The gravitational strength at the poles is greater than the gravitational strength at the equator. What will happen to an object when it moves from the poles to the equator?
A.Its mass will increase.
B. Its mass will decrease.
C. Its weight will increase.
D.Its weight will decrease

Answers

Answer 1

We must always take note that mass is an inherent property of an object. It never change unless there is change in size of the object. While weight is the product of mass and gravity, so it changes depending on the gravitational pull.

If the gravitational pull decreases as he moves from the poles to the equator, therefore its weight will decrease.

 

Answer:

D.Its weight will decrease


Related Questions

A machine has an efficiency of 80%. How much work must be done on the machine so to make it do 50,000 J of output work?

Answers

find 10 % of 50,000 = 5000
double it to make 10000
add on to 50000 to make 60000
60000 is your answer

Answer:

62,500 Joules

Explanation:

The value of the electrical charge on particles is never a whole number true or false

Answers

The value of the electrical charge on particles is never a whole number true or false - TRUE

How do aerobic and anaerobic respiration compare?

Answers

anaerobic exercises do not need a lot of energy and no not make you short of breath, aerobic exercises make you short of breath and require more energy 

Alright well aerobic respiration is very efficient and produces a large amount of energy while in the other hand anaerobic respiration is not very efficient and produces a large amount of energy.

Well Hope this helps have a nice day :)

A 30 kg child sitting 5.0 m from the center of a merry-go-round has a constant speed of 5.0 m/s. while she remains seated in the same spot and travels in a circle, the work the seat performs on her in one complete rotation is

Answers

Final answer:

In a circular motion with constant speed, such as a child on a merry-go-round, the work done over one complete rotation is zero, as there is no change in kinetic energy.

Explanation:

The question is regarding the concept of work done in a circular motion in the context of a merry-go-round. In the system described, the child has a constant speed on the circular path which indicates that the net work done by the forces acting on the child, including the seat, over a complete round of the merry-go-round is zero. This is consistent with the fact that work done is change in kinetic energy and since the child's speed is constant, there is no change in kinetic energy.

The child's inertia plays a role in maintaining her circular path but it does not contribute to work done, as it is a quantity of mass' resistance to change in motion and does not imply a force.

Learn more about Work Done in Circular Motion here:

https://brainly.com/question/34820578

#SPJ12

"what shape are the pebble-sized particles that make up the rock?"

Answers

The shape of which the pebble sized particles that makes up the rock is more of a rounded shape as they are bits and in circular formation, depicting it to be more rounder in which are particles that is made up in a rock. They can be in pebble sized or much more smaller than that when in bits.

If for 1.00 inch there are 2.54 cm, then how many centimeters are in 4.00 ft

Answers

121.92 is the answer I believe

To convert 4.00 feet to centimeters, multiply 4.00 feet by 12 inches per foot to get inches, then multiply the result by 2.54 to convert inches to centimeters. The result is 121.92 centimeters.

To convert 4.00 feet to centimeters, you can use the conversion factors and the chain link method. First, you need to know the basic conversion factors, which are 2.54 cm in 1 inch and 12 inches in 1 foot. Using these conversions:

Convert feet to inches: 4.00 ft ×12 in/ft = 48.00 in

Then convert inches to centimeters: 48.00 in ×2.54 cm/in = 121.92 cm

Therefore, there are 121.92 centimeters in 4.00 feet.

The gas tank of a certain luxury automobile holds 22.3 gallons according to the owner’s manual. if the density of gasoline is 0.8206 g/ml, determine the mass in kilograms and pounds of the fuel in a full tank.

Answers

The mass of the fuel in the tank can be calculated by multiplying the volume in full tank to the density of the gasoline. First convert 22.3 gallons to ml by multiplying it with 3785.412 since the conversion factor is 1 gallon= 3785.412 ml. Then multiply the volume with the density. Since the density is in g/ml, you would get a value in grams so convert it to kg by dividing it with 1000. The convert the value in kg to lb multiply the value by 2.2. The values are 69.27 kg and 152.72 lb. 

Final answer:

The mass of the fuel in a full 22.3-gallon tank of gasoline, given a density of 0.8206 g/mL, is approximately 69.211 kg or 152.497 lb.

Explanation:

To determine the mass of the fuel in a full tank, you first need to convert the volume from gallons to milliliters (mL), since the density of gasoline is given in grams per mL.

One gallon is approximately 3785.41 mL. Therefore, a 22.3-gallon tank would hold 22.3 * 3785.41 = 84392.263 mL of fuel.

The mass of the fuel can then be calculated using the formula density = mass/volume. Rearranging the formula gives mass = density * volume. By subbing in the values, we get mass = 0.8206 g/mL * 84392.263 mL = 69211.294528 g.

To convert the mass to kilograms, we divide by 1000 (since there are 1,000 grams in a kilo). This gives us approximately 69.211 kg.

To convert the mass to pounds, we multiply by 2.20462 (since there are 2.20462 pounds in a kilo). This gives us approximately 152.497 lb.

Learn more about Density here:

https://brainly.com/question/34199020

#SPJ6

The expression CaCO3 → CaO + CO2 is an example of a reactant. product. chemical equation. chemical progression.

Answers

By definition, the expression CaCO₃ → CaO + CO₂ is an example of a chemical equation.

Definition of chemical reaction

A chemical reaction is any process in which at least the atoms, molecules, or ions of one substance are changed into atoms, molecules, or ions of another chemical substance.

Definition of chemical equation

A chemical equation is a symbolic description used to describe the identities and relative quantities of the reactants and products involved in a chemical reaction.

The information contained in the chemical equation allows us to determine the substances that are transformed or modified in a reaction, called reactants or reagents, and the new substances that originate in a chemical reaction, called products.

In order to represent what happens in a chemical reaction by means of an equation, it must comply with the Law of conservation of matter and with the Law of conservation of energy. That is, the equation must indicate that the number of atoms of the reactants and products is equal on both sides of the reaction and that the charges are also equal. In other words, you must have a balanced equation.

Summary

Finally, the expression CaCO₃ → CaO + CO₂ is an example of a chemical equation.

Learn more about chemical equation:

https://brainly.com/question/20780772

https://brainly.com/question/13454144

https://brainly.com/question/19998775

https://brainly.com/question/6976143

https://brainly.com/question/14360328

Answer:

chemical equation

Explanation:

Describing Chemical Reactions quiz on edg

According to a newspaper account, a paratrooper survived a training jump from 1200 ft when his parachute failed to open but provided some air resistance by ï¬apping unopen in the wind. allegedly he hit the ground at 100 mi/h after falling 8 seconds. test the accuracy of this account.

Answers

Final answer:

Determining the plausibility of a paratrooper hitting the ground at 100 mi/h after an 8-second fall involves examining the concept of terminal velocity and the effects of air resistance on falling objects.

Explanation:

The question concerns a paratrooper's descent with a malfunctioning parachute and whether it's plausible for him to hit the ground at 100 mi/h after falling for 8 seconds. To test the accuracy of this account, we must look at the forces involved and the terminal velocity a parachutist can reach. For example, a skydiver with a mass of 75 kg can achieve a terminal velocity of about 350 km/h in a headfirst position, which corresponds to minimizing the area and therefore the drag. Transitioning to a spread-eagle position can decrease this velocity to about 200 km/h, increasing air resistance due to a larger cross-sectional area. However, after a parachute opens, the terminal velocity becomes much smaller. This means that if the parachute provided any air resistance, it's unlikely the paratrooper would be traveling at 100 mi/h (which is approximately 160 km/h) after just 8 seconds.

The paratrooper's reported fall seems plausible as the calculated average acceleration, considering air resistance, is 5.59 m/s².

A paratrooper is reported to have survived a fall from 1200 ft after his parachute failed to open. To verify this account, let's calculate the following:

1. Terminal Velocity Calculation

The paratrooper fell for 8 seconds and allegedly hit the ground at 100 mi/h.

First, convert the velocity and time:

Velocity, v = 100 mi/h = 44.7 m/s

Time, t = 8 s

2. Average Acceleration

We can use the equation of motion, v = u + at where:

u = initial velocity (0, since he started from rest)

v = final velocity (44.7 m/s)

a = acceleration

t = time (8 s)

Rearranging for acceleration, we get:

a = (v - u) / t = 44.7 m/s / 8 s = 5.59 m/s2

3. Free Fall and Air Resistance

In a vacuum, the paratrooper would fall under a gravitational acceleration of 9.8 m/s². Given our acceleration is 5.59 m/s², air resistance played a significant role, slowing his acceleration.

Conclusion

The report's accuracy seems plausible given the average acceleration calculated. However, other factors like the angle of impact and ground conditions would also have contributed to his survival.

An airplane went from 120 m/s to 180 m/s in 4.0 seconds. What was its acceleration?

Answers

15 m/s^2 The first thing to calculate is the difference between the final and initial velocities. So 180 m/s - 120 m/s = 60 m/s So the plane changed velocity by a total of 60 m/s. Now divide that change in velocity by the amount of time taken to cause that change in velocity, giving 60 m/s / 4.0 s = 15.0 m/s^2 Since you only have 2 significaant figures, round the result to 2 significant figures giving 15 m/s^2

Wich element is likely to be the most reactive

Answers

Answer:

Fluorine

Explanation:

Fluorine is the most reactive and most electronegative element in the periodic table. It can react with glass so it is impossible to find fluorine in its pure form. It exists in gaseous form even at room temperature and it is the most oxidizing agent. It is a non metal, in metals cesium is the most reactive.

The element that is likely to be the most reactive is hydrogen. The correct option is A.

The most reactive element of the ones listed is probably hydrogen (H). It is extremely reactive due to the fact that its outermost shell contains just one electron.

Oxygen, halogens, and metals are just a few of the substances that hydrogen can interact with quickly.

Covalent bonds can be formed with nonmetals like oxygen, resulting in substances like water. In redox reactions, such as the synthesis of acids and bases, hydrogen also takes part.

Its low atomic mass, which permits quicker diffusion and more frequent collisions with other atoms, further increases its reactivity.

Overall, the electrical structure of hydrogen and its capacity to create stable bonds with other elements are what cause it to be so reactive.

Thus, the correct option is A.

For more details regarding reactive element, visit:

https://brainly.com/question/13769935

#SPJ6

Your question seems incomplete, the probable complete question is:

Which of the following elements is likely to be the most reactive?

A) Hydrogen (H)

B) Oxygen (O)

C) Neon (Ne)

D) Argon (Ar)

walt ran 5 kilometers in 25 minutes, going eastward. What was his average velocity?

Answers

If walt ran 5 kilometers in 25 minutes, going eastward. His average velocity is: 0.2 kilometers per minute.

What is the average velocity?

To determine Walt's average velocity divide the distance traveled by the time it took him.

We can use the formula:

Average velocity = Distance / Time

Plugging in the values:

Average velocity = 5 kilometers / 25 minutes

Average velocity = 0.2 kilometers per minute

Therefore Walt's average velocity is 0.2 kilometers per minute, meaning that he was running at a speed of 0.2 kilometers every minute in the eastward direction.

When the space shuttle coasts in a circular orbit at constant speed about the earth, is it accelerating? if so, in what direction?

Answers

Yes. Acceleration means any change in speed or direction of motion. When an object coasts in a circular orbit at constant speed around the Earth, its direction is constantly changing. The acceleration is "CENTRIPETAL", which points toward the center of the circle.

Yes, there is centripetal acceleration, whose direction is radially inwards, towards the center of the Earth.

How to get the acceleration?

Remember that if an object is not accelerating, then it will remain at rest or will move with a constant velocity. Remember that velocity is defined by a magnitude (the speed) and a direction.

Now, in the case of a circular orbit, the speed is constant, but the direction of motion is not, so the velocity is not constant. So yes, we have acceleration.

That acceleration is called centripetal acceleration, and always appears when we have circular motion, is an acceleration that points inwards, to the center of the circle.

So in the case of the space shuttle that orbits Earth, the acceleration's direction would be radially inwards, towards the center of the Earth.

If you want to learn more about acceleration, you can read:

https://brainly.com/question/605631

43.278 kg - 28.1 g use significant figures rule

Answers

You cannot directly subtract the given values because their units are different. To be consistent, let's convert kilograms to grams with the conversion that 1,000 g = 1 kg.

43.278 kg(1,000 g/1 kg) - 28.1 g = 43249.9 grams

In subtraction, you will base the number of significant figures to the least of the given data. Since 28.1 has 3 significant figures, the answer should also contain 3 significant figures. Thus, it is much more convenient to report it in terms of kilograms.

43249.9 grams * 1 kg/ 1,000 g = 43.2 kg

A Federation starship (8.5 ✕ 106 kg) uses its tractor beam to pull a shuttlecraft (1.0 ✕ 104 kg) aboard from a distance of 14 km away. The tractor beam exerts a constant force of 4.0 ✕104 N on the shuttlecraft. Both spacecraft are initially at rest. How far does the starship move as it pulls the shuttlecraft aboard?

Answers

Refer to the diagram shown below.

m₁ = 8.5 x 10⁶ kg, the mass of the starship
m₂ = 10⁴ kg, the mass of the shuttlecraft
a₁ =  the acceleration of the starship
a₂ = the acceleration of the shuttle
F = 4 x 10⁴ N, the pulling force

Let y =  distance traveled by the starship
Let x =  distance traveled by the shuttlecraft
If t =  the time of travel, then
y = 0.5a₁t²                  (1)
x = 0.5a₂t²                  (2)

F = m₁a₁ = m₂a₂         (3)
Also,
x + y = 14000 m          (4)

From (2), obtain
a₁ = (4 x 10⁴ N)/(8.5 x 10⁶ kg) = 4.706 x 10⁻³ m/s²
a₂ = (4 x 10⁴ N)/(10⁴ kg) = 4 m/s²

From (1), (2) and (4), obtain
0.5*(t s)²*(4 + 4.706 x 10⁻³ m/s²) = 14000 m
2.002353t² = 14000
t² = 6991.774 s²
t = 83.617 s

Therefore
x = 0.5*4*6991.774 = 13984 m = 13.984 km
y = 0.5*4.706 x 10⁻³*6991.774 = 16.452 m

The starship moves only about 16.5 m while pulling in the shuttlecraft by 13.98 km.

Answer: The starship moves by 16.5 m (nearest tenth)
Final answer:

By applying conservation of momentum and kinematic equations, we find the distance the starship moves as a result of exerting a force on the shuttlecraft via a tractor beam. The steps involve calculating the acceleration of the shuttlecraft, determining the time to cover the initial distance, and then using the momentum relation to find the velocity and distance moved by the starship.

Explanation:

The question involves applying the concept of conservation of momentum to find out how far the starship moves as it pulls a shuttlecraft on board. Since both spacecraft are initially at rest and the force is exerted for the same amount of time on both, their momenta are equal and opposite. We can set up the equation based on conservation of momentum:

m1⋅v1 = m2⋅v2

Where m1 and v1 are the mass and velocity of the starship, and m2 and v2 are the mass and velocity of the shuttlecraft, respectively. Because the tractor beam exerts a constant force, we can calculate the acceleration of the shuttlecraft (a = F/m), and then using the kinematic equation, determine the time (t) it takes for the shuttle to cover the distance:



s = 0.5⋅a⋅t^2



With t known, we can calculate the velocity of the shuttlecraft (v2) at the moment it reaches the starship:



v2 = a⋅t



Using the velocities and rearranging the conservation of momentum equation, we find:



m1⋅v1 = m2⋅(a⋅t)



Finally, we solve for the distance the starship moves (d1) using the velocity we found for v1, and the time:



d1 = 0.5⋅(v1⋅t)



This provides the answer to how far the starship moves as a result of pulling in the shuttlecraft with its tractor beam.

Learn more about Conservation of Momentum here:

https://brainly.com/question/33316833

#SPJ3

An infant's pulse rate is measured to be 127 ± 4 beats/min. what are the uncertainty and the percent uncertainty in this measurement?

Answers

The uncertainty in the measurement is ± 4 beats/min, and the percent uncertainty is approximately 3.15%.

The reported pulse rate for an infant is 127 ± 4 beats/min. Here,  "± 4 beats/min" refers to the degree of uncertainty of the measurement.

1. Uncertainty: The uncertainty of a measurement is the range of values ​​in which the true value is expected to fall. In this example the uncertainty is ± 4 beats/min.

2.Percent Uncertainty: Uncertainty as a percentage is calculated by multiplying the ratio of the uncertainty in the measured value by 100. Uncertainty is expressed as a fraction of the measured value.

Percent Uncertainty = (Uncertainty / Measured Value) × 100

Using the given values:

Uncertainty = ± 4 beats/min

Measured Value = 127 beats/min

Percent Uncertainty = (4 / 127) × 100 ≈ 3.15%

So, the uncertainty in the measurement is ± 4 beats/min, and the percent uncertainty is approximately 3.15%.

Learn more about uncertainty, here:

https://brainly.com/question/33389550

#SPJ12

Final answer:

The uncertainty in the infant's pulse rate measurement is ± 4 beats/min. To calculate the percent uncertainty, divide the uncertainty by the measured value (127 beats/min), giving a percent uncertainty of 3.15%.

Explanation:

The uncertainty in the infant's pulse rate is given as ± 4 beats/min. The percent uncertainty can be calculated by dividing the uncertainty by the measured value and then multiplying by 100 to get the answer in percent.

To calculate the percent uncertainty:

Divide the absolute uncertainty by the measured value: 4 beats/min ÷ 127 beats/min. Multiply the result by 100 to convert it to a percentage: (4 beats/min ÷ 127 beats/min) × 100.

Performing these calculations:

(4 ÷ 127) × 100 = 3.15%

Therefore, the percent uncertainty in the measurement of the infant's pulse rate is 3.15%.

Light from the sun reaches earth in about 8.3 minutes the speed of light is 3.00×10^8 m/s what is the distance from the sun to earth?

Answers

Set up a unit conversion problem, arrange units to convert minutes to seconds, then cancel all time units.

8.3 minutes x (60 seconds/1 minute) x ( 3.00x10^8 meters/1 second) = 149,400,000,000 meters

Since the time is the term with the fewest number of significant figures (2), your answer should only be expressed with two sig figs as well.

1.5x10^11 m

A primitive air-conditioning unit for the use in places where electrical power is unavailable can be made by hanging up strips of linen soaked in water. the evaporation of the water cools the air. calculate the heat required to evaporate 5.00 l of water at 0c

Answers

Volume of water = 5 L
Because density of water is 1000 g/L,the mass of water is
m = (5 L)*( 1000 g/L) = 5000 g

The latent heat of vaporization of water is 2257 J/g
Therefore the heat required is
Q = (5000 g)*(2257 J/g)
    = 11.285 x 10⁶ J
    = 11.85 MJ

Answer: 11.85 MJ

Final answer:

The heat required to evaporate 5.00 liters of water at 0°C is 11300 kJ, calculated by multiplying the mass of the water (5.00 kg) by the heat of vaporization (2260 kJ/kg).

Explanation:

The student is asking about the heat required to evaporate 5.00 liters of water at 0°C. This is a question related to thermochemistry, specifically the heat of vaporization of water. The heat of vaporization is the amount of energy required for liquid water to turn into water vapor. To calculate the heat required, we use the formula:

Q = m × hv

where Q is the heat required, m is the mass of water, and hv is the heat of vaporization. The heat of vaporization for water is approximately 2260 kJ/kg at 0°C.

First, we convert 5.00 liters to kilograms as the density of water is about 1 kg/L, which makes the mass 5.00 kg. Then we calculate the heat required:

Q = 5.00 kg × 2260 kJ/kg = 11300 kJ

Therefore, the heat required to evaporate 5.00 liters of water at 0°C is 11300 kJ.

Two cars start from rest at a red stop light. When the light turns green, both cars accelerate forward. The blue car accelerates uniformly at a rate of 3.8 m/s2 for 4.6 seconds. It then continues at a constant speed for 9.2 seconds, before applying the brakes such that the car’s speed decreases uniformly coming to rest 257.71 meters from where it started. The yellow car accelerates uniformly for the entire distance, finally catching the blue car just as the blue car comes to a stop.
How fast is the blue car going 2.8 seconds after it starts?

Answers

First, create an illustration of the motion of the two cars as shown in the attached picture. The essential equations used is

For constant acceleration:
a = v,final - v,initial /t

The solutions is as follows:

 a = v,final - v,initial /t
 3.8 = (v - 0)/2.8 s
 v = 10.64 m/s
 After 2.8 seconds, the speed of the blue car is 10.64 m/s.
Final answer:

The blue car accelerates at 3.8 m/s² from rest. After 2.8 seconds, its speed is calculated using the formula v = u + at. The car's speed at that moment is 10.64 m/s.

Explanation:

To determine how fast the blue car is going 2.8 seconds after it starts, we use the formula for final velocity in uniformly accelerated motion, which is v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time.

Here, the initial velocity u is 0 m/s since the car starts from rest, the acceleration a is given as 3.8 m/s2, and the time t is 2.8 seconds.

Plugging the values into the formula gives us:

v = 0 m/s + (3.8 m/s2)(2.8 s) = 10.64 m/s.

Thus, the blue car is traveling at a speed of 10.64 meters per second after 2.8 seconds from the start.

Learn more about accelerates  here:

https://brainly.com/question/37061342

#SPJ12

What is the earth's average velocity for one year?

Answers

The Earth's average velocity relative to the Sun as measured during a tropical year, which is the time measured between two consecutive March equinoxes, is 2.988589 x 10^4 m/s.

What potential difference is needed to accelerate a he+ ion (charge +e, mass 4u) from rest to a speed of 1.8×106 m/s ?

Answers

Final answer:

The potential difference needed to accelerate a He+ ion to a specific speed can be calculated using kinetic energy and charge, with the equation V = ½mv² / q, where m is the mass of the ion, v is the velocity, and q is the charge.

Explanation:

The student has asked what potential difference is needed to accelerate a He+ ion (charge +e, mass 4u) from rest to a speed of 1.8×106 m/s. The kinetic energy gained by the ion when it's accelerated through a potential difference (V) is equal to the charge of the ion (q) times the potential difference (V). Thus, we use the equation KE = qV and also know that KE can be expressed as ½mv2. Therefore, we can set these equations equal to solve for V:

V = ½mv2 / q

Where m is the mass of the He+ ion, v is the final velocity, and q is the charge of the ion. For He+ ion, q is +e, which is 1.602×10−19 C because it has one fewer electron than a normal helium atom. The mass of a He+ ion can be converted to kilograms by multiplying the atomic mass unit (u) with the conversion factor (1 u = 1.6605×10−27 kg), so for 4u, it would be 4×1.6605×10−27 kg.

Plugging these values into the equation, we can calculate the required potential difference to achieve the given speed.

A 2300 kg truck has put its front bumper against the rear bumper of a 2500 kg suv to give it a push. with the engine at full power and good tires on good pavement, the maximum forward force on the truck is 18,000 n.

Answers

F=ma
m=total mass = 2300kg+2500kg=4800
F=18000N
a=?
a=F/m
a=18000/4800
a=3.8m/s^2
Final answer

Answer:

Acceleration = a = 3.75 m/s^2

Explanation:

Mass of truck1 = m1 = 2300 kg

Mass of truck2 = m2 = 2500 kg  

Total mass = m = m1 + m2 = 2300 + 2500 = 4800 kg

Force exerted by truck1 = F = 18000 N

As both trucks are joint together so, behaving as single object. The acceleration can be found by Newton’s second law of motion.

F = ma  

a = F/m = 18000/4800

a = 3.75 m/s^2

A spelunker is surveying a cave. she follows a passage 170 m straight west, then 250 m in a direction 45â east of south, and then 280 m at 30â east of north. after a fourth unmeasured displacement, she finds herself back where she started.

Answers

im not sure but is the magnitude 160.8?

The cable is drawn into the motor with an acceleration of 7 m/s2 determine the time needed for the load at b to attain a speed of 10 m/s, starting from rest.

Answers

Final answer:

Using the basic equation of motion v = u + at, and considering the load starts from rest (u=0), we find it takes approximately 1.43 seconds for the load to attain a speed of 10 m/s when accelerating uniformly at 7 m/s².

Explanation:

The student wants to know the amount of time it takes for a load at point B to achieve a speed of 10 m/s, given that it starts from rest and accelerates uniformly at a rate of 7 m/s². This problem can be solved using one of the basic equations of motion, specifically, the formula v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. Since the load is starting from rest, u = 0. Hence, the equation becomes v = at. Substituting the given values (v = 10 m/s, a = 7 m/s²), we can solve for t = v / a, which gives t = 10 / 7 = 1.43 seconds. So, it will take approximately 1.43 seconds for the load to attain a speed of 10 m/s.

Learn more about Motion and Time here:

https://brainly.com/question/28282134

#SPJ12

If you drop a ball, and then one second later drop a ball identical in mass, size and shape, what happens to the distance between them as they fall?

Answers

they maintain the same distance between each other throughout the fall

Final answer:

As two identical balls are dropped with a one-second interval, the distance between them increases because the first ball accelerates for a longer time and achieves a higher velocity than the second ball at the instant it is dropped.

Explanation:

The question involves the concepts of gravity and acceleration as related to two identical falling objects. When a ball is dropped and then a second identical ball is dropped one second later, the distance between them increases as they fall. This is because the first ball has already been accelerating due to gravity for one second longer than the second ball, and thus it has a higher velocity at the moment the second ball is released. Therefore, the first ball continues to pull away from the second ball as they both fall towards the Earth.

What radius should the satellite move at in its orbit? (measured frrom the center of mars.)?

Answers

R = GM/V² = 7.178E6 m
Final answer:

To determine the radius at which a satellite should move in its orbit around Mars, you can use Newton's Law of Universal Gravitation and the centripetal force equation. By setting the gravitational force equal to the centripetal force, you can solve for the radius of the orbit.

Explanation:

The radius at which a satellite should move in its orbit around Mars can be determined using Newton's Law of Universal Gravitation and the centripetal force equation. The centripetal force required for the satellite to stay in orbit is provided by the gravitational force between the satellite and Mars. To find the radius, you can set the gravitational force equal to the centripetal force and solve for the radius.

Step-by-step:

Identify the known quantities: the mass of Mars (M), the radius of Mars (r), and the period of the satellite's orbit (T).Use the centripetal force equation: Fc = (mv2)/r, where Fc is the centripetal force, m is the mass of the satellite, v is the satellite's velocity, and r is the radius of the orbit.Use Newton's Law of Universal Gravitation: Fg = (GMm)/r2, where Fg is the gravitational force between the satellite and Mars, G is the gravitational constant, and M is the mass of Mars.Set the centripetal force equal to the gravitational force: (mv2)/r = (GMm)/r2.Cancel out the common factors: v2/r = (GM)/r2.Solve for r: v2 = GM/r.Substitute the known values and solve for r: r = (GM/v2).

Learn more about Satellite orbit around Mars here:

https://brainly.com/question/33396540

#SPJ2

True or False A scientific theory generally is accepted as false until it is proved?

Answers

false it can not be proven or disproven

What is the volume of a rock with a density of 3.00 g/cm3 and a mass of 600g?

Answers

The equation of D = m/V

Where D = density
m = mass
and V = volume

We are solving for V, so with the manipulation of variables we multiply V on both sides giving us 
V(D) = m 
now we divide D on both sides giving us
V = m/D 

We know our mass which is 600g and our density is 3.00 g/cm^3
so
V = 600g/3.00g/cm^3 = 200cm^3  or 200mL

a cubic centimeter (cm^3) is one of the units for volume. It's exactly like mL. 1 cm^3 = 1 mL
 
If you wish to change it to L, you'd have to convert. 

Jennifer works for an automaker and tests the safety performance of cars. She watches a 2,000-kilogram car crash into a wall with a force of 30,000 newtons. What’s the acceleration of the car at impact? Use .

Answers

15 m/s^2

For this problem, everything becomes clear once you look at the units involved. You have 2000 kg  and 30000 newtons and want to get acceleration.
First, express all the units in their most basic form.
kg, newton = kg*m/s^2, acceleration = m/s^2

So looking at kg, and kg*m/s^s, what math operation can be done to convert those 2 units into m/s^2?

You can't add or subtract since you're not allowed to mix units while adding or subtracting. You could try multiplying, but that would give you
kg * kg*m/s^2 = kg^2m/s^2
which isn't what you want to do. So it looks like you need to divide.
If you divide the kg by the kg*m/s^2, you'll get s^2/m which isn't correct either. But if you divide kg*m/s^2 by kg, the kilograms cancel out and you're left with m/s^2 which is exactly what you want. So do

30000 kg*m/s^2 / 2000 kg = 15 m/s^2.

Just remember to take a close look at the units of the numbers you're manipulating and perform the operations that will result in the correct units for the answer. I've caught myself making errors quite a few times in the past by doing that and getting nonsense units in the result telling me that I did the wrong thing. There's a good reason to use those units to help you.

Answer:

15 meters/second^2

Explanation:

I got this question on a test and this was the right answer

state and explain guass law?

Answers

"Gauss's Law. The total of the electric flux out of a closed surface is equal to the charge enclosed divided by the permittivity. The electric flux through an area is defined as the electric field multiplied by the area of the surface projected in a plane perpendicular to the field. ,"  Source:    hyperphysics.phy-astr.gsu.edu/hbase/electric/gaulaw.html

If you would like more info please look at the website. Im only in middle school, so I am sorry if this is not what you were looking for.....

Final answer:

Gauss's Law is a fundamental principle in Physics that relates the electric flux through a closed surface to the net electric charge enclosed by the surface. It states that the electric flux is proportional to the total charge enclosed by the surface divided by the permittivity of free space.

Explanation:

Gauss's Law is a fundamental principle in Physics that relates the electric flux through a closed surface to the net electric charge enclosed by the surface. It states that the electric flux is proportional to the total charge enclosed by the surface divided by the permittivity of free space. Mathematically, it can be written as:

Σi E⟀Ai = Γenclosed / ε0

Where Σi E⟀Ai is the sum of the dot products of the electric field and the area vectors of small surface elements, Γenclosed is the net electric charge enclosed by the surface, and ε0 is the permittivity of free space.

Other Questions
The atomic mass of an element is equal to the number of:1. protons2. protons plus neutrons3. protons plus electrons4. neutrons Do you think the catholic church would have done more to help the jews in world war ii? what could it have done? answer Cul es el verbo recproco? (2 palabras)Se abrazan is the verb. Simplify by collecting like terms: 2x-4-6x+8 A pair of fair dice is rolled. a. What is the probability of rolling a sum of 9?b. What are the odds against rolling a sum of 9? How is the pressure of a gas related to its concentration of particles? A) Pressure will expand a gas, enlarging its volume and reducing its density and concentration of particles. B) Pressure will magnify a gas, developing its volume and multiplying its density and concentration of particles. C) Pressure will compress a gas, reducing its volume and giving it a greater density and concentration of particles. D) Pressure will accelerate a gas, extending its volume and allowing a smaller density and concentration of particles. In which market structure can consumers most easily find substitutes? Instructions:Select all the correct answers.Why is it important for writers to keep a record of their reviewed papers?to share their mistakes with their classmatesto criticize their own errorsto get a second opinionto identify and eliminate habitual errorsto check whether other writers make similar mistakes Is an example of a drug that was approved too early, before potential side effects could adequately be explored? Please help with this problem. An essay which has a thesis supported with examples is called process analysis. true or false Please help! All the questions. Which is greater 1/3 or 0.33 The main cable of a suspension bridge forms a parabola, described by the equation y = a(x - h)2 + k, where y is the height in feet of the cable above the roadway, x is the horizontal distance in feet from the left bridge support, a is a constant, and (h, k) is the vertex of the parabola. At a horizontal distance of 30 ft, the cable is 15 ft above the roadway. The lowest point of the cable is 6ft above the roadway and is a horizontal distance of 90 ft from the left bridge support.Which quadratic equation models the situation correctly? The main cable attaches to the left bridge support at a height of ft.The main cable attaches to the right bridge support at the same height as it attaches to the left bridge support. What is the distance between the supports? A completely submerged object always displaces its own Before entering a loop to compute a running total, the program should first do this Which of the following foods would be the best choice for someone who's lactose-intolerant? A. Chocolate ice cream B. Cheesecake C. Frozen yogurt D. Strawberry sorbet t? What is the greatest common factor for 200 and 205 A company sold 160 units in the last quarter of the year. Which of the following graphs represents the company's sales performance? Instead of oxygen __________ may utilize nitrate or sulfate as their final electron acceptors