The full range of wavelengths of em waves is called the

Answers

Answer 1

Answer:

Electromagnetic Spectrum

Explanation:


Related Questions

What is the brightest star in the night sky

Answers

the brightest star in the night sky is Sirius A

The brightest star in the night sky is Sirius A.

Sirius A is the brightest star that we see in the night sky. It is a binary system with a white dwarf orbiting a main-sequence star. Despite common misconceptions, Sirius is the actual brightest star, not Polaris.

A small cork with an excess charge of +6.0µC is placed 0.12 m from another cork, which carries a charge of -4.3µC.
A) what is the magnitude of the eletric force between the corks?
B) is this force attractive or repulsive?
C) how many excess electrons are on the negative cork?
D) how many electrons has the postive cork lost?

Answers

A) 16.1 N

The magnitude of the electric force between the corks is given by Coulomb's law:

[tex]F=k\frac{q_1 q_2}{r^2}[/tex]

where

k is the Coulomb's constant

[tex]q_1 = 6.0 \mu C=6.0 \cdot 10^{-6} C[/tex] is the magnitude of the charge on the first cork

[tex]q_2 = 4.3 \mu C = 4.3 \cdot 10^{-6}C[/tex] is the magnitude of the charge of the second cork

r = 0.12 m is the separation between the two corks

Substituting numbers into the formula, we find

[tex]F=(9\cdot 10^9 N m^2 C^{-2} )\frac{(6.0\cdot 10^{-6}C)(4.3\cdot 10^{-6} C)}{(0.12 m)^2}=16.1 N[/tex]

B) Attractive

According to Coulomb's law, the direction of the electric force between two charged objects depends on the sign of the charge of the two objects.

In particular, we have:

- if the two objects have charges with same sign (e.g. positive-positive or negative-negative), the force is repulsive

- if the two objects have charges with opposite sign (e.g. positive-negative), the force is attractive

In this problem, we have

Cork 1 has a positive charge

Cork 2 has a negative charge

So, the force between them is attractive.

C) [tex]2.69\cdot 10^{13}[/tex]

The net charge of the negative cork is

[tex]q_2 = -4.3 \cdot 10^{-6}C[/tex]

We know that the charge of a single electron is

[tex]e=-1.6\cdot 10^{-19}C[/tex]

The net charge on the negative cork is due to the presence of N excess electrons, so we can write

[tex]q_2 = Ne[/tex]

and solving for N, we find the number of excess electrons:

[tex]N=\frac{q_2}{e}=\frac{-4.3\cdot 10^{-6} C}{-1.6\cdot 10^{-19} C}=2.69\cdot 10^{13}[/tex]

D) [tex]3.75\cdot 10^{13}[/tex]

The net charge on the positive cork is

[tex]q_1 = +6.0\cdot 10^{-6}C[/tex]

We know that the charge of a single electron is

[tex]e=-1.6\cdot 10^{-19}C[/tex]

The net charge on the positive cork is due to the "absence" of N excess electrons, so we can write

[tex]q_1 = -Ne[/tex]

and solving for N, we find the number of electrons lost by the cork:

[tex]N=-\frac{q_1}{e}=-\frac{+6.0\cdot 10^{-6} C}{-1.6\cdot 10^{-19} C}=3.75\cdot 10^{13}[/tex]

The intensity of sunlight reaching the earth is 1360 w/m2. Assuming all the sunligh is absorbed, what is the radiation pressure force on the earth? Give your answers in (a) newtons (b) as a fraction of the sun's gravitational force on the earth

Answers

Final answer:

The radiation pressure force on the Earth due to the Sun's light is approximately 1.09 x 109 Newtons, and it is roughly 3.1 x 10-14 the Sun's gravitational force on Earth.

Explanation:

The intensity of sunlight reaching the earth is given as 1360 W/m2. The pressure due to radiation can be calculated using the formula P = E/c, where P is pressure, E is energy and c is the speed of light. From this formula, we find that the radiation pressure force on Earth is roughly 4.53 x 10-6 N/m2.

(a) In Newtons:
The radiation pressure in Newtons will depend on the cross-sectional area exposed to sunlight. For the entire Earth, we would use the cross-sectional area of a circle with radius equals to Earth's radius (6.37 x 106 m). This gives us an approximate radiation pressure force of 1.09 x 109 Newtons.

(b) As a fraction of the Sun's gravitational force:
The gravitational force (Fg) between Earth and the Sun can be calculated using the formula Fg = GMm/r2, with G being the gravitational constant, M the mass of the Sun, m the mass of Earth and r the distance between Earth and the Sun. This gives an approximate Fg of 3.54 x 1022 Newtons. Hence, the radiation force is roughly 3.1 x 10-14 the Sun's gravitational force on Earth.

Learn more about Radiation Pressure here:

https://brainly.com/question/31957777

#SPJ12

Final answer:

The radiation pressure force on the Earth can be calculated using the intensity of sunlight and the surface area of the Earth. The force is approximately 1.09858256 × 10^7 N and is about 1.37 × 10^-38 times the Sun's gravitational force on the Earth.

Explanation:

The radiation pressure force on the Earth can be calculated using the formula:

Force = Intensity × Area

Given that the intensity of sunlight reaching the Earth is 1360 W/m2 and assuming all the sunlight is absorbed, we can calculate the force:

Force = 1360 W/m2 × Area

The area of the Earth can be calculated using the formula for the surface area of a sphere:

Area = 4πr2

Where r is the radius of the Earth. Plugging in the value of the radius of the Earth, we can solve for the force:

Area = 4π(6371 km)Area = 4π(6.371 × 10^6 m)Area = 4π(6.371 × 10^6 m)Area = 4(3.14159)(6.371 × 10^6 m)Area = 4(20.0979 × 10^6 m)Area = 80.3916 × 10^6 mArea = 803.916 × 10^4 m2Force = 1360 W/m2 × 803.916 × 10^4 m2Force = 1098.58256 × 10^4 WForce = 1.09858256 × 10^7 WForce = 1.09858256 × 10^7 N

(a) The radiation pressure force on the Earth is approximately 1.09858256 × 10^7 N.

(b) To find the force as a fraction of the Sun's gravitational force on the Earth, we need to calculate the gravitational force between the Sun and the Earth. Using Newton's law of gravitation:

Force = G × (mass of the Sun)(mass of the Earth) / (distance between the Sun and the Earth)^2

The mass of the Sun is about 2 × 10^30 kg. The mass of the Earth is about 6 × 10^24 kg. The average distance between the Sun and the Earth is about 1.5 × 10^11m. Plugging these values into the formula, we can calculate the gravitational force:

Force = (6.6743 × 10^-11 N m^2 / kg^2) × (2 × 10^30 kg)(6 × 10^24 kg) / (1.5 × 10^11m)^2Force = (6.6743 × 10^-11 N m^2 / kg^2) × (1.2 × 10^55 kg^2) / (2.25 × 10^22 m^2)Force = 8.00876033 × 10^44 N m^2 / kg^2

The radiation pressure force as a fraction of the Sun's gravitational force on the Earth can be calculated as:

Fraction = (Radiation Pressure Force) / (Gravitational Force)

Fraction = (1.09858256 × 10^7 N) / (8.00876033 × 10^44 N)Fraction = 1.37 × 10^-38

(b) The radiation pressure force on the Earth is approximately 1.37 × 10^-38 times the Sun's gravitational force on the Earth.

Learn more about Radiation Pressure Force here:

https://brainly.com/question/33897351

#SPJ11

1) If a pendulum clock keeps perfect time at the base of a mountain, will it also keep perfect time when it is moved to the top of the mountain? Explain.
2)if a grandfather clock is running slow, how could we adjust the length of the pendulum to correct the time?
3)Explain (a) how it is possible for a large force to produce only a small, or even zero, torque, and (b) how it is possible for a small force to produce a large torque.

Answers

1) No

Explanation:

The period of a pendulum is given by

[tex]T=2\pi \sqrt{\frac{L}{g}}[/tex]

where

L is the length of the pendulum

g is the acceleration due to gravity

The value of g, acceleration due to gravity, is not exactly the same in all locations of the Earth. In fact, its value is given by

[tex]g=\frac{GM}{r^2}[/tex]

where G is the gravitational constant, M is the Earth's mass, and r the distance of the point from the Earth's center. This means that at the top of a mountain, r is slightly larger than at the Earth's surface, so the value of g is slightly smaller at the top of the mountain, and therefore the period of the pendulum will also be different (it will be slightly longer than at Earth's surface).

2) We need to decrease the length of the pendulum

Again, the period is given by

[tex]T=2\pi \sqrt{\frac{L}{g}}[/tex] (1)

If the clock is running slow, it means that its period T' is slightly longer than the expected period T: so, we need to shorten the period.

From eq.(1), we see that the period is proportional to the square root of the length of the pendulum, L: therefore, if the length increases the period increases, and if the length decreases, the period will decreases.

Here we want to shorten the period: therefore, according to the equation, we need to decrease the length of the pendulum.

3)

The torque of a force applied is given by

[tex]\tau = Fd sin \theta[/tex]

where

F is the magnitude of the force

d is the distance between the point of application of the force and the pivot point

[tex]\theta[/tex] is the angle between the direction of the force and d

So we have:

a) If we have a large force F, it is possible to produce a small torque by decreasing d, so by applying the force really close to the pivot, or by decreasing [tex]\theta[/tex], which means applying the force as more parallel as possible to d. The torque will be even zero if d=0 (force applied at the pivot point) or if [tex]\theta=0^{\circ}[/tex] (force parallel to d)

b) if we have a small force F, it is possible to produce a large torque by increasing d, so by applying the force really far to the pivot, or by increasing [tex]\theta[/tex], which means applying the force as more perpendicular as possible to d.

If a pendulum clock is accurate at the base of a mountain, it may not be accurate at the top because gravity is weaker at higher altitudes. To adjust a slow grandfather clock, shorten the pendulum. Torque depends on both force and its application point, so large forces can produce small torques and small forces can produce large torques.

1) If a pendulum clock keeps perfect time at the base of a mountain, it may not keep perfect time at the top due to a slight variation in the acceleration due to gravity. A pendulum clock's timing depends on gravity, and at higher altitudes, gravity is slightly weaker which would affect the clock's accuracy.

2) If a grandfather clock is running slow, the length of the pendulum needs to be shortened to increase the rate at which the pendulum swings, thereby correcting the time.

3) (a) A large force can produce a small or zero torque if the force is applied directly along the line of action of the pivot point, as torque is a measure of rotational force and depends on both the amount of force applied and its distance from the pivot.

(b) A small force can produce a large torque if applied at a large distance from the pivot point, as torque is the product of the force and the perpendicular distance from the pivot - thus, even a small force can create significant torque if applied far enough away from the pivot.

For a pendulum clock moved to a location with greater gravity, you would need to shorten the pendulum to maintain the same period and keep correct time.

In summer, the pendulum of a clock generally expands due to heat, which makes the clock run slower, while in winter, it would contract and make the clock run faster.

Suppose that an object travels from one point in space to another. Make a comparison between the magnitude of the displacement and the distance traveled by this object.

Answers

Answer:

- Distance is a scalar quantity, defined as the total amount of space covered by an object while moving between the final position and the initial position. Therefore, it depends on the path the object has taken: the distance will be minimum if the object has travelled in a straight line, while it will be larger if the object has taken a non-straight path.

- Displacement is a vector quantity, whose magnitude is equal to the distance (measured in a straight line) between the final position and the initial position of the object. Therefore, the displacement does NOT depend on the path taken, but only on the initial and final point of the motion.

If the object has travelled in a straight path, then the displacement is equal to the distance. In all other cases, the distance is always larger than the displacement.

A particular case is when an object travel in a circular motion. Assuming the object completes one full circle, we have:

- The distance is the circumference of the circle

- The displacement is zero, because the final point corresponds to the initial point

Two hundred grams of liquid A is at a temperature of 100◦C. One hundred grams of liquid B is at a temperature of 0◦C. When the two liquids are mixed, the final temperature is 50◦C. Which material has a higher specific heat? 1. The specific heat of A is greater than that of B. 2. The specific heat of A is great than B if its viscosity is greater. 3. The specific heats of A and B are equal. 4. The specific heat cannot be defined when fluids are mixed in this way. 5. The specific heat of B is greater than that of A. "correct"

Answers

Answer:

The specific heat of B is greater than that of A.

Explanation:

The amount of heat lost by A is:

q = m C ΔT

q = (200 g) Ca (100°C - 50°C)

q = 10,000 Ca

The amount of heat gained by B is:

q = (100 g) Cb (50°C - 0°C)

q = 5,000 Cb

Since the heat lost by A = heat gained by B:

10,000 Ca = 5,000 Cb

2 Ca = Cb

So the heat capacity of B is double the heat capacity of A.  Answer 5.

Taking into account the definition of calorimetry, the correct answer is option 5: The specific heat of B is greater than that of A.  

Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.

Sensible heat is defined as the amount of heat that a body absorbs or releases without any changes in its physical state (phase change).

So, the equation that allows to calculate heat exchanges is:

Q = c× m× ΔT

where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.

In this case, you know:

For liquid A: Mass= 200 g Initial temperature= 100 °C Final temperature= 50 ºC Specific heat = [tex]c_{A}[/tex]  For liquid B: Mass of water = 100 g Initial temperature of water= 0 ºC Final temperature of water= 50 ºC Specific heat of water = [tex]c_{B}[/tex]

Replacing in the expression to calculate heat exchanges:

For liquid A: QliquidA= [tex]c_{A}[/tex] × 200 g× (50 C - 100 C)

For liquid B: QliquidB= [tex]c_{B}[/tex] × 100 g× (50 C - 0 C)

If two isolated bodies or systems exchange energy in the form of heat, the quantity received by one of them is equal to the quantity transferred by the other body. That is, the total energy exchanged remains constant, it is conserved.

Then, the heat that the liquid A gives up will be equal to the heat that the liquid B receives. Therefore:

- QliquidA = + QliquidB

- [tex]c_{A}[/tex] × 200 g× (50 C - 100 C)= [tex]c_{B}[/tex] × 100 g× (50 C - 0 C)

Solving:

- [tex]c_{A}[/tex] × 200 g× ( - 50 C)= [tex]c_{B}[/tex] × 100 g× (50 C)

[tex]c_{A}[/tex] × 10,000 gC= [tex]c_{B}[/tex] × 5,000 gC

([tex]c_{A}[/tex] × 10,000 gC) ÷ 5,000 gC= [tex]c_{B}[/tex]

[tex]c_{A}[/tex] × 2= [tex]c_{B}[/tex]

Finally, the correct answer is option 5: The specific heat of B is greater than that of A.  

Learn more:

brainly.com/question/11586486?referrer=searchResults brainly.com/question/24724338?referrer=searchResults brainly.com/question/14057615?referrer=searchResults brainly.com/question/24988785?referrer=searchResults brainly.com/question/21315372?referrer=searchResults brainly.com/question/13959344?referrer=searchResults brainly.com/question/14309811?referrer=searchResults brainly.com/question/23578297?referrer=searchResults

Which phenomenon can only be explained by assuming that light is quantized

Answers

Answer: The Photoelectric Effect

Light can be considered as a wave or as particles, in this context Einstein proposed that light behaves like a stream of particles called photons with an energy, in order to correctly explain the photoelectric effect.

This fenomenom consists in the emission of electrons (electric current) that occurs when light falls on a metal surface under certain conditions.

So, if we consider light as a stream of photons and each of them has energy, this energy is able to pull an electron out of the crystalline lattice of the metal and communicate, in addition, a kinetic energy.

This means the photoelectric effect can only be explained based on the corpuscular model of light, that is, light is quantized.

Please help on this one?

Answers

Answer:

D. An image that is smaller than the object and is behind the mirror

Infrared rays have a shorter wavelength than

Answers

Answer:

Microwaves and radio waves

Explanation:

The electromagnetic spectrum is the classification of the electromagnetic waves according to their wavelength.

From shortest to longest wavelength, they are classified as follows:

Gamma rays < 6 pm

X-rays 6 pm - 10 nm

Ultraviolet 10 nm - 380 nm

Visible light 380 nm - 750 nm

Infrared radiation [tex]750 nm - 5 \mu m[/tex]

Microwaves [tex]5 \mu m -0.3 m[/tex]

Radio waves > 0.3 m

From the list, we see that infrared rays have shorter wavelength than microwaves and radiowaves.

Infrared rays have longer wavelengths than visible light and ultraviolet radiation, falling in the range of 0.74(5m) to 1 mm, and are typically emitted by objects near room temperature. They are lower in energy and frequency compared to ultraviolet radiation, and are responsible for the warming sensation experienced when absorbed by the skin.

In answer to your question: Infrared rays have a shorter wavelength than microwaves. Infrared radiation, including infrared rays, falls below visible light in the electromagnetic spectrum with longer wavelengths and shorter frequencies than visible light. It ranges from about 0.74 micrometers (5m) to 1 millimeter (mm), corresponding to frequencies roughly from 300 gigahertz (GHz) to 400 terahertz (THz). Infrared rays are of lower energy compared to not only visible light but also ultraviolet radiation, which has a shorter wavelength and higher frequency than both visible light and infrared radiation.

Objects near room temperature emit most of the thermal radiation in the infrared range. Infrared light is emitted or absorbed by molecules when they change their rotational-vibrational movements. The sensation of warmth we often associate with infrared waves is due to the absorption of this radiation by our skin, which causes molecules to vibrate and increase in kinetic energy.

Why is there convection in the outer core and what is the result of this?

Answers

Answer:

re believed to influence the Earth's magnetic field. ... As heat is transferred outward toward the mantle, the net trend is for the inner boundary of the liquid region to freeze, causing the solid inner core to grow

Explanation:

Final answer:

Convection in the Earth's outer core, caused by heat from radioactive decay and Earth's cooling, leads to the movement of conductive materials like iron and nickel. These movements generate the Earth's magnetic field, essential for maintaining our atmosphere and conditions favorable for life.

Explanation:

Convection in the Earth's outer core is driven by the heat generated from the decay of radioactive elements and the cooling of the Earth's interior. This heat causes the liquid iron and nickel in the outer core to move in convective currents. As these substances are metallic and thus conductive at the high temperatures and pressures found in the core, their movement generates the Earth's magnetic field. This magnetic field is crucial for maintaining the atmosphere and the conditions necessary for life on Earth. Without the convection in the outer core and the resulting magnetic field, Earth might lose essential gases in its atmosphere, similarly to what happened on Mars.

Which term best describes how light waves from a star are affected as the star moves toward earth?

A.Diffraction

B.Redshift

C.Blueshift

D.Cosmological Redshift

Answers

Answer:

Answer:C.

Explanation:

Blueshift"If a star is moving towards the earth, its light is shifted to higher frequencies on the color spectrum (towards the green/blue/violet/ultraviolet/x-ray/gamma-ray end of the spectrum). A higher frequency shift is called a "blue shift"

Blueshift is the best term to describe how light waves from a star are affected as the star moves toward earth.

What is Blueshift?Blueshift is the displacement of the spectrum to shorter wavelengths in the light coming from distant celestial objects moving toward the observer.Blueshift is an example of doppler effect.

How light waves from a star are affected as the star moves toward earth?Due to blueshift light wave coming from the star shift to longer wavelength to shorter wavelength.As a result we see stars blinking and shining.

So, the correct answer is option C blueshift.

Learn more about Blueshift here -

https://brainly.com/question/3294257

#SPJ2

A coin completes 18 spins in 12 seconds. The centripetal acceleration of the edge of the coin is 2.2 m/s2. The radius of the coin is ____-blank

Answers

Answer:

0.025 m

Explanation:

The coin completes 18 revolutions in 12 seconds. The angular velocity of the coin is:

[tex]\omega = \frac{18 rev}{12 s} \cdot (2\pi \frac{rad}{rev})=9.42 rad/s[/tex]

The centripetal acceleration of the edge of the coin is given by

[tex]a=\omega^2 r[/tex]

where we have

a = 2.2 m/s^2 is the acceleration

r is the radius of the coin

Solving for r, we find

[tex]r=\frac{a}{\omega^2}=\frac{2.2 m/s^2}{(9.42 rad/s^2)^2}=0.025 m[/tex]

Answer: 0.025 m or 2.5m

Explanation:

The number of spins given in 12 seconds = 18

So the number of spins in 1 second will be

= 18 / 12 = 1.5rps

The above result is the frequency because it is the number of spins in one second

Let f be frequency

f = 1.5 rps

Using centripetal acceleration given

Ca = 2.2 m/s^2

m is the radius of the given coin

Using the formula

Centripetal acceleration, = m x w^2

Knowing that w = 2πf

2.2 = m x ( 2 x 3.14 x 1.5) ^2

2.2 = m x 88.7364

m = 0.025 m

1.Work is only being done when what happens to an object?
A) the object does not move
B) the object disappears without explanation
C) it moves in the same direction as the force
D) The object moves in the opposite direction of the force

2.Ben and Jerry, arch rivals, decide to have a weight lifting contest during PE. Ready, set, go! Ben and Jerry both lift a 250 kg barbell 10 times over their heads. They are approximately the same height and lift the barbell the same distance in the air. It takes Ben 5 seconds to complete 10 lifts; it takes Jerry 25 seconds to complete his 10 lifts.
Which statement is MOST accurate regarding the weightlifting contest?
A) Ben did more work than Jerry.
B) Ben has more power than Jerry.
C) Ben and Jerry have the same power.
D) Ben does more work and is more powerful than Jerry.

3.Which energy source can be found on the electromagnetic spectrum?
A) sound energy
B) chemical energy
C) UV light energy
D) mechanical energy

4. Sam blew up a balloon and rubbed it on his head. Then he stuck the balloon on the wall. This was all the result of electrostatics or the transfer of charge. The appearance of negative charge on a balloon is the result of its gaining electrons. And these electrons must come from somewhere; in this case, from Sam's hair. Electrons are transferred in any charging process. In the case of charging by friction, they are transferred between the two objects being rubbed together. Prior to the charging, both objects are electrically neutral and the situation obeys the law of conservation of charge. How does the law of conservation of charge explain Sam and his balloon?
A) Friction creates charge that collected on the balloon.
B) The balloon gained electrons; Sam's hair gained protons.
C) If the balloon acquires charge, Sam's hair loses charge.
D) The net charge before is zero; the net charge after is negative.

Answers

1.

C) it moves in the same direction as the force

D) The object moves in the opposite direction of the force

Work is defined as follows:

[tex]W=Fdcos \theta[/tex]

where

F is the magnitude of the force applied on an object

d is the displacement of the object

[tex]\theta[/tex] is the angle between the direction of the force and of the displacement

As we see from the formula, when d=0 (the object does not move), then W=0 (no work done). While we have work done if the object is moving. In particular, we have two situations:

- The object moves in the same direction as the force: [tex]\theta=0^{\circ}[/tex], so [tex]cos \theta= 1[/tex] and the work done is positive

- The object moves in the opposite direction of the force: [tex]\theta=180^{\circ}[/tex], so [tex]cos \theta= -1[/tex] and the work done is negative

2. B) Ben has more power than Jerry.

Power is defined as:

[tex]P=\frac{W}{t}[/tex] (1)

where

W is the work done

t is the time taken

Work is the product of force and displacement. Since Ben and Jerry lift the same mass (250 kg), they apply the same force, and since they lift the barbell the same distance in air the same number of times (10), the displacement is also the same: so, they did the same work.

However, Ben did it in less time (5 s) then Jerry (25 s): looking at eq.(1), we see that less time means more power, so Ben has more power than Jerry.

3. C) UV light energy

The electromagnetic spectrum is the classification of all electromagnetic waves according to their different wavelength.

From shortest to longest wavelength, we have:

Gamma rays

X-rays

UV (ultraviolet)

Visible light

Infrared radiation

Microwaves

Radio waves

So, we see that UV light energy (ultraviolet radiation) is a type of electromagnetic waves.

4. C) If the balloon acquires charge, Sam's hair loses charge

The law of conservation of charge applied to this case states that the total charge on Sam hair and the balloon before must be equal to the total charge after: no charge can be created or destroyed in the process, but only moved from one object to the other.

In this example, Sam rubs the balloon on his head: electrons are transferred from Sam's hair to the balloon's surface. Therefore, we can say that the balloon has acquired negative charge, while Sam's hair has lost negative charge.

What controls the net direction of molecules?

Answers

Answer: Molecular diffusion

Molecular diffusion is the process of mass transfer as a result of a concentration difference in a mixture.

This process is related to the thermal movement of the particles and their velocity, which is a function of the temperature, the viscosity of the fluid and the size of the particles. This is how diffusion controls the net direction of the molecular flow from a region of higher concentration to one of lower concentration, as long as there is a difference (or gradient) of concentration.

A 282 kg bumper car moving 3.50 m/s collides with a 155 kg bumper car moving -1.38 m/s. Afterwards the 282 kg car moves at 1.10 m/s. Find the velocity of the 155 kg car afterwards?

Answers

Answer:

4.03 m/s

Explanation:

Initial momentum = final momentum

(282 kg) (3.50 m/s) + (155 kg) (-1.38 m/s) = (282 kg) (1.10 m/s) + (115 kg) v

v = 4.03 m/s

We use the conservation of momentum to find the velocity of the 155 kg bumper car after the collision. Substituting the given values, we solve to get the final velocity as 2.99 m/s. The final velocity of the 155 kg car is 2.99 m/s.

The question is about a collision between two bumper cars and finding the velocity after the collision. We can use the principle of conservation of momentum which states that the total momentum before the collision is equal to the total momentum after the collision.

Let's define the variables:

Mass of first car, m₁ = 282 kgInitial velocity of first car, u₁ = 3.50 m/sMass of second car, m₂ = 155 kgInitial velocity of second car, u₂ = -1.38 m/sFinal velocity of first car, v₁ = 1.10 m/sFinal velocity of second car, v₂ = ?

Using the conservation of momentum:

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

Substituting the given values into the equation:

(282 kg)(3.50 m/s) + (155 kg)(-1.38 m/s) = (282 kg)(1.10 m/s) + (155 kg)v₂

Simplifying:

987 kg·m/s - 213.9 kg·m/s = 310.2 kg·m/s + 155 kg·v₂

773.1 kg·m/s = 310.2 kg·m/s + 155 kg·v₂

Subtracting 310.2 kg·m/s from both sides:

462.9 kg·m/s = 155 kg·v₂

Solving for v₂:

v₂ = 462.9 kg·m/s / 155 kg = 2.99 m/s

Therefore, the final velocity of the 155 kg car after the collision is 2.99 m/s.

A 0.80-μm-diameter oil droplet is observed between two parallel electrodes spaced 11 mm apart. The droplet hangs motionless if the upper electrode is 17.8 V more positive than the lower electrode. The density of the oil is 885kg/m3. Part A What is the droplet's mass? Express your answer to two significant figures and include the appropriate units. m m = nothing nothing Request Answer Part B What is the droplet's charge? Express your answer to two significant figures and include the appropriate units. q q = nothing nothing Request Answer Part C Does the droplet have a surplus or a deficit of electrons? How many? Does the droplet have a surplus or a deficit of electrons? How many? deficit 9 electrons surplus 9 electrons surplus 16 electrons deficit 7 electrons

Answers

A) [tex]2.4\cdot 10^{-16}kg[/tex]

The radius of the oil droplet is half of its diameter:

[tex]r=\frac{d}{2}=\frac{0.80 \mu m}{2}=0.40 \mu m = 0.4\cdot 10^{-6}m[/tex]

Assuming the droplet is spherical, its volume is given by

[tex]V=\frac{4}{3}\pi r^3 = \frac{4}{3}\pi (0.4\cdot 10^{-6} m)^3=2.68\cdot 10^{-19} m^3[/tex]

The density of the droplet is

[tex]\rho=885 kg/m^3[/tex]

Therefore, the mass of the droplet is equal to the product between volume and density:

[tex]m=\rho V=(885 kg/m^3)(2.68\cdot 10^{-19} m^3)=2.4\cdot 10^{-16}kg[/tex]

B) [tex]1.5\cdot 10^{-18}C[/tex]

The potential difference across the electrodes is

[tex]V=17.8 V[/tex]

and the distance between the plates is

[tex]d=11 mm=0.011 m[/tex]

So the electric field between the electrodes is

[tex]E=\frac{V}{d}=\frac{17.8 V}{0.011 m}=1618.2 V/m[/tex]

The droplet hangs motionless between the electrodes if the electric force on it is equal to the weight of the droplet:

[tex]qE=mg[/tex]

So, from this equation, we can find the charge of the droplet:

[tex]q=\frac{mg}{E}=\frac{(2.4\cdot 10^{-16}kg)(9.81 m/s^2)}{1618.2 V/m}=1.5\cdot 10^{-18}C[/tex]

C) Surplus of 9 electrons

The droplet is hanging near the upper electrode, which is positive: since unlike charges attract each other, the droplet must be negatively charged. So the real charge on the droplet is

[tex]q=-1.5\cdot 10^{-18}C[/tex]

we can think this charge has made of N excess electrons, so the net charge is given by

[tex]q=Ne[/tex]

where

[tex]e=-1.6\cdot 10^{-19}C[/tex] is the charge of each electron

Re-arranging the equation for N, we find:

[tex]N=\frac{q}{e}=\frac{-1.5\cdot 10^{-18}C}{-1.6\cdot 10^{-19}C}=9.4 \sim 9[/tex]

so, a surplus of 9 electrons.

In 1909 Robert Millikan was the first to find the charge of an electron in his now-famous oil drop experiment. In the experiment tiny oil drops are sprayed into a uniform electric field between a horizontal pair of oppositely charged plates. The drops are observed with a magnifying eyepiece, and the electric field is adjusted so that the upward force q E on some negatively charged oil drops is just sufficient to balance the downward force m g of gravity. Millikan accurately measured the charges on many oil drops and found the values to be whole-number multiples of 1.6 × 10−19 C — the charge of the electron. For this he won the Nobel Prize. If a drop of mass 1.51837 × 10−12 kg remains stationary in an electric field of 1 × 106 N/C, what is the charge on this drop? The acceleration due to gravity is 9.8 m/s 2 . Answer in units of C.

Answers

Answer:

[tex]1.49\cdot 10^{-17}C[/tex]

Explanation:

The oil drop remains stationary when the electric force on it and the gravitational force are balanced, so we have:

[tex]F_E = F_G\\qE = mg[/tex]

where

q is the charge of the oil drop

E is the electric field strength

m is the mass of the drop

g is the acceleration due to gravity

here we have

[tex]E=1\cdot 10^6 N/C[/tex]

[tex]m=1.51837\cdot 10^{-12} kg[/tex]

[tex]g=9.8 m/s^2[/tex]

So the charge of the drop is

[tex]q=\frac{mg}{E}=\frac{(1.51837\cdot 10^{-12} kg)(9.8 m/s^2)}{1\cdot 10^6 N/C}=1.49\cdot 10^{-17}C[/tex]

Why does temperature decrease with increasing altitude in the troposphere

Answers

In the troposphere, the temperature generally decreases with altitude. The reason is that the troposphere's gases absorb very little of the incoming solar radiation. Instead, the ground absorbs this radiation and then heats the tropospheric air by conduction and convection.

Mark me brainliest please!!!!

A drunk guy walking on a narrow lane takes 8 steps forward and 6 steps backward and so on.
Each step is 1m long and he requires 1 second to travel. The time that the drunk guy takes to fall in a pit 18m away from the starting point is


a) 18s
b) 126s
c) 78s
d) 62s

Answers

Answer: 126 secs

Explanation: he gains 2 steps every time and it takes 9 2 steps to reach 18 meters so what u do is take that 9 and multiply it to 14 (8+6) giving u ur answer of 126 secs.

What is the energy of a photon that has the same wavelength as an electron having a kinetic energy of 15 ev?

Answers

Answer: [tex]6.268(10)^{-16}J[/tex]

The kinetic energy of an electron [tex]K_{e}[/tex] is given by the following equation:

[tex]K_{e}=\frac{(p_{e})^{2} }{2m_{e}}[/tex] (1)

Where:

[tex]K_{e}=15eV=2.403^{-18}J=2.403^{-18}\frac{kgm^{2}}{s^{2}}[/tex]

[tex]p_{e}[/tex] is the momentum of the electron

[tex]m_{e}=9.11(10)^{-31}kg[/tex] is the mass of the electron

From (1) we can find [tex]p_{e}[/tex]:

[tex]p_{e}=\sqrt{2K_{e}m_{e}}[/tex] (2)

[tex]p_{e}=\sqrt{2(2.403^{-18}J)(9.11(10)^{-31}kg)}[/tex]  

[tex]p_{e}=2.091(10)^{-24}\frac{kgm}{s}[/tex] (3)

Now, in order to find the wavelength of the electron [tex]\lambda_{e}[/tex] with this given kinetic energy (hence momentum), we will use the De Broglie wavelength equation:

[tex]\lambda_{e}=\frac{h}{p_{e}}[/tex] (4)  

Where:  

[tex]h=6.626(10)^{-34}J.s=6.626(10)^{-34}\frac{m^{2}kg}{s}[/tex] is the Planck constant  

So, we will use the value of [tex]p_{e}[/tex] found in (3) for equation (4):

[tex]\lambda_{e}=\frac{6.626(10)^{-34}J.s}{2.091(10)^{-24}\frac{kgm}{s}}[/tex]  

[tex]\lambda_{e}=3.168(10)^{-10}m[/tex] (5)  

We are told the wavelength of the photon [tex]\lambda_{p}[/tex] is the same as the wavelength of the electron:

[tex]\lambda_{e}=\lambda_{p}=3.168(10)^{-10}m[/tex] (6)  

Therefore we will use this wavelength to find the energy of the photon [tex]E_{p}[/tex] using the following equation:

[tex]E_{p}=\frac{hc}{lambda_{p}}[/tex] (7)  

Where [tex]c=3(10)^{8}m/s[/tex] is the speed of light in vacuum

[tex]E_{p}=\frac{(6.626(10)^{-34}J.s)(3(10)^{8}m/s)}{3.168(10)^{-10}m}[/tex]  

Finally:

[tex]E_{p}=6.268(10)^{-16}J[/tex]

The energy of a photon is about 6.3 × 10⁻¹⁶ Joule

[tex]\texttt{ }[/tex]

Further explanation

The term of package of electromagnetic wave radiation energy was first introduced by Max Planck. He termed it with photons with the magnitude is :

[tex]\large {\boxed {E = h \times f}}[/tex]

E = Energi of A Photon ( Joule )

h = Planck's Constant ( 6.63 × 10⁻³⁴ Js )

f = Frequency of Eletromagnetic Wave ( Hz )

[tex]\texttt{ }[/tex]

The photoelectric effect is an effect in which electrons are released from the metal surface when illuminated by electromagnetic waves with large enough of radiation energy.

[tex]\large {\boxed {E = \frac{1}{2}mv^2 + \Phi}}[/tex]

[tex]\large {\boxed {E = qV + \Phi}}[/tex]

E = Energi of A Photon ( Joule )

m = Mass of an Electron ( kg )

v = Electron Release Speed ( m/s )

Ф = Work Function of Metal ( Joule )

q = Charge of an Electron ( Coulomb )

V = Stopping Potential ( Volt )

Let us now tackle the problem !

[tex]\texttt{ }[/tex]

Given:

kinetic energy of an electron = Ek = 15 eV = 2.4 × 10⁻¹⁸ Joule

Asked:

energy of photon = E = ?

Solution:

Firstly , we will use the formula of kinetic energy:

[tex]Ek = \frac{1}{2}mv^2[/tex]

[tex]v^2 = \frac{2Ek}{m}[/tex]

[tex]v = \sqrt{ \frac{2Ek}{m}}[/tex]

[tex]\texttt{ }[/tex]

Next , we will use the formula of The Broglie's Wavelength:

[tex]\lambda = \frac{h}{mv}[/tex]

[tex]\lambda = \frac{h}{m\sqrt{2Ek/m}}[/tex]

[tex]\lambda = \frac{h}{\sqrt{2mEk}}[/tex]

[tex]\texttt{ }[/tex]

[tex]E = h f[/tex]

[tex]E = h \frac{c}{\lambda}[/tex]

[tex]E = h \frac{c}{\frac{h}{\sqrt{2mEk}}}[/tex]

[tex]E = c\sqrt{2mEk}[/tex]

[tex]E = 3 \times 10^8 (\sqrt{2(9.11 \times 10^{-31} \times 2.4 \times 10^{-18}}[/tex]

[tex]E \approx 6.3 \times 10^{-16} \texttt{ Joule}[/tex]

[tex]\texttt{ }[/tex]

Learn morePhotoelectric Effect : https://brainly.com/question/1408276Statements about the Photoelectric Effect : https://brainly.com/question/9260704Rutherford model and Photoelecric Effect : https://brainly.com/question/1458544

[tex]\texttt{ }[/tex]

Answer details

Grade: College

Subject: Physics

Chapter: Quantum Physics

[tex]\texttt{ }[/tex]

Keywords: Quantum , Physics , Photoelectric , Effect , Threshold , Wavelength , Stopping , Potential , Copper , Surface , Ultraviolet , Light

How many days does it take for mercury to orbit the sun

Answers

It takes approximately 88 Earth days for Mercury to orbit the sun.

Hope I helped, sorry if I'm wrong ouo.

~Potato

Copyright Potato 2019.

Answer:

87.96926 Days =88 days

Explanation:

Average speed 105,947 miles per hour.

What can one say about the image produced by a thin lens that produces a positive magnification?

Answers

Answer:

The image is virtual and upright

Explanation:

The magnification of a lens can be written as follows:

[tex]M=\frac{y'}{y}=-\frac{q}{p}[/tex]

where

y' is the size of the image

y is the size of the object

q is the location of the image with respect to the lens

p is the location of the object with respect to the lens

In this situation, the magnification is positive. This means that:

- y' (the image) has same sign as y (the object) --> the image is upright (same orientation as the object)

- q has opposite sign to p --> this means that the image is located on the same side as the object, so it is a virtual image

Place the tiles in the correct order to describe how a nuclear power plant generates power.


1). Radioactive decay produces heat. 2). Boiling water produces steam. 3). Steam spins turbines. 4). Electricity is generated.

Answers

Answer:

The order is:

Radioactive decay produces heat.

Boiling water produces steam.

Steam spins turbines.

Electricity is generated.

Explanation:

Final answer:

A nuclear power plant uses heat from nuclear reactions to create steam from water. This steam spins turbines, which generate electricity.

Explanation:

A nuclear power plant produces electricity using the heat generated by the nuclear reactions or radioactive decay within the reactor. The heat generated through this process is used to heat water, forming steam. Following this, in order:

Radioactive decay in the reactor produces intense heat.This heat is used to boil water, converting it into steam.The high-pressure steam is directed at turbines, causing them to spin.This mechanical energy from the spinning turbines is converted into electrical energy or electricity.

Learn more about Nuclear Power Production here:

https://brainly.com/question/34702905

#SPJ2

What causes charges to move in a circuit?

Answers

Final answer:

Charges move in a circuit due to the presence of an electrical field created by a voltage difference. The electrical field exerts forces on charged particles, causing them to accelerate and move through the circuit.

Explanation:

Circuit charges refer to the movement of electric charge (usually electrons) through an electrical circuit. In a closed circuit, charges flow due to voltage (potential difference), creating an electric current. This flow of charges powers electrical devices and is described by Ohm's law, which relates current, voltage, and resistance in the circuit.

Charges move in a circuit due to the presence of an electrical field created by a voltage difference. The electrical field exerts forces on charged particles, causing them to accelerate and move through the circuit. As charges move, they lose potential energy and gain kinetic energy, traveling from an area of higher potential to an area of lower potential.

Learn more about circuit charges here:

https://brainly.com/question/33472152

#SPJ6

Final answer:

Charges move in a circuit primarily due to the electrical field created by a voltage difference. The electrical field forces the charges, often free electrons, to accelerate, creating an electrical current and eventually reaching a constant 'drift velocity'. The presence and strength of a magnetic field can also affect the flow of charges.

Explanation:

In a circuit, charges move due to an electrical field created by a voltage difference, such as a battery. This voltage difference exerts forces on the free electrons, causing them to accelerate and thus creating an electrical current. The exact rate at which these charges flow, meaning the amount of charge per unit of time, is influenced by factors such as the voltage applied, the state and type of the material (conductor or insulator), and the strength of the electrical field.

In the case of a conducting material, which is often the type of material used in circuits, the electrical field forces charge to flow and lose kinetic energy in the process until it reaches a constant velocity, known as the 'drift velocity'. This is essentially an equilibrium state where charges are constantly moving due to the force provided by the electrical field, but their speed or kinetic energy does not increase due to interactions with atoms and free electrons, similar to an object falling and reaching its terminal velocity.

It's also important to acknowledge here the role of a magnetic field, which can also impact the movement of charges in a conductor, causing a change in the direction of the electron flow, and hence, influencing the current within the circuit.

Learn more about the Movement of Charges in a Circuit here:

https://brainly.com/question/933663

#SPJ6

Please help on this one?

Answers

Answer: d

Explanation:

Scientists have recently discovered one the smallest stars on record. How long will this star last
compared to a larger star formed at the same time?
O A. The smaller star will last longer than the larger star because it has a smaller chance of getting hit by an
asteroid
O B. The smaller star will last longer than the larger star because it burns less fuel.
O C. The larger star will last longer than the smaller star because it uses fuel more efficiently.
O D. The larger star will last longer than the smaller star because it attracts more nebulae

Answers

Answer:

The correct answer is B.

Explanation:

Stars start their lives being dense clouds of gas and dust. After a star is formed, it begins to burn hydrogen and transform it into helium. Once the hydrogen is depleted, new stages of nuclear combustion begin, such as burning helium to obtain heavier elements. This stage is shorter in larger stars since the greater the mass of a star, the greater the temperature in its nucleus and the greater the rate of fusion of hydrogen into helium, with which the fuel is depleted more quickly.

Have a nice day!

Scientists have recently discovered one the smallest stars on record. How long will this star last compared to a larger star formed at the same time is  B. The smaller star will last longer than the larger star because it burns less fuel.

What is the stars

The length of time a star can live is mainly decided by how much mass it has. Smaller stars weigh less and therefore use up their fuel more slowly than bigger stars. This means that smaller stars can live longer because they use fuel at a slower rate.

The amount of fuel,  usually hydrogen, in a star determines how long it can keep producing energy through nuclear fusion. Smaller stars have cooler centers and lower pressure, so they can burn fuel more slowly and efficiently. As a result, they can live much longer than bigger stars.

Read more about  stars  here:

https://brainly.com/question/17118815

#SPJ6

When the core of a star like the Sun uses up its supply of hydrogen for fusion, the core begins to ________.

Answers

Answer:

Shrink and heat

Explanation:

Hope my answer has helped you!

Answer:

Shrink and heat up

Explanation:

When the core of a star like the Sun uses up its supply of hydrogen for fusion, the core begins to contract or shrink up which leads to release of energy from the core.

The released energy starts to heat up core until it has gotten to the point where the core is hot enough to able start up the fusion of hydrogen into another element (helium).

The layers on the outside of the sun absorbs the released the energy and starts to enlarge or swell up and the sun develops a very high luminosity which means it start to shine brighter and brighter.

As the outside large swells up, due to the absorption of the released energy, it start to become cool thereby causing a low surface temperature.

It is at the stage that the sun becomes a red giant.

Which statement is true?Which statement is true? Gas atoms subjected to electricity emit bright lines. Gas atoms absorb white light and emit a continuous spectrum of light. Gas atoms under high pressure emit dark lines against a continuous spectrum. Gas atoms heated to a high temperature emit white light. Gas atoms subjected to electricity do not emit a spectrum.

Answers

Answer:

Gas atoms subjected to electricity emit bright lines.

Explanation:

Gas atoms subject to electricity emit bright lines. This can be seen in fluorescent lamps, for example.

Fluorescent lamps work by ionizing atoms of argon gas and mercury vapor. After receiving an electric current, ionization occurs, at that moment the atoms are accelerated by the potential difference established between the lamp terminals and emit bright light and electromagnetic waves when they return to the natural state.

Answer:

A. Gas atoms subjected to electricity emit bright lines.

Explanation:

When an atom gains an electron it becomes

Answers

Answer:

it will become a negatively charged ion

Explanation:

By what factor does the peak frequency change if the celsius temperature of an object is doubled from 20.0 ∘c to 40.0 ∘c?

Answers

Answer:

it increases by a factor 1.07

Explanation:

The peak wavelength of an object is given by Wien's displacement law:

[tex]\lambda=\frac{b}{T}[/tex] (1)

where

b is the Wien's displacement constant

T is the temperature (in Kelvins) of the object

given the relationship between frequency and wavelength of an electromagnetic wave:

[tex]f=\frac{c}{\lambda}[/tex]

where c is the speed of light, we can rewrite (1) as

[tex]\frac{c}{f}=\frac{b}{T}\\f=\frac{Tc}{b}[/tex]

So the peak frequency is directly proportional to the temperature in Kelvin.

In this problem, the temperature of the object changes from

[tex]T_1 = 20.0^{\circ}+273=293 K[/tex]

to

[tex]T_2 = 40.0^{\circ}+273 = 313 K[/tex]

so the peak frequency changes by a factor

[tex]\frac{f_2}{f_1} \propto \frac{T_2}{T_1}=\frac{313 K}{293 K}=1.07[/tex]

Other Questions
In gel electrophoresis DNA molecules migrate from _____ to _____ ends of the gel.a, acidic ... basicb, negative ... positivec, basic ... acidicd, long ... shorte, positive ... negative Which detail from Gilgamesh a new English version best illustrates a courageous hero?? A rock has a mass of 127 grams and displaces 32.1 mL of water. what is the density of the rock? Chemistry help please Please help ASAPIn the number 8,888.888, how does the value of the 8 in the ones place compare to the value of the 8 in the place to its left? A. The 8 in the ones place represents of what the 8 to its left represents. B. The 8 in the ones place represents 10 times what the 8 to its left represents. C. The 8 in the ones place represents of what the 8 to its left represents. D. The 8 in the ones place represents 100 times what the 8 to its left represents. A high school student is stopped for speeding. The police officer sees a stolen stop sign in the back seat, and arrest the driver for possession of stolen goods. Decide whether or not a judge would allow this evidence, which was obtained without a search warrant, to be used against the student. Explain your answer Melissa is a set designer. She is working on a theater production along with a lighting manager, James. For a particular scene, James suggests that they should use a red-tinted light whenever the actor playing the villain appears. What is the effect that James is hoping to achieve? A. The audience will associate the red tint with the other actors feeling afraid. B. The audience will associate the red tint with an evil character. C. The audience will associate the red tint with the beginning of the scene. D. The audience will associate the red tint with the end of the scene. for 6 days in a row, alyssa recorded the total amount of rain [Trigonometric Graphs]Use the following information to write an equation of the graph described:10. sin; Amp = 4, per = 2/3; phase shift = right /4; vertical shift = up 3; reflect over x-axis.12. cos; Amp = 2, period of 10/3, reflect over x-axis.Explain. You have a solution of sugar in water.You want to obtain the sugar from it.A:explain why filtration will not work ,b:which method will you use instead? I couldn't understand this algorithm. Please help me to do this. What is 1.16, 1 1/4, 1.37, and 1 1/10 from greatest to least? How do heroes resolve conflicts in Beowulf?Question 15 options:They sue each other in courtThey get a mediatorThe seek counselingThey get even or take revenge Which word could replace the words in bold?Because the staple gun is broken, we must attach each shingle by hand.(3 points)ManageMannerlyManuallyManuever Which of the following statements regarding the moon and Earth is correct? A. Earth and the moon are nearly the same age. B. Earth is tidally locked, while the moon spins on its axis. C. The moon is older than Earth by approximately 300 million years. D. Earth and the moon have nearly the same mass. What, if anything is wrong with the model of the solar system shown below ? Give me a big or small answer If angle g measures 117, what is the measure of angle h? Decide whether the sentence is grammatically CORRECT or INCORRECT as written.A m me gusta beber mis caf por la maana.correctincorrect Which president was called the father of constitution Read the excerpt from a speech by Ronald Reagan in 1983.The defense policy of the United States is based on a simple premise: The United States does not start fights. We will never be an aggressor. We maintain our strength in order to deter and defend against aggression to preserve freedom and peace.Which best summarizes the meaning of Reagans words?The United States is strong and will defend any nation facing communist aggression.The Soviet Union should be careful because the United States could invade at any time.The United States will never fight in a war again and only seeks world peace.The Soviet Union should withdraw from Eastern Europe so that its nations can live in freedom. Some students performed a titration between 20.0 mL of 0.5 M hydrochloric acid and 1.0 M potassium hydroxide solution. The students collected data and plotted the graph below. Which statement correctly explains the reaction at point D?OPTION A) All hydroxide ions have reacted. There is no excess of hydroxide ions at this point. OPTION B) The volume of base that has been added is equal to the volume of acid in the flask; this helps in balancing the ions present, making the pH of the solution neutral.OPTION C) All hydrogen ions and all hydroxide ions have reacted to produce water, and so neither ion remains free in solution. OPTION D) There are extra hydrogen ions in solution. As the base is added, the pH increases exponentially.