Δy/Δx
3 = 30/ 8 - 5c
Cross multiply to express in linear form as shown below:
3(8 - 5c) = 30
Clear the bracket
24 - 15c = 30
Collect like terms
- 15c = 30 - 24
- 15c = 6
Divide both side by - 15
c = 6/-15
c = - 2/5
Therefore, the value of c is - 2/5
What mixture is a blueberry muffin
Answer:
Soft bumpy smooth
Explanation:
A balloon has a volume of 3.5-L at 25^ * C . What would be the volume of the balloon if it were placed in a container of hot water at 95^ * C ?
Answer:
4.3 L
Explanation:
Ideal gas law:
PV = nRT
Rearrange:
V / T = nR / P
Since n, R, and P are constant:
V₁ / T₁ = V₂ / T₂
Plug in values and solve:
(3.5 L) / (25 + 273.15 K) = V / (95 + 273.15 K)
V = 4.3 L
Balanced forces keep this boy in place on his chair. What
are the two equal and opposite forces occurring here?
INILULU
© 2014 K. Wright
While the boy is sitting on the chair it creates a force downward on the chair and therefore the chair takes it and gives off the equal amount of force. So while he is putting force downward the chair is putting the same force upward.
Answer: While the boy is sitting on the chair it creates a force downward on the chair and therefore the chair takes it and gives off the equal amount of force. So while he is putting force downward the chair is putting the same force upward.
Explanation:
While jumping on a trampoline you calculate that at the highest peak of your jump you have 900 joules of gravitational potential energy. What will be your kinetic energy just before landing back on the trampoline?
Jumping on a trampoline is a classic example of conservation of energy, from potential into kinetic. It also shows Hooke's laws and the spring constant. Furthermore, it verifies and illustrates each of Newton's three laws of motion.
Explanation
When we jump on a trampoline, our body has kinetic energy that changes over time. Our kinetic energy is greatest, just before we hit the trampoline on the way down and when you leave the trampoline surface on the way up. Our kinetic energy is 0 when you reach the height of your jump and begin to descend and when are on the trampoline, about to propel upwards.
Potential energy changes along with kinetic energy. At any time, your total energy is equal to your potential energy plus your kinetic energy. As we go up, the kinetic energy converts into potential energy.
Hooke's law is another form of potential energy. Just as the trampoline is about to propel us up, your kinetic energy is 0 but your potential energy is maximized, even though we are at a minimum height. This is because our potential energy is related to the spring constant and Hooke's Law.
2 Points
Which of the following means the same thing as 'a guess you make about
what the results of your experiment will be?
O
A. Investigation
O
B. Question
O
C. Prediction
O
D. Summary
SUBMIT
PREVIOUS
Answer:
C. Prediction
Explanation:
A guess made about the results of an experiment is a called a prediction.
Prediction is the probability that an event will occur or not.
It is used widely in formulation of hypothesis. A hypothesis is simple scientific guess, therefore, we can say, it is a scientific prediction. When experiment is conducted and it fits the predictive model, we can conclude that our prediction is correct. Prediction is common process in scientific method.20 POINTS!!!!!!!!
An electromagnet is a temporary magnet made by coiling wire around an iron core which becomes a magnet when an electric current flows through the wire.
How could the strength of an electromagnet be increased?
A) Use fewer coils of wire around the nail.
B) Use more coils of wire around the nail.
C) Use a battery with less voltage.
D) Use a smaller nail.
Answer: The answer is B :) !
Explanation:
You will get it correct loves !
Final answer:
The strength of an electromagnet can be increased by using more coils of wire around the iron core, which concentrates the magnetic field and enhances it through the electric current passing through the additional coils. So the correct option is B.
Explanation:
The strength of an electromagnet can be increased by a few different methods. One way is to use more coils of wire around the iron core, as the amount of current flowing through these additional coils will result in a stronger magnetic field. This is because the magnetic field produced by each coil of wire adds together to create a more concentrated field inside the core. In fact, the strength of the magnetic field in a solenoid is directly proportional to the number of turns in the coil and the electric current passing through it. Using a ferromagnetic core, such as iron, also increases the strength of the electromagnet because the ferromagnetic material enhances the magnetic field within the coil.
Therefore, the correct answer to the question, 'How could the strength of an electromagnet be increased?' is B) Use more coils of wire around the nail.
Your heating system is 60% efficient. If it consumes 12,052 kWh of energy to heat
your house, how much useful energy(kWh) does it produce?
Answer:
E = 7231.2 [kWh]
Explanation:
All systems that produce work in the mechanical form of movement or heat, they have an efficiency that depends on the construction technology, ideally in each of these equipments is that their efficiencies are as high as possible, that is, its efficiency is close to 100%. For this case we have an equipment with 60% efficiency, this heating system is characterized since of the 12,052 kWh, it uses 60% of this value only to heat the house, the rest of energy is known as lost.
E = 12,052 * (60/100)
E = 7231.2 [kWh]
This amount of energy 7231.2 [kWh] is used for heating purposes.
An electromagnet is a
with a
core.
Answer:
An electromagnet is a magnet that runs on electricity. Unlike a permanent magnet, the strength of an electromagnet can easily be changed by changing the amount of electric current that flows through it. The poles of an electromagnet can even be reversed by reversing the flow of electricity.
Answer:
solenoid & metal
Explanation:
what is Nuclear energy
Answer:
Nuclear energy is that released by dividing the nuclei of heavy atoms (also called under the name Nuclear Fission)
Explanation:
In this process, a large amount of heat is generated that can be used to obtain mechanical energy, which is used to generate electrical energy.
Nuclear energy is a sustainable source of energy having a low impact on the environment.
Researchers have estimated that what to what genes reside within the chromosomes and influence all genetic characteristics