Answer:
cosecant
Step-by-step explanation:
Inverse Cosine
cos-1
Cos-1
arccos
Arccos
The inverse function of cosine.
Basic idea: To find cos-1 (½), we ask "what angle has cosine equal to ½?" The answer is 60°. As a result we say cos-1 (½) = 60°. In radians this is cos-1 (½) = π/3.
More: There are actually many angles that have cosine equal to ½. We are really asking "what is the simplest, most basic angle that has cosine equal to ½?" As before, the answer is 60°. Thus cos-1 (½) = 60° or cos-1 (½) = π/3.
Details: What is cos-1 (–½)? Do we choose 120°, –120°, 240°, or some other angle? The answer is 120°. With inverse cosine, we select the angle on the top half of the unit circle. Thus cos-1 (–½) = 120° or cos-1 (–½) = 2π/3.
In other words, the range of cos-1 is restricted to [0, 180°] or [0, π].
Note: arccos refers to "arc cosine", or the radian measure of the arc on a circle corresponding to a given value of cosine.
Technical note: Since none of the six trig functions sine, cosine, tangent, cosecant, secant, and cotangent are one-to-one, their inverses are not functions. Each trig function can have its domain restricted, however, in order to make its inverse a function. Some mathematicians write these restricted trig functions and their inverses with an initial capital letter (e.g. Cos or Cos-1). However, most mathematicians do not follow this practice. This website does not distinguish between capitalized and uncapitalized trig functions.

See also
Inverse trigonometry, inverse trig functions, interval notation
If the standard deviation of the sampling distribution of sample means is 5.0 for samples of size 16, then the population standard deviation must be
Answer:
20
Step-by-step explanation:
The question states that the sample size is 16 and standard deviation of sampling distribution of sample mean also known as standard error is 5. This information can be written as
σxbar=standard error=5 ,n=sample size=16.
We have to find population standard deviation σ.
We know that
[tex]Standard error=\frac{population standard deviation}{\sqrt{n} }[/tex]
[tex]population standard deviation=\sqrt{n} *(standard erorr)[/tex]
[tex]\sqrt{n} =\sqrt{16} =4[/tex]
Population standard deviation=σ=4*5=20
Researchers working the mean weight of a random sample of 800 carry-on bags to e the airline. Which of the following best describes the effect on the bias and the variance of the estimator if the researchers increase the sample size to 1,300?
(A) The bias will decrease and the variance will remain the same.
(B) The bias will increase and the variance will remain the same.
(C) The bias will remain the same and the variance will decrease.
(D) The bias will remain the same and the variance will increase.
(E) The bias will decrease and the variance will decrease.
Final answer:
Increasing the sample size from 800 to 1,300 for estimating the mean weight of carry-on bags keeps the bias the same but decreases the variance, meaning that the sample will have lower variability around the true population mean.
Explanation:
When researchers working to estimate the mean weight of carry-on bags increase the sample size from 800 to 1,300, the correct effect on the bias and variance of the estimator is that the bias will remain the same and the variance will decrease. Bias is a measure of the systematic error of an estimator, and changing the sample size does not generally affect the estimator's systematic error if the estimator is unbiased to begin with. On the other hand, increasing the sample size leads to a decrease in variance which measures the spread of the sample means around the true population mean. Therefore, the larger the sample size, the closer the sampling distribution of the mean will be to the population mean, thus reducing variability, as indicated by a smaller standard deviation and a narrower confidence interval. Therefore, the correct answer is (C): The bias will remain the same and the variance will decrease.
Your school wants to take out an ad in the paper congratulating the basketball team on a successful season, as shown to the right. The area of the photo will be half the area of the entire ad. What is the value of x?
The value of [tex]\( x \) i[/tex]s irrelevant; the relationship between the areas remains constant regardless of its value.
To find the value of[tex]\(x\), let's denote the length of the ad as \(L\) and the width as \(W\). The area of the entire ad is \(L \times W\). Since the area of the photo is half the area of the ad, its area is \(\frac{1}{2} \times L \times W\).[/tex]
Now, we're given a diagram indicating that the length of the photo is [tex]\(x\) and its width is \(\frac{1}{2}W\). Therefore, the area of the photo is \(x \times \frac{1}{2}W\)[/tex].
We set up an equation based on the given information:
[tex]\[\frac{1}{2} \times L \times W = x \times \frac{1}{2}W\][/tex]
We cancel out the common factor of[tex]\(\frac{1}{2}W\) from both sides:\[L = x\][/tex]
This means that the length of the ad is equal to [tex]\(x\). Since we're not given any specific measurements or constraints on \(x\), its value could be any positive real number. Thus, the value of \(x\) is irrelevant to the relationship between the areas of the photo and the entire ad. Regardless of \(x\)[/tex], the area of the photo will always be half the area of the ad.
A fast food restaurant sold 30 burgers with cheese if the ratio burger soup with cheese compared to without cheese was 5 : 1 one how many burgers did they sell total
Answer:36 burgers were sold.
Step-by-step explanation:
Let x represent the total number of burgers, with or without cheese that was sold.
The total number of burgers with cheese that the fast food sold is 30.
if the ratio burger sold with cheese compared to without cheese was
5 : 1 , the total ratio would be the sum of both proportions. It becomes
5 + 1 = 6
Therefore
5/6 × x = 30
5x/6 = 30
Cross multiplying by 6, it becomes
5x = 30 × 6 = 180
x = 180/5 = 36
Therefore, the number of burgers without cheese sold would be
36 - 30 = 6
I half dozen cupcakes cost $15. What constant of proportionality relates to the numbers of cupcakes and the total cost? Write an equation that represents its relationship
Answer:
The constant of proportionality is 2.5 dollar per cupcake and then the required equation would be [tex]y=2.5x[/tex].
Step-by-step explanation:
Given:
Let the number of cupcakes be represent by [tex]'x'[/tex]
Also let the total cost be represented by [tex]'y'.[/tex]
We know that two proportional quantities are in for;
[tex]y=kx[/tex]
where, k⇒ represents constant of proportionality.
Now we know that;
1 dozen = 12
Half dozen = 6
Now Given:
half dozen cupcakes cost $15.
So Let us substitute [tex]x=6[/tex] and [tex]y=15[/tex] in above equation we get;
[tex]15 =k \times 6[/tex]
Dividing both side by 6 we get;
[tex]\frac{15}{6}=\frac{k6}{6}\\\\k= 2.5 \ \$/cupcake[/tex]
Hence the constant of proportionality is 2.5 dollar per cupcake and then the required equation would be [tex]y=2.5x[/tex].
Final answer:
The constant of proportionality relating the number of cupcakes to the cost is $2.50 per cupcake. The equation representing the relationship is C = $2.50 × n.
Explanation:
To find the constant of proportionality for the number of cupcakes and total cost, we use the given information: half a dozen cupcakes (which is 6 cupcakes) cost $15. Therefore, we can divide 15 by 6 to find the cost per cupcake.
C = k × n
Where C is the total cost, n is the number of cupcakes, and k is the constant of proportionality (cost per one cupcake). First, find the constant:
k = C/n = $15/6 cupcakes = $2.50 per cupcake
The equation that represents the relationship between the number of cupcakes (n) and the total cost (C) is:
C = $2.50 × n
76.8 is 32% of what number
Answer: 240
Step-by-step explanation:
Please help asap, brainliest,thanks, and 50 points. Thank you soooo much! <3
Answers:
1) [tex]x^{8} y^{8}[/tex]
2) [tex]y^{3} \sqrt{y}[/tex]
3) [tex]5x^{4} \sqrt{6}[/tex]
4) [tex]\sqrt{7}[/tex]
5) [tex]\frac{\sqrt{z}}{z}[/tex]
Step-by-step explanation:
1) [tex]\sqrt{x^{16} y^{36}}[/tex]
Rewriting the expression:
[tex](x^{16} y^{36})^{\frac{1}{2}}[/tex]
Multiplying the exponents:
[tex]x^{\frac{16}{2}} y^{\frac{36}{2}}[/tex]
Simplifying:
[tex]x^{8} y^{8}[/tex]
2) [tex]\sqrt{y^{7}}[/tex]
Rewriting the expression:
[tex]\sqrt{y^{6} y}=(y^{6} y)^{\frac{1}{2}}[/tex]
Multiplying the exponents:
[tex]y^{\frac{6}{2}} y^{\frac{1}{2}}[/tex]
Simplifying:
[tex]y^{3} y^{\frac{1}{2}}=y^{3} \sqrt{y}[/tex]
3) [tex]\sqrt{150 x^{8}}[/tex]
Rewriting the expression:
[tex]\sqrt{(6)(25) x^{8}}[/tex]
Since [tex]\sqrt{25}=5[/tex]:
[tex]5x^{4}\sqrt{6}[/tex]
4) [tex]\frac{7}{\sqrt{7}}[/tex]
Multiplying numerator and denominator by [tex]\sqrt{7}[/tex]:
[tex]\frac{7}{\sqrt{7}} (\frac{\sqrt{7}}{\sqrt{7}})=\frac{7}{7\sqrt{7}}[/tex]
Simplifying:
[tex]\sqrt{7}[/tex]
5) [tex]\frac{5z}{\sqrt{25 z^{3}}}[/tex]
Rewriting the expression:
[tex]\frac{5z}{5z \sqrt{z}}[/tex]
Simplifying:
[tex]\frac{1}{\sqrt{z}}[/tex]
Since we do not want the square root in the denominator, we can multiply numerator and denominator by [tex]\sqrt{z}[/tex]:
[tex]\frac{1}{\sqrt{z}}(\frac{\sqrt{z}}{\sqrt{z}})[/tex]
Finally:
[tex]\frac{\sqrt{z}}{z}[/tex]
A individual has a body fat percentage of 17.7% and weighs 129 pounds.How many pounds of his weight is made up of fat?Round ur answer to the nearest tenth
Answer: 21.9 pounds of his weight is made up of fat.
Step-by-step explanation:
The total weight of the individual is 129 pounds. The individual has a body fat percentage of 17.7%.
Therefore, the number of pounds of his body that is made up of fat would be
17.7/100 × 129 = 0.177 × 129 = 21.93 pounds.
Approximating to the nearest tenth, it becomes 21.9 pounds.
A researcher is curious about the average IQ of registered voters in the state of FL. The entire group of registered voters in FL is an example of a(n) ___________.
a. sampleb. statisticc. populationd. parameter
Answer:
Option C) population
Step-by-step explanation:
We are given the following situation in the question:
A researcher is curious about the average IQ of registered voters in the state of FL.
Sample:
It is a part of a population. It is always smaller than the population.
Statistic:
Any numerical value or any other measure describing a sample of a population is known as statistic.
Population:
It is the universal data set. Every observation belongs to this group which is of interest. Sampling is done within population to obtain small groups of sample.
Parameter:
Any numerical value or any other measure describing the population is known as a parameter.
In this situation, the entire group of registered voters in FL is an example of a population because it contains all the individual for variable of interest.
Variable of interest:
Average IQ of registered voters in the state of FL.
Individual of interest:
Registered voters in the state of FL.
The scores of 12th-grade students on the national assessment of educational progress year 2000 mathematics test have a distribution that is approximately normal with mean of 300 and standard deviation of 35.
Answer:
a)[tex]P(X>300)=P(\frac{X-\mu}{\sigma}>\frac{300-\mu}{\sigma})=P(Z>\frac{300-300}{25})=P(z>0)= 0.5[/tex]
[tex]P(X>335)=P(\frac{X-\mu}{\sigma}>\frac{335-\mu}{\sigma})=P(Z>\frac{335-300}{25})=P(z>1.4)=0.0808[/tex]
b)[tex]P(\bar X>300)=P(\frac{\bar X-\mu}{\sigma_{\bar x}}>\frac{300-\mu}{\sigma_{\bar x}})=P(Z>\frac{300-300}{17.5})=P(z>0)= 0.5[/tex]
[tex]P(\bar X>335)=P(\frac{\bar X-\mu}{\sigma_{\bar x}}>\frac{335-\mu}{\sigma_{\bar x}})=P(Z>\frac{335-300}{17.5})=P(z>2)=0.0228[/tex]
Step-by-step explanation:
Assuming the following questions:
a) Choose one twelfth-grader at random. What is the probability that his or her score is higher than 300? Higher than 335?
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Let X the random variable that represent the scores of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(300,35)[/tex]
Where [tex]\mu=300[/tex] and [tex]\sigma=35[/tex]
We are interested on this probability
[tex]P(X>300)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(X>300)=P(\frac{X-\mu}{\sigma}>\frac{300-\mu}{\sigma})=P(Z>\frac{300-300}{25})=P(z>0)= 0.5[/tex]
We find the probabilities with the normal standard table or with excel.
And for the other case:
[tex]P(X>335)=P(\frac{X-\mu}{\sigma}>\frac{335-\mu}{\sigma})=P(Z>\frac{335-300}{25})=P(z>1.4)=0.0808[/tex]
b) Now choose an SRS of four twelfth-graders. What is the probability that his or her mean score is higher than 300? Higher than 335?
For this case since the distribution for X is normal then the distribution for the sample mean is also normal and given by:
[tex] \bar X = \sim N(\mu = 300, \sigma_{\bar x} = \frac{35}{\sqrt{4}}=17.5)[/tex]
The new z score is given by:
[tex]z=\frac{\bar X -\mu}{\sigma_{\bar x}}[/tex]
And using the formula we got:
[tex]P(\bar X>300)=P(\frac{\bar X-\mu}{\sigma_{\bar x}}>\frac{300-\mu}{\sigma_{\bar x}})=P(Z>\frac{300-300}{17.5})=P(z>0)= 0.5[/tex]
We find the probabilities with the normal standard table or with excel.
And for the other case:
[tex]P(\bar X>335)=P(\frac{\bar X-\mu}{\sigma_{\bar x}}>\frac{335-\mu}{\sigma_{\bar x}})=P(Z>\frac{335-300}{17.5})=P(z>2)=0.0228[/tex]
Johnathan ran 5 days this week. The most he ran in one day was 3.5 miles. Write an inequality that shows the distance johnathan could of ran any day this week
An inequality that shows the distance Johnathan could of ran any day this week is:
[tex]x\leq 3.5[/tex]
Solution:
Let "x" be the distance Johnathan can run any day of this week
Given that,
Johnathan ran 5 days this week. The most he ran in one day was 3.5 miles
Therefore,
Number of days ran = 5
The most he ran in 1 day = 3.5 miles
Thus, the maximum distance he ran in a week is given as:
[tex]distance = 5 \times 3.5 = 17.5[/tex]
The maximum distance he ran in a week is 17.5 miles
If we let x be the distance he can run any day of this week then, we get a inequality as:
[tex]x\leq 3.5[/tex]
If we let y be the total distance he can travel in a week then, we may express it as,
[tex]y\leq 17.5[/tex]
Determine which of the following passages are arguments. For those that are, identify the conclusion. For those that are not, determine the kind of nonargument. Since the 1950s a malady called whirling disease has invaded U.S. fishing streams, frequently attacking rainbow trout. A parasite deforms young fish, which often chase their tails before dying, hence the name.
Answer:
Non Arguement passage.
Step-by-step explanation:
The passage given is a non arguement passage , the passage is more of a report especially the introductory part where the author said ''Since the 1950s a malady called whirling disease has invaded U.S. fishing streams, frequently attacking rainbow trout.'' this highlighted phrase is a report gathered or investigated by the author which was gotten as a result of his own personal findings or from history. For an argument passage, the introductory part will have portrayed what the author implied, there will be an indication of the authors stance or favoured opinion which of course will be backed by evidence from his or her findings. as such, there is nothing of such which may serve as a precursor to indicate or informed us if the passage is that of an arguement. Again, the passage is a report and not an argument. as nothing can be inferred from the paragraph to point to us if it is an argument passage.
However, there is a conclusion in the passage and conclusions has arrived by the author must have been from a detailed findings and research, if possible an experimental study before a conclusion can be reached as the last line of the paragraph says ''A parasite deforms young fish, which often chase their tails before dying, hence the name.'' The conclusion is that parasite are known to cause deformation in young fish.
PLZ, HELP WORTH 30 PTS!!!! WILL MARK BRANLIEST!!!
Answer:
Therefore the equation of the required line is y = [tex]\frac{-1}{2}[/tex]x + 2 or 2y + x = 4.
Step-by-step explanation:
i) when x = -2 then y = 3 so the line from x = -2 to x = 2 has the point (-2, 3)
ii)when x = 2 then y = 1 so the line from x = -2 to x = 2 has the point (2, 1)
iii) if two points in a line are given then slope of equation passing through the lines is given by
slope m = [tex]\frac{y_{2} - y_{1} }{x_{2} - x_{1} }[/tex] = [tex]\frac{1 - 3}{2 - (-2)}[/tex] = [tex]\frac{-2}{4}[/tex] = [tex]\frac{-1}{2}[/tex]
So from the general equation of a line y = mx + c
we get y = [tex]\frac{-1}{2}[/tex]x + c and substituting for x and y with (-2, 3) respectively we get
3 = 1 + c. Therefore c = 2.
Therefore the equation of the required line is y = [tex]\frac{-1}{2}[/tex]x + 2 or 2y + x = 4.
Diego measured the length of a pain to be 22 cm the actual length of the pen is 23 cm which of these is the closest to the percent error For Diego measurement
The percent error For Diego measurement is 4.3 % decrease
Solution:
Given that, Diego measured the length of a pain to be 22 cm
The actual length of the pen is 23 cm
To find: percent error
Percent error is the difference between a measured and actual value, divided by the actual value, multiplied by 100%
The formula for percent error is given as:
[tex]\text{Percent error } = \frac{\text{Measured value - actual value}}{\text{Actual value}} \times 100[/tex]
Here given that,
Measured value = 22 cm
Actual value = 23 cm
Substituting the values in formula,
[tex]Percent\ Error = \frac{22-23}{23} \times 100\\\\Percent\ Error = \frac{-1}{23} \times 100\\\\Percent\ Error = -0.043 \times 100\\\\Percent\ Error = -4.3[/tex]
Here, negative sign denotes percent decrease
Thus percent error For Diego measurement is 4.3 % decrease
In 2014, the populations of China and India were approximately 1.355 and 1.255 billion people,45 respectively. However, due to central control the annual population growth rate of China was 0.44% while the population of India was growing by 1.25% each year. If these growth rates remain constant, when will the population of India exceed that of China?
Answer:
in the year 2023
Step-by-step explanation:
Initial population of China = 1.355 billion
Initial population of India = 1.255 billion
Annual population growth rate of China = 0.44% = 0.0044
Annual population growth rate of India = 1.25% = 0.0125
Now,
Final population = P₀ [tex]\times e^{\text{rate}\times t}[/tex]
Here,
P₀ = initial population
t = time
Thus,
Population of India > Population of China
1.255[tex]\times e^{\text{0.0125}\times t}[/tex] > 1.355[tex]\times e^{\text{0.0044}\times t}[/tex]
or
[tex]e^{0.0081t}[/tex] > 1.07968
taking natural log both sides
0.0081t > ln (1.07968 )
or
0.0081t > 0.0766
or
t > 9.465
Hence,
9.465 year after 2014
i.e
in 2014 + 9.465 = 2023.46
in the year 2023
Using the formula for exponential growth and the provided population data for China and India, we can approximate that India's population will exceed China's in roughly 20 years.
Explanation:In order to determine when India's population will exceed that of China, we can use the formula for exponential growth, which is P = P_0 * ert , where P is the future population, P_0 is the initial population, r is the growth rate, and t is time. As per the data provided, for China, P = 1.355 billion, r = 0.44%, and for India, P = 1.255 billion, r = 1.25%. We have to find time t when population of India will exceed that of China. This requires solving the equation: 1.355 * e0.0044t = 1.255 * e0.0125t.
This equation can be solved using algebra and logarithms. However, by making some approximations and using a spreadsheet or calculator, we can find that the population of India will exceed that of China after approximately 20 years, based on the growth rates provided.
Learn more about Population Growth here:https://brainly.com/question/18415071
#SPJ12
Which expressions are equivalent to -6(b+2)+8−6(b+2)+8minus, 6, left parenthesis, b, plus, 2, right parenthesis, plus, 8 ? Choose all answers that apply: Choose all answers that apply: (Choice A) A -6b+2+8−6b+2+8minus, 6, b, plus, 2, plus, 8 (Choice B) B -6b-4−6b−4minus, 6, b, minus, 4 (Choice C) C None of the above
Answer:
B. [tex]-6b-4[/tex]
Step-by-step explanation:
Given expression is [tex]-6(b+2)+8[/tex]
Simplifying the expression now
Lets use distributive property of multiplication to solve it.
As given, [tex]-6(b+2)+8[/tex]
Distributing -6 with b and 2.
= [tex](-6b-12)+8[/tex]
Opening the parenthesis
= [tex]-6b-12+8[/tex]
= [tex]-6b-4[/tex]
∴ As from the given options, [tex]-6b-4[/tex] is the correct choice.
Answer:
B
Step-by-step explanation:
Its right got it from khan
ASAP! I NEED THIS DONE AS QUICKLY AS POSSIBLE WITH WORKING OUT
After t seconds, a particle P has position vector
r = [(3t³- t + 3)i + (2t²+ 2t - 1)j] m
(a) Find an expression for the velocity of P in terms of t
(b) Find an expression for the acceleration of P in terms of t
Answer:
See explanation.
Step-by-step explanation:
Let us first analyze some principle theory. By definition we know that the velocity ( [tex]v[/tex] ) is a function of a distance ( [tex]d[/tex] ) covered in some time ( [tex]t[/tex] ), whilst acceleration ( [tex]a[/tex] ) is the velocity achieved in some time. These can also been expressed as:
[tex]v = \frac{d}{t}\\[/tex] and [tex]a=\frac{v}{t}[/tex]
We also know that both velocity and acceleration are vectors (therefore they are characterized by both a magnitude and a direction). Finally we know that given a position vector we can find the velocity and the acceleration, by differentiating the vector with respect to time, once and twice, respectively.
Let us now solve our problem. Here we are givine the Position vector of a particle P (in two dimensional space of [tex]i-j[/tex] ) as:
[tex]r=(3t^3-t+3)i+(2t^2+2t-1)j[/tex] Eqn.(1)
Let us solve.
Part (a) Velocity: we need to differentiate Eqn.(1) with respect to time as:
[tex]v(t)=\frac{dr}{dt}\\\\ v(t)=[(3)3t^2-1]i+[(2)2t+2]j\\\\v(t)=(9t^2-1)i+(4t+2)j[/tex] Eqn.(2)
Part (b) Acceleration: we need to differentiate Eqn.(2) with respect to time as:
[tex]a(t)=\frac{dv}{dt}\\ \\a(t)=[(2)9t]i+4j\\\\a(t)=(18t)i+4j[/tex]
Thus the expressions for the velocity and the acceleration of particle P in terms of t are
[tex]v(t)=(9t^2-1)i+(4t+2)j[/tex] and [tex]a(t)=(18t)i+4j[/tex]
John is a new college graduate working at his first job. After years of living in an apartment he has decided to purchase a home. He has found a great neighborhood from which he can walk to work. Before buying a home in the area he has decided to collect some data on the homes in this neighborhood. A data set has been compiled that represents a sample of 100 homes in the neighborhood he is considering. The variables included in this data set include:* Value: the current value of the home as determined by the county tax assessor. * Size: the size of the home in square feet. * Year: the year the homes were built. * Basement: does the home have a basement
When analyzing data on homes in a neighborhood, focus on variables like value, size, year built, and basement presence. The sample data set of lawn areas is quantitative and continuous.
Data Analysis Process:
When collecting data on homes in a neighborhood, you can analyze it by looking at variables like value, size, year built, and basement presence. To make sense of the data, you can calculate statistics like the median home value and the variation in values to get a clearer picture of the housing market.
Data Types:
The areas of lawns in square feet sampled from five houses represent quantitative data, specifically continuous data, as they can take on any value within a range without restrictions.
Radioactive material disintegrates at a rate proportional to the amount currently present. If Q(t) is the amount present at time t (in weeks), then dQ dt = −rQ, where r > 0 is the decay rate.
A) If 500 mg of a mystery substance decays to 83.01 mg in 5 weeks, determine the decay rate r.
B) Find an expression for the amount of this substance present at any time t.
C) Find the time required for the substance to decay to one-half its original amount.
Answer:
Step-by-step explanation:
Julia purchased a new car and traveled 356 miles before refueling. If she needed 15.6 gallons of gas to fill the car's tank, estimate her gas mileage.
Answer:
22.8 MPG
Step-by-step explanation:
356 divided by 15.6 = 22.8
Use the law of sines to find the value of y. Round to the nearest tenth.Law of sines: sin(A)/a = sin (B)/b= sin(C)/cTRiangleXYZXY=2XZ=yangle of y= 75angle of z = 50
y=2.50 units
Step-by-step explanation:
Given that angle ∠Y=75°, ∠Z=50°, side XY=2 units, and side XZ is y then applying the sine rule for this case,
x/sin ∠x =y/sin y =z/sin z
2/sin 50°=y/sin 75°
2 sin 75° =y sin 50°
y= 2 sin 75°/sin 50°
y=2.50 units
Learn More
Laws of sines :https://brainly.com/question/12980528
Keywords: Laws, sines, tenth
#LearnwithBrainly
Answer:
C
Step-by-step explanation:
I just finished the test :)
Six students from a statistics class reported the number of hours of television they watch per week. Here are their data: 8, 10, 5, 14, 3, 6. What is the standard deviation of the number of hours of television watched per week for this sample of six students?
Answer:
3.93
Step-by-step explanation:
Let x is the number of hours of television watched per week by six students.
X 8 10 5 14 3 6
Standard deviation for sample data is
[tex]Standard deviation=S=\sqrt\frac{{sum(x-xbar)^2} }{n-1}[/tex]
[tex]xbar=\frac{sum(x)}{n}[/tex]
[tex]xbar=\frac{8+10+5+14+3+6}{6}[/tex]
[tex]xbar=\frac{46}{6}[/tex]
xbar=7.67
[tex]sum(x-xbar)^2=(8-7.67)^2+(10-7.67)^2+(5-7.67)^2+(14-7.67)^2+(3-7.67)^2+(6-7.67)^2[/tex][tex]sum(x-xbar)^2=0.11+5.44+7.11+40.11+21.78+2.78=77.33[/tex]
[tex]Standard deviation=S=\sqrt\frac{{(77.33)} }{5}[/tex]
[tex]S=\sqrt15.466[/tex]
S=3.93
A veterinarian knows that a 50-pound dog gets 0.5 milligram of a certain medicine, and that the number of milligrams, m, varies directly with the weight of the dog, w. The vet uses these steps to find the amount of medicine to give a 10-pound dog. Step 1 Find the constant of variation. k = StartFraction 0.5 Over 50 EndFraction = 0.01 Step 2 Write the direct variation equation. m = 0.01 w Step 3 Substitute 10 into the equation to find the dosage for a 10-pound dog. 10 = 0.01 w Step 4 Solve for w. 10 = 0.01 w. W = 1000. The 10-pound dog needs 1000 milligrams. In which step did the veterinarian make the first error? Step 1 Step 2 Step 3 Step 4
Answer:the veterinarian made the first error in step 3
Step-by-step explanation:
the number of milligrams, m, varies directly with the weight of the dog, w.
Assuming constant of variation is k, then,
m = kw
k = m/w = 0.5/50 = 0.01
Therefore,
m = 0.01w
In step 3, Substituting 10 into the equation to find the dosage for a 10-pound dog like 10 = 0.01w was error.
The correct step is
m = 0.01 × 10
m = 0.1 milligrams
Sebuah tangga yang panjangnya 5m bersandar pada dinding rumah. Tinggi dinding yang di capai tangga tersebut adalah 3,5m, jarak ujung bawah tangga terhadap dinding?
The distance between the base of the ladder and the wall is approximately 3.57 meters.
Explanation:To find the distance between the base of the ladder and the wall, we can use the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
In this case, the base of the ladder represents one side of the triangle, the height of the ladder represents another side, and the distance between the base of the ladder and the wall represents the hypotenuse.
Using the given information, we can calculate the distance as follows:
d^2 = 5^2 - 3.5^2
d^2 = 25 - 12.25
d^2 = 12.75
d ≈ √12.75
d ≈ 3.57m
Therefore, the distance between the base of the ladder and the wall is approximately 3.57 meters.
gina pasted 3 stickers in a book. if she added one sticker to her collection every day, what equation represents the relationship between x (number of days) and y (number of stickers)?
Answer:
The answer to your question is
Number of stickers = number of days + 3
Step-by-step explanation:
- To find the equation of the line that represents the situation, first, find the slope.
Slope = m = [tex]\frac{y2 - y1}{x2 - x1}[/tex]
m = [tex]\frac{4 - 3}{1 - 0} = \frac{1}{1} = 1[/tex]
- Find the equation of the line
y - y1 = m(x - x1)
y - 4 = 1(x - 1)
y - 4 = x - 1
y = x - 1 + 4
y = x + 3
y = number of stickers
x = days
Number of stickers = number of days + 3
Answer:
is x = y + 3
Step-by-step explanation:
Noah has a total of 47 video games he only buys action games in sports games he has 21 warehousing in the sports games how many Action games and how many sports game does he have
Question is not proper;Proper question is given below;
Noah has a total of 47 video games. he only buys action games and sports games. He has 21 more action games than sports games. how many action games, a, and sports games, s, does he own?
Answer:
Noah has 34 action games and 13 sports games.
Step-by-step explanation:
Given:
Total number of games he has = 47
Let the number of action games be 'a'.
Let the number of sports game be 's'.
So we can say that;
Total number of games he has is equal to sum of the number of action games and the number of sports games.
framing in equation form we get;
[tex]a+s = 47 \ \ \ \ \ eqaution \ 1[/tex]
Also Given:
He has 21 more action games than sports games.
so we can say that;
[tex]a=s+21 \ \ \ equation\ 2[/tex]
Now Substituting equation 2 in equation 1 we get;
[tex]a+s=47\\\\s+21+s=47\\\\2s+21=47[/tex]
Subtracting both side by 21 we get;
[tex]2s+21-21=47-21\\\\2s = 26[/tex]
Dividing both side by 2 we get;
[tex]\frac{2s}{2}=\frac{26}{2}\\\\s=13[/tex]
Now Substituting the value of 's' in equation 2 we get;
[tex]a=s+21=13+21=34[/tex]
Hence Noah has 34 action games and 13 sports games.
simplifying inside parentheses first pt. 2
Answer:
The answer to your question is the second option
Step-by-step explanation:
Process
Simplify using exponents laws, first inside the parentheses and then outside the parentheses.
[tex][\frac{a^{-2}b^{2}}{a^{2}b^{-1}} ]^{-3}[/tex]
a) Simplify a
a⁻² a⁻² = a⁻⁴
b) Simplify b
b² b¹ = b³
c) Write the result
[tex][\frac{b^{3}}{a^{4}}]^{-3}[/tex]
d) [tex][\frac{a^{4}}{b^{3}}]^{3}[/tex]
e) Simplify
[tex]\frac{(a^{4})^{3}}{(b^{3})3}[/tex]
f) Result
[tex]\frac{a^{12}}{b^{9}}[/tex]
if you want to comeplete baby step 1 so that you have $1,000 in your savings account, and you are able to put in $125 a week, how many weeks will it take to have $1000?
Answer:
8 weeks
Step-by-step explanation:
$125*8 = $1000
Answer:it will take you 8 weeks to have $1,000 in your savings account
Step-by-step explanation:
If you want to comeplete baby step 1 so that you have $1,000 in your savings account, and you are able to put in $125 a week. It means that the number of weeks that it will take you to have $1000 in your savings account would be
1000/125 = 8 weeks.
Suppose that you have an enormous grapefruit that is 92% water (by weight). The grapefruit weights 100 pounds. If the water content of the grapefruit evaporates until it is 90% water (by weight), then approximately how much does the grapefruit now weigh?
Answer:
The weight of grapefruit is now 80 pound.
Step-by-step explanation:
Consider the provided information.
Let the x is the weight loss. The weight of grapefruit is 100 pounds and water is 92%. After evaporation water is 90%.
Thus the weight loss is:
[tex]0.92\times100-0.90(100 - x) = x[/tex]
[tex]92-90+0.90x=x[/tex]
[tex]2=x-0.90x[/tex]
[tex]2=0.1x[/tex]
[tex]x=20[/tex]
Hence, the weight loss is 80 pounds.
Therefore, New weight is 100 - 20 = 80 pounds
The weight of grapefruit is now 80 pound.
THE NUMBER OF STUDENTS FRON SCHOOL LAST WEEK WAS 145. This week there were only 110 students sick. What was the percent decrease of the number of students home sick?
The percent decrease of the number of students home sick is 24.14%.
Solution:
The number of students home this last week was 145
This week there were only 110 students home sick
To find: Percent decrease
The percent decrease is given by formula:
[tex]\text{Percent Decrease } = \frac{\text{Final value-initial value}}{\text{Initial value}} \times 100[/tex]
Here given that,
Initial value = last week = 145
Final value = this week = 110
Substituting the values in formula, we get,
[tex]\text{Percent Decrease } = \frac{110-145}{145} \times 100\\\\\text{Percent Decrease } = \frac{-35}{145} \times 100\\\\\text{Percent Decrease } = -24.14[/tex]
Here negative sign denotes decrease in percent
Thus the percent decrease of the number of students home sick is 24.14%.