Answer:
the other zero is represented by the ordered pair (4, 0)
Step-by-step explanation:
We have the factored expression
[tex]x (x-4)[/tex]
We must find out for what values of x this function is equal to zero.
Then we equal the function to zero and solve for the variable x
[tex]x (x-4)=0[/tex]
The function is equal to zero when one of the two terms of the product is equal to zero.
So
[tex]x =0[/tex] We already know that this is a solution
or
[tex]x-4=0\\x =4[/tex]
Then the other zero is represented by the ordered pair (4, 0)
What is A=s^2 if s is 6?
Answer:
A=36
Step-by-step explanation:
A=s^2
A=6^2
A=36
Answer:
36
Step-by-step explanation:
Formula ⇒ A = s²
We know that s = 6, so we substitute into A = s²
A = s²
A = 6²
A = 36
Ohm's Law is given by the equation V = IR where V is voltage in watts, I is current in amperes, and R is resistance in Ohms.
A lamp needs 0.5 amperes.
Which equation can be used to determine the voltage for a given amount of resistance?
V=0.5R
V=R0.5
V = 0.5R
V = 2R
You start with the equation V = IR, plug the value 0.5 for I and you have
V = 0.5*R
So, the first three options are equivalent and correct.
V=IR
And current, Ampere is given as 0.5 so substituting it back in the main equation gives V = 0.5R
Help solve please show steps
Here you don’t need to solve the equation,the value of the problem is zero
For both methods I will use the quadratic formula. Look at the image below
Hope this helped!
Find the length and width
A= 20 cm2
P= 18cm
Answer:
The length is 5 cm and the width is 4 cm
Step-by-step explanation:
I assume that is a rectangle
Let
x----> the length of rectangle
y ---> the width of rectangle
we know that
The area of rectangle is
A=xy
A=20 cm²
so
20=xy -----> equation A
The perimeter of rectangle is
P=2(x+y)
P=18 cm
so
18=2(x+y)
9=x+y -----> y=9-x ----> equation B
Substitute equation B in equation A and solve for x
20=x(9-x)
20=9x-x²
x²-9x+20=0
Solve the quadratic equation by graphing
The solution is x=5 cm (I assume that the length is greater than the width)
see the attached figure
Find the value of y
y=9-5=4 cm
therefore
The length is 5 cm
The width is 4 cm
What is the slope?
(1,4) (3,2)
For this case we have that by definition, the slope of a line is given by:
[tex]m = \frac {y_ {2} -y_ {1}} {x_ {2} -x_ {1}}[/tex]
We need two points through which the line passes.
[tex](x_ {1}, y_ {1}) :( 1,4)\\(x_ {2}, y_ {2}) :( 3,2)[/tex]
Substituting:
[tex]m = \frac {2-4} {3-1} = \frac {-2} {2} = - 1[/tex]
Answer:
[tex]m = -1[/tex]
plz help me i need lots of help thx if you do and god bless
Answer:
1st pic: 4
2nd pic: 70
3rd pic: 5
Step-by-step explanation:
Jordan spent a total of 14.85 on a trip to the zoo 2.85 on snacks and the rest on bus fares. How much did she spend on the bus fares to and from the zoo
Final answer:
Jordan spent $14.85 in total, of which $2.85 was spent on snacks. After subtracting the cost of snacks, it's found that she spent $12.00 on bus fares.
Explanation:
The student asked how much Jordan spent on bus fares to and from the zoo if she spent a total of $14.85, including $2.85 on snacks. To find out the amount spent on bus fares, one needs to subtract the cost of the snacks from the total amount spent. Therefore, the calculation would be $14.85 (total spent) - $2.85 (snacks) = $12.00.
Hence, Jordan spent $12.00 on bus fares.
What are expressions equivalent to 12X+36Y?
To express 12X+36Y in different terms, we can use other variables or coefficients while maintaining the same relationship between X and Y. Two equivalent expressions are 4A+12B and 6C+18D.
To express the expression 12X+36Y in terms of equivalent mathematical expressions using different variables or coefficients, we can use any other variables or coefficients as long as they maintain the same relationship between X and Y. Here are two distinct expressions:
4A + 12B, where A is equivalent to X and B is equivalent to Y.6C + 18D, where C is equivalent to X/2 and D is equivalent to Y/2.For more such questions on equivalent expressions, click on:
https://brainly.com/question/32827451
#SPJ2
The probable question may be:
Express the expression 12X+36Y in terms of equivalent mathematical expressions using different variables or coefficients. Provide at least two distinct expressions that are equivalent to 12X+36Y.
Help ITS DUE Tomorrow!!!!!!!!
Answer:
C 18%
Step-by-step explanation:
To find the percent increase ,take the new amount and subtract the old amount
12.39 - 10.50 = 1.89
Divide this by the original amount
1.89/10.50 = .18
Multiply this by 100 to get the percent
.18*100% = 18%
what are the roots of the equation? 3x^2+15x=0
The solution of quadratic equation [tex]3x^2 + 15x=0[/tex] is x =0 or -5.
Given Equation: [tex]3x^2 + 15x=0[/tex]
Now, factories each term as
3x² = 3 × x × x
15x = 3 × 5 × x
Now, taking the common term 3x as
[tex]3x^2 + 15x=0[/tex]
3 × x × x+ 3 × 5 × x =0
3x (x + 5)= 0
Now, equate each factor to 0 as
3x =0
x= 0/3
x= 0
or, x + 5= 0
x = -5
Thus, the value of x is -5 or 0.
Learn more about Quadratic Equation here:
https://brainly.com/question/506567
#SPJ6
Help solve 87 please
Answer:
The inequality is y > 1/2 x - 2
Step-by-step explanation:
* To solve this problem we must to know how to make an equation
of the line from two point
- If the line passes through points (x1 , y1) and (x2 , y2)
- The form of the equation is y = mx + c, where m is the slope of the
line and c is the y-intercept
- The rule of the slope is m = (y2 - y1)/(x2 - x1)
- The y-intercept means the line intersect the y-axis at point (0 ,c)
* Now lets solve the problem
- To write the inequality we must to make the equation of the line
from any two points on it
∵ The line passes through points (4 , 0) and (0 , -2)
- Let (4 , 0) is (x1 , y1) and (0 , -2) is (x2 , y2)
∵ m = (y2 - y1)/(x2 - x1)
∴ m = (-2 - 0)/(0 - 4)
∴ m = (-2)/-4 = 1/2
- Lets write the form of the equation
∵ y = mx + c ⇒ substitute the value of m
∴ y = 1/2 x + c
- The line intersects the y-axis at point (0 , -2)
∴ c = -2
∴ y = 1/2 x + -2
∴ y = 1/2 x - 2
- lets look to the line if it is dashed line then there is no equal with the
inequality (> , <) sign, if it is solid line then there is equal with the
inequality sign (≥ , ≤)
∵ The line is dashed line
∴ The sign of inequality is > or <
- Lets look to the shaded part, if it is over the line then the inequality
will be y > 1/2 x - 2, if it is under the line then the inequality will
be y < 1/2 x - 2
∵ The shaded part is over the line
∴ y > 1/2 x - 2
* The inequality is y > 1/2 x - 2
Find the price of an MP3 player that costs 129.50 with a markdown of 60%?
Answer:
323.75
Step-by-step explanation:
129.50=40% because it is the selling price not the marked price
if,129.50=40 what about 100
129.50×100/40
To calculate the discounted price of the MP3 player after a 60% markdown, multiply the original price of $129.50 by 60% to find the markdown amount of $77.70, then subtract it from the original price to get the final price of $51.80.
Explanation:To find the price of an MP3 player with a markdown of 60%, you can perform the following calculations:
First, calculate the amount of the markdown by multiplying the original price by the markdown percentage.Then, subtract the markdown amount from the original price to get the discounted price.The original price of the MP3 player is $129.50 and the markdown is 60%. We calculate 60% of $129.50 which is 0.60 × 129.50 = $77.70. Next, we subtract this markdown from the original price: 129.50 - 77.70 = $51.80.
Therefore, the discounted price of the MP3 player is $51.80.
Learn more about Markdown here:https://brainly.com/question/10617627
#SPJ2
Explain how to write the rational number 3.21 in the form a/b.
Answer:
3 21/100
just a fraction.
Look at the following sequence. 21, 42, 126, 504, If it is geometric sequence, choose the common ratio. If it is not geometric sequence, choose “ not geometric “
Answer:
not geometric
Step-by-step explanation:
If the sequence is geometric then the common ratio r between consecutive terms should be equal
[tex]\frac{42}{21}[/tex] = 2
[tex]\frac{126}{42}[/tex] = 3
[tex]\frac{504}{126}[/tex] = 4
There is no common ratio between consecutive terms
Hence the sequence is not geometric
A triangle has a perimeter of 56 cm. Each of the two longer sides of the triangle is three times as long as the shortest side. What is the length of each side of the triangle?
The lenght of each side is 24cm, 24cm, and 8cm.
In order to solve this problem, we know that the perimeter of a triangle equation is P = a + b + c, where a, b, and c are the sides of the triangle.
The perimeter is 56cm, we can write the equation as follow:
a + b + c = 56cm (1)
If each of the two longer sides of the triangles is three times as long as the shortest side, we can assume:
c = shortest side = x
a = b = longer sides = 3x
Substituting the values in the equation (1):
3x + 3x + x = 56cm
7x = 56cm
x = 56cm/7 = 8cm
c = shortest side = 8cm
a = b = longer sides = 3(8cm) = 24cm
The length of a room is 22feet by 12 feet. What is the ratio of the length of the room to its area ?
The ratio of the room's length to its area is 1:12, derived from length (22 feet) divided by area (264 square feet).
let's break it down step by step.
Step 1: Calculate the area of the room.
To find the area of a rectangle, you multiply its length by its width.
So, Area = Length × Width
Area = 22 feet × 12 feet
Area = 264 square feet
Step 2: Calculate the ratio of the length of the room to its area.
The ratio of length to area is:
[tex]\[ \text{Ratio} = \frac{\text{Length}}{\text{Area}} \][/tex]
Substituting the values:
[tex]\[ \text{Ratio} = \frac{22 \, \text{feet}}{264 \, \text{square feet}} \][/tex]
Step 3: Simplify the ratio.
[tex]\[ \text{Ratio} = \frac{22}{264} \][/tex]
Step 4: Simplify the fraction.
[tex]\[ \text{Ratio} = \frac{1}{12} \][/tex]
So, the ratio of the length of the room to its area is [tex]\( \frac{1}{12} \)[/tex].
Miles plans on leasing a new car and has been researching options from different dealerships. For the particular model he wants, Miles compiled the information from two dealerships in the table below.
Dealerships\ Downpayment \monthly lease rate
Cool cars/ 1,999. $ 179
Awesome autos/ $ 0/ $249
Create a system of linear equations that describes the total amount, y, paid towards the lease after x months. Write the slope-intercept form of the equation for cool cars followed by the slope-intercept form of the equation for awesome autos. Do not include dollar signs in the equations.
Answer:
y = 179x +1999
y = 249x
Step-by-step explanation:
Given:
down payment of cool cars= $1999
monthly lease rate of cool cars= $179
down payment of awesome autos= $0
monthly lease rate of awesome autos= $249
Number of months=x
total amount paid towards the lease after x months=y
Now creating a system of linear equations that describes the total amount, y, paid towards the lease after x months:
the slope intercept form of any linear function is given as y=mx +b
where m= slope of function and b=y-intercept
In given case, slope m gives the monthly lease rate and y-intercept b gives the down payment.
So the equations for the two linear functions will be:
cool cars:
Putting the values of m=179 and b=1999, we get
y = 179x +1999
awesome autos:
Putting the values of m=249 and b=0, we get
y = 249x !
Estimate 5,403 divided by 94
Answer:
60
Step-by-step explanation:
Answer:
About 57.48
Step-by-step explanation:
A car goes 15 miles on a gallon of gas when it is driven at 50 miles per hour. When the car is driven at 60 miles per hour it only goes 80% as far. How many gallons of gas will it take to travel 120 miles driving at 60 miles per hour?
Answer:
2 gallons per mile
Luz’ family went out to breakfast on Saturday. The bill was $38.50 and the family wanted to leave a 20 percent tip for the server. Below is Luz’s calculation.
$38.50(0.02) = $0.77
Did Luz calculate the gratuity correctly?
A) No, she should have multiplied by 2.
B) No, she should have multiplied by 0.2.
C) No, she should have divided by 2.
D) Yes, the tip is correct.
No. It would be B because she multiplied by 0.02 which is 1 percent and the tip is 20 percent. 0.2 is 20 percent, so it is B
Answer:
Step-by-step explanation:
38.50 x 20%
38.50 x 0.20= 7.70
Answer: 7.70
HELP NEEDED. 37 POINTS
I just need the answers
Answer:
Part 1) [tex]P=[2\sqrt{29}+\sqrt{18}]\ units[/tex] or [tex]P=15.01\ units[/tex]
Part 2) [tex]P=2[\sqrt{20}+\sqrt{45}]\ units[/tex] or [tex]P=22.36\ units[/tex]
Part 3) [tex]P=4[\sqrt{13}]\ units[/tex] or [tex]P=14.42\ units[/tex]
Part 4) [tex]P=[19+\sqrt{17}]\ units[/tex] or [tex]P=23.12\ units[/tex]
Part 5) [tex]P=2[\sqrt{17}+\sqrt{68}]\ units[/tex] or [tex]P=24.74\ units[/tex]
Part 6) [tex]A=36\ units^{2}[/tex]
Part 7) [tex]A=20\ units^{2}[/tex]
Part 8) [tex]A=16\ units^{2}[/tex]
Part 9) [tex]A=10.5\ units^{2}[/tex]
Part 10) [tex]A=6.05\ units^{2}[/tex]
Step-by-step explanation:
we know that
The formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
Part 1) we have the triangle ABC
[tex]A(0,3),B(5,1),C(2,-2)[/tex]
step 1
Find the distance AB
[tex]A(0,3),B(5,1)[/tex]
substitute in the formula
[tex]AB=\sqrt{(1-3)^{2}+(5-0)^{2}}[/tex]
[tex]AB=\sqrt{(-2)^{2}+(5)^{2}}[/tex]
[tex]AB=\sqrt{29}\ units[/tex]
step 2
Find the distance BC
[tex]B(5,1),C(2,-2)[/tex]
substitute in the formula
[tex]BC=\sqrt{(-2-1)^{2}+(2-5)^{2}}[/tex]
[tex]BC=\sqrt{(-3)^{2}+(-3)^{2}}[/tex]
[tex]BC=\sqrt{18}\ units[/tex]
step 3
Find the distance AC
[tex]A(0,3),C(2,-2)[/tex]
substitute in the formula
[tex]AC=\sqrt{(-2-3)^{2}+(2-0)^{2}}[/tex]
[tex]AC=\sqrt{(-5)^{2}+(2)^{2}}[/tex]
[tex]AC=\sqrt{29}\ units[/tex]
step 4
Find the perimeter
The perimeter is equal to
[tex]P=AB+BC+AC[/tex]
substitute
[tex]P=[\sqrt{29}+\sqrt{18}+\sqrt{29}]\ units[/tex]
[tex]P=[2\sqrt{29}+\sqrt{18}]\ units[/tex]
or
[tex]P=15.01\ units[/tex]
Part 2) we have the rectangle ABCD
[tex]A(-4,-4),B(-2,0),C(4,-3),D(2,-7)[/tex]
Remember that in a rectangle opposite sides are congruent
step 1
Find the distance AB
[tex]A(-4,-4),B(-2,0)[/tex]
substitute in the formula
[tex]AB=\sqrt{(0+4)^{2}+(-2+4)^{2}}[/tex]
[tex]AB=\sqrt{(4)^{2}+(2)^{2}}[/tex]
[tex]AB=\sqrt{20}\ units[/tex]
step 2
Find the distance BC
[tex]B(-2,0),C(4,-3)[/tex]
substitute in the formula
[tex]BC=\sqrt{(-3-0)^{2}+(4+2)^{2}}[/tex]
[tex]BC=\sqrt{(-3)^{2}+(6)^{2}}[/tex]
[tex]BC=\sqrt{45}\ units[/tex]
step 3
Find the perimeter
The perimeter is equal to
[tex]P=2[AB+BC][/tex]
substitute
[tex]P=2[\sqrt{20}+\sqrt{45}]\ units[/tex]
or
[tex]P=22.36\ units[/tex]
Part 3) we have the rhombus ABCD
[tex]A(-3,3),B(0,5),C(3,3),D(0,1)[/tex]
Remember that in a rhombus all sides are congruent
step 1
Find the distance AB
[tex]A(-3,3),B(0,5)[/tex]
substitute in the formula
[tex]AB=\sqrt{(5-3)^{2}+(0+3)^{2}}[/tex]
[tex]AB=\sqrt{(2)^{2}+(3)^{2}}[/tex]
[tex]AB=\sqrt{13}\ units[/tex]
step 2
Find the perimeter
The perimeter is equal to
[tex]P=4[AB][/tex]
substitute
[tex]P=4[\sqrt{13}]\ units[/tex]
or
[tex]P=14.42\ units[/tex]
Part 4) we have the quadrilateral ABCD
[tex]A(-2,-3),B(1,1),C(7,1),D(6,-3)[/tex]
step 1
Find the distance AB
[tex]A(-2,-3),B(1,1)[/tex]
substitute in the formula
[tex]AB=\sqrt{(1+3)^{2}+(1+2)^{2}}[/tex]
[tex]AB=\sqrt{(4)^{2}+(3)^{2}}[/tex]
[tex]AB=5\ units[/tex]
step 2
Find the distance BC
[tex]B(1,1),C(7,1)[/tex]
substitute in the formula
[tex]BC=\sqrt{(1-1)^{2}+(7-1)^{2}}[/tex]
[tex]BC=\sqrt{(0)^{2}+(6)^{2}}[/tex]
[tex]BC=6\ units[/tex]
step 3
Find the distance CD
[tex]C(7,1),D(6,-3)[/tex]
substitute in the formula
[tex]CD=\sqrt{(-3-1)^{2}+(6-7)^{2}}[/tex]
[tex]CD=\sqrt{(-4)^{2}+(-1)^{2}}[/tex]
[tex]CD=\sqrt{17}\ units[/tex]
step 4
Find the distance AD
[tex]A(-2,-3),D(6,-3)[/tex]
substitute in the formula
[tex]AD=\sqrt{(-3+3)^{2}+(6+2)^{2}}[/tex]
[tex]AD=\sqrt{(0)^{2}+(8)^{2}}[/tex]
[tex]AD=8\ units[/tex]
step 5
Find the perimeter
The perimeter is equal to
[tex]P=AB+BC+CD+AD[/tex]
substitute
[tex]P=[5+6+\sqrt{17}+8]\ units[/tex]
[tex]P=[19+\sqrt{17}]\ units[/tex]
or
[tex]P=23.12\ units[/tex]
Part 5) we have the quadrilateral ABCD
[tex]A(-1,5),B(3,6),C(5,-2),D(1,-3)[/tex]
step 1
Find the distance AB
[tex]A(-1,5),B(3,6)[/tex]
substitute in the formula
[tex]AB=\sqrt{(6-5)^{2}+(3+1)^{2}}[/tex]
[tex]AB=\sqrt{(1)^{2}+(4)^{2}}[/tex]
[tex]AB=\sqrt{17}\ units[/tex]
step 2
Find the distance BC
[tex]B(3,6),C(5,-2)[/tex]
substitute in the formula
[tex]BC=\sqrt{(-2-6)^{2}+(5-3)^{2}}[/tex]
[tex]BC=\sqrt{(-8)^{2}+(2)^{2}}[/tex]
[tex]BC=\sqrt{68}\ units[/tex]
step 3
Find the distance CD
[tex]C(5,-2),D(1,-3)[/tex]
substitute in the formula
[tex]CD=\sqrt{(-3+2)^{2}+(1-5)^{2}}[/tex]
[tex]CD=\sqrt{(-1)^{2}+(-4)^{2}}[/tex]
[tex]CD=\sqrt{17}\ units[/tex]
step 4
Find the distance AD
[tex]A(-1,5),D(1,-3)[/tex]
substitute in the formula
[tex]AD=\sqrt{(-3-5)^{2}+(1+1)^{2}}[/tex]
[tex]AD=\sqrt{(-8)^{2}+(2)^{2}}[/tex]
[tex]AD=\sqrt{68}\ units[/tex]
step 5
Find the perimeter
The perimeter is equal to
[tex]P=\sqrt{17}+\sqrt{68}+\sqrt{17}+\sqrt{68}[/tex]
substitute
[tex]P=2[\sqrt{17}+\sqrt{68}]\ units[/tex]
or
[tex]P=24.74\ units[/tex]
The complete answer in the attached fileAnswer:
need points
Step-by-step explanation:
Use the Factor Theorem to determine whether the first polynomial is a factor of the second polynomial.
x - 3; 2x^2 - 4x + 30
Answer:
Not a factor
Step-by-step explanation:
If (x - 3) is a factor then f(3) = 0
f(x) = x² - 4x + 30
f(3) = 2(3)² - 4(3) + 30 = 18 - 12 + 30 = 36 ≠ 0
Since f(3) ≠ 0 then (x - 3) is not a factor of f(x)
( x - 3 ) is not a factor of the polynomial 2x² - 4x + 30
What is Factor Theorem?
The Factor Theorem states that if f(x) is a polynomial of degree n greater than or equal to 1, and 'a' is any real number, then ( x - a ) is a factor of f ( x ) if f ( a ) = 0
Given data ,
f ( x ) = 2x² - 4x + 30
If ( x - 3 ) is a factor of f ( x ) , then by factor theorem f ( x ) = f ( 3 ) = 0
And , f ( 3 ) = 2 x 3 x 3 - 4 x 3 + 30
= 18 - 12 + 30
= 36
Therefore , f ( 3 ) ≠ 0 , so ( x - 3 ) is not a factor of 2x² - 4x + 30
Hence , ( x - 3 ) is not a factor of the polynomial 2x² - 4x + 30
To learn more about Factor Theorem click :
https://brainly.com/question/11378552
#SPJ2
A.
x f(x)
0 1
2 3
3 4
4 5
5 6
6 7
B.
x f(x)
-3 9
-2 4
-1 1
0 0
1 1
2 4
C.
x f(x)
0 3
2 3
3 3
4 3
5 3
6 3
D.
x f(x)
0 -1
2 3
0 4
2 5
0 6
2 7
Which table does NOT represent a function?
A)
B)
C)
D)
Answer:
D)Step-by-step explanation:
A function is a relation that associates each element x of a set X, to a single element y of another set Y.
In D) for x = 0 we have three values of y = f(x): -1, 4 and 6.
Therefore this table does not represent a function.
Answer:
for the first graph it is
a=1
b= 1/16
c=1/256
for the second graph it is
d=1
e=4/9
f=16/81
what is the volume of a right cone having a base diameter of 10 cm and a height of 9 cm?
Answer:
volume = (1/3)(area of base)(height)
area of base = pi * radius2 = pi * (10/2)2 = pi * 52 = 25pi cm2
volume = (1/3)( 25pi )( 9 ) cm3
volume = 75pi cm3
volume ≈ 236 cm3
plz give me brainliest :)) !!!!ANSWER
[tex]Volume = 235.6 {cm}^{3} [/tex]
EXPLANATION
The volume of a cone is calculated the using the formula:
[tex]Volume = \frac{1}{3} \pi {r}^{2} h[/tex]
From the given information the height of the cylinder is, h=9cm.
The diameter of the base is 10cm.
The radius is half of the diameter of the base, r=5cm.
We plug in the values into the formula to get:
[tex]Volume = \frac{1}{3} \times \pi \times {5}^{2} \times 9[/tex]
[tex]Volume = 75\pi {cm}^{3} [/tex]
[tex]Volume = 235.6 {cm}^{3} [/tex]
If the modulus is 4 and the real part is 2.0, what is the imaginary part?
ANSWER
[tex]2 \sqrt{3} i[/tex]
EXPLANATION
We we're given that, the real part of the complex number is 2.
Let the imaginary part be y.
Then the complex number is
[tex]z = 2 + yi[/tex]
Also, we have that, the modulus is 4.
The modulus is given by the formula;
[tex] |z| = \sqrt{ {x}^{2} + {y}^{2} } [/tex]
This implies that,
[tex] 4 = \sqrt{ {2}^{2} + {y}^{2} } [/tex]
We square both sides to obtain;
[tex] {4}^{2} = 4 + {y}^{2} [/tex]
[tex]16 - 4 = {y}^{2} [/tex]
[tex] {y}^{2} = 12[/tex]
[tex]y = \sqrt{12} = 2 \sqrt{3} [/tex]
Therefore the complex part is
[tex]2 \sqrt{3} i[/tex]
Answer:
3.4
Step-by-step explanation:
i just did it
Would appreciate the help
Answer:
x° = 37°
Step-by-step explanation:
* Lets revise some facts of a circle
- The secant is a line intersect the circle in two points
- If two secants intersect each other in a point outside the circle,
then the measure of the angle between them is half the difference
of the measures of their intercepted arcs
* Now lets solve the problem
- There is a circle
- Two secants of this circle intersect each other in a point outside
the circle
∴ The measure of the angle between them = 1/2 the difference of the
measures of their intercepted arcs
∵ The measure of the angle between them is x°
∵ The measures of their intercepted arcs are 26° and 100°
- Use the rule above to find x
∴ x° = 1/2 [ measure of the large arc - measure of small arc]
∵ The measure of the large arc is 100°
∵ The measure of the small arc is 26°
∴ x° = 1/2 [100 - 26] = 1/2 [74] = 37°
∴ x° = 37°
determine the equation of the graph and select the correct answer below (-2,-4)
Your answer is correct
I guess you wrote the correct answer
The area sector AOB is 20.25π ft squared. Find the exact area of the shaded region.
Check the picture below.
so the triangle has a height of 9 and a base of 9, since it's the radius anyway.
if we subtract the area of that triangle from the area of the circle's sector, what's leftover is just the shaded area.
20.25π - 40.5.
A sandbox 12ft. By 14 ft. requires that the sand be spread to a depth of 6 in. How many cubic feet of sand are needed?
Answer:
84 ft²
Step-by-step explanation:
Solve for Volume. Volume of a box is:
V = Length (base) x Width (base) x Height (of rectangular prism/square)
Change each measurement to have the same measurement (ft -> in, or vice versa).
Note that 1 ft = 12 in.
6 in = 1/2 ft, because 6/12 = 1/2
Length = 12 ft
Width = 14 ft
Height = 1/2 ft
Solve. Plug in the corresponding number to the corresponding words.
V = 12 x 14 x 1/2
Simplify. Solve.
V = 12 x (14 x 1/2)
V = 12 x (14/2)
V = 12 x 7
V = 84
84 ft² is your answer.
~
Answer:
1,008
Step-by-step explanation:
You multiply all three numbers to get your answer.
Find the distance between the points given. (0, 5) and (-5, 0) 5 5√2 10
Answer:
5√2
Step-by-step explanation:
The question is on geometry
The formula for distance between two points is;
[tex]d= \sqrt{(X2-X1)^2 + (Y2-Y1)^2}[/tex]
where d is distance.
Given points;
(0,5) and (-5,0) ;
X1=0 ,X2= -5 , Y1= 5, Y2= 0
X2-X1 = -5 - 0= -5
Y2-Y1= 0-5= -5
[tex]d= \sqrt{(-5)^2 + (-5)^2}[/tex]
[tex]d=\sqrt{25+25}[/tex]
[tex]d=\sqrt{50}[/tex]
[tex]d=\sqrt{2*25} =\sqrt{2} *\sqrt{25} =\sqrt{2} *5\\\\\\\\d=5\sqrt{2}[/tex]
Answer:
[tex]d=5\sqrt{2}[/tex]
Step-by-step explanation:
Given : (0, 5) and (-5, 0)
To Find : Distance between the given points
Solution:
We will use distance formula :
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex](x_1,y_1)=(0,5)[/tex]
[tex](x_2,y_2)=(-5,0)[/tex]
Substitute the values in the formula .
[tex]d=\sqrt{(-5-0)^2+(0-5)^2}[/tex]
[tex]d=\sqrt{(-5)^2+(-5)^2}[/tex]
[tex]d=\sqrt{25+25}[/tex]
[tex]d=\sqrt{50}[/tex]
[tex]d=5\sqrt{2}[/tex]
Hence the distance between the given points is 5√2 units