The expression 53 ( 1 − x) gives the discounted price of a pair of shoes, where x is the percent of the discount written in decimal form.

What does 1 − x represent in the expression?

A. percent of original price being paid

B. discount price of the shoe

C. percent of discount

D. original price of shoe

Answers

Answer 1
i think its A. sorry if i got it wrong

Related Questions

Why are volumetric measurements defined as a cubed unit?

Answers

A unit, such as a cubic foot, or a system of units used to measure volume or capacity
When you are measuring a volumetric figure, you use the cubic units as a measurements because it is the most precise way to figure out the measurements of any volumetric figure.

The table shows the heights in inches of trees after they have been planted. Determine the equation which relates x and y.

Height In Pot, x | Height Without Pot, y
30 | 18
36 | 24
42 | 30
48 | 36


A. y = x - 6
B. y = x - 10
C. y = x - 12
D. y = x + 6

Answers

To get the that relates x and y, we choose two points on the table and use the equation of a straight line as follows:

Recall that the equation of a staight line is obtained from the formula
[tex] \frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1} [/tex]

Using the points (30, 18) and (36, 24), we have
[tex]\frac{y-18}{x-30} = \frac{24-18}{36-30}= \frac{6}{6} =1 \\ \\ \Rightarrow y-18=x-30 \\ \\ \Rightarrow y=x-30+18 \\ \\ \Rightarrow y=x-12[/tex]

What is the value in dollars of a stack of dimes that is 10 cm high? (1mm = 1 dime?

Answers

$10 because:

Since a dime is about 1 mm thick (10mm equals 1 cm), 10 cm high would be 100 dimes.

10 dimes = $1
$1 times 10 = $10

The value in dollars of a stack of dimes that is 10 cm high is $10.

What are nickles, dimes, quarters and cents?

A dollar is further divided into some majorly used parts as:

A cent = 100th part of a dollar = $1/100 = $0.01

A nickle= 20th part of a dollar = $1/20 = $0.05

A dime = 10th part of a dollar = $1/10 = $0.10

A quarter = 4th part of a dollar = $1/4 = $0.25

If each dime is 1 mm then 10 dimes will be 1 cm high;

1 dime / 1 mm = x dimes / 10 mm Cross multiply

1 dime * 10 mm = x * 1 mm

10 dimes = x The mm

Since a dime is about 1 mm thick (10mm equals 1 cm), 10 cm high would be 100 dimes;

10 dimes = $1

$1 times 10 = $10

Hence, The value in dollars of a stack of dimes that is 10 cm high is $10.

Learn more about partition of dollars here:

https://brainly.com/question/27187336

#SPJ2

Help please algebra

Answers

B, C, E, F  are your answer

hope this helps

a model car is 4inhes long actual car is 15ft long what is the reduced ratio of the model to the actual

Answers

15 ft = 15*12 = 180 inches

180/4 = 45

 so the scale is 1/45

The half-life of rhodium, Rh-106, is about 30 seconds. You start with 500 grams.

Answers

I think the logical question for this would be to find the reaction rate constant, k, for radioactive decay of Rhodium. The general formula is:

ln A/A₀ = -kt,
where 
A is the amount of substance after time t,
A₀ is the original amount of substance
t is the time

After 30 s, the amount of Rhodium would be in half. So, A/A₀ = 1/2

ln(1/2) = -k(30 s)
k = 0.023 s⁻¹

The number of minutes taken for a chemical reaction if f(t,x). it depends on the temperature t degrees celcius, and the quantity, x grams, of a catalyst present. when the temperature is 30 degrees celcius and there are 5 grams of catalyst, the reaction takes 50 minutes. increasing the temperature by 3 degrees reduces the time taken by 5 minutes. increasing the amount of catalyst by 2 grams decreases the time taken by 3 minutes. use this information to find the partial derivatives fx(30,5) and ft(30,5). use the tangent plane approximation to find f(33,4).

Answers

Final answer:

The partial derivatives fx(30,5) and ft(30,5) can be calculated using the given information, and the tangent plane approximation can be used to estimate f(33,4).

Explanation:

The chemical reaction time is represented by the function f(t,x), where t is the temperature in degrees Celsius and x is the quantity of a catalyst present in grams. We are given that when the temperature is 30 degrees Celsius and there are 5 grams of catalyst, the reaction takes 50 minutes. Additionally, increasing the temperature by 3 degrees reduces the time taken by 5 minutes, and increasing the amount of catalyst by 2 grams decreases the time taken by 3 minutes.

To find the partial derivative fx(30,5), we need to find the rate of change of the reaction time with respect to the quantity of catalyst, while holding the temperature constant. Using the given information, we can calculate:

fx(30,5) = (f(30,5+2)-f(30,5))/2 = (-3)/2 = -1.5

To find the partial derivative ft(30,5), we need to find the rate of change of the reaction time with respect to the temperature, while holding the quantity of catalyst constant. Using the given information, we can calculate:

ft(30,5) = (f(30+3,5)-f(30,5))/3 = (-5)/3 = -1.67

Using the tangent plane approximation, we can estimate f(33,4) by calculating the change in reaction time by adjusting the temperature to 33 degrees Celsius and the quantity of catalyst to 4 grams.

f(33,4) = f(30,5) + ft(30,5) * (33-30) + fx(30,5) * (4-5)

f(33, 4) = 50 + (-1.67) * 3 + (-1.5) * -1 = 50 - 5.01 + 1.5 = 46.49

[tex]\( f_t(30,5) = -\frac{5}{3} \)[/tex], [tex]\( f_x(30,5) = -1.5 \)[/tex], [tex]\( f(33,4) \approx 46.5 \)[/tex] minutes.

ft (30, 5) =_[tex]\(-\frac{5}{3} \)[/tex]_ fx (30,5) =_-1.5_ f (33,4)=__46.5 minutes__

To find the partial derivatives [tex]\( f_t(30,5) \)[/tex] and [tex]\( f_x(30,5) \)[/tex], we'll use the given information about how changes in [tex]\( t \) and \( x \)[/tex] affect the time [tex]\( f(t,x) \)[/tex].

Given:

- [tex]\( f(30,5) = 50 \)[/tex] minutes

- Increasing [tex]\( t \)[/tex] by 3 degrees Celsius reduces [tex]\( f \)[/tex] by 5 minutes.

- Increasing [tex]\( x \)[/tex] by 2 grams decreases [tex]\( f \)[/tex] by 3 minutes.

1. Partial derivative with respect to [tex]\( t \) at \( (30,5) \)[/tex]:

  - Change in [tex]\( t \): \( \Delta t = 3 \)[/tex] degrees Celsius

  - Change in [tex]\( f \): \( \Delta f = -5 \)[/tex] minutes

  - Using the definition of partial derivative:

    [tex]\[ f_t(30,5) = \frac{\Delta f}{\Delta t} = \frac{-5}{3} = -\frac{5}{3} \text{ minutes/degree Celsius} \][/tex]

2. Partial derivative with respect to [tex]\( x \) at \( (30,5) \)[/tex]:

  - Change in [tex]\( x \): \( \Delta x = 2 \)[/tex] grams

  - Change in [tex]\( f \): \( \Delta f = -3 \)[/tex] minutes

  - Using the definition of partial derivative:

    [tex]\[ f_x(30,5) = \frac{\Delta f}{\Delta x} = \frac{-3}{2} = -1.5 \text{ minutes/gram} \][/tex]

Now, to find [tex]\( f(33,4) \)[/tex] using the tangent plane approximation, we'll use the partial derivatives we found and the point [tex]\( (30,5) \)[/tex] as a reference:

The tangent plane approximation formula is:

[tex]\[ f(t,x) \approx f(30,5) + f_t(30,5)(t-30) + f_x(30,5)(x-5) \][/tex]

Substituting the values:

[tex]\[ f(33,4) \approx 50 + \left(-\frac{5}{3}\right)(33-30) + (-1.5)(4-5) \][/tex]

[tex]\[ f(33,4) \approx 50 - 5 + 1.5 \][/tex]

[tex]\[ f(33,4) \approx 46.5 \text{ minutes} \][/tex]

So, [tex]\( f(33,4) \approx 46.5 \)[/tex] minutes.

Thus:

- [tex]\( f_t(30,5) = -\frac{5}{3} \)[/tex] minutes/degree Celsius

- [tex]\( f_x(30,5) = -1.5 \)[/tex] minutes/gram

- [tex]\( f(33,4) \approx 46.5 \)[/tex] minutes

The correct question is:

The number of minutes taken for a chemical reaction if f(t,x). It depends on the temperature t degrees Celsius, and the quantity, x grams, of a catalyst present. When the temperature is 30 degrees Celsius and there are 5 grams of catalyst, the reaction takes 50 minutes. Increasing the temperature by 3 degrees reduces the time taken by 5 minutes. Increasing the amount of catalyst by 2 grams decreases the time taken by 3 minutes. Use this information to find the partial derivatives fx(30,5) and ft(30,5). Use the tangent plane approximation to find f(33,4). ft (30, 5) =__________ fx (30,5) =__________ f (33,4)=__________

What is the value of the expression 5x+2y y-x2 when x=2 and y =3

Answers

The answer to that question is 44 hope this helps :-)

There is a box full of toys. There are four Lego sets, six video games, and five remote control cars. You randomly choose a toy. Find the probability of choosing a remote control car. A. 1/7 B. 7/24 C. 1/3 D. 11/24

Answers

Salutations!

There is a box full of toys. There are four Lego sets, six video games, and five remote control cars. You randomly choose a toy. Find the probability of choosing a remote control car.

Probability means occurrence of chance.

Step 1) Add all the toys

[tex]4+6++5=15[/tex]

There are 5 control cars

[tex]5/15[/tex]

The simplified form would be [tex]1/3[/tex]

Thus, your answer is option C.

Hope I helped (:

Have a great day!
Final answer:

The probability of choosing a remote control car from the box is 1/3, which is calculated by dividing the number of remote control cars (5) by the total number of toys (15).

Explanation:

To find the probability of choosing a control car from the box, we use the formula for probability, which is:

Probability = Number of favorable outcomes / Total number of possible outcomes

The number of favorable outcomes is the quantity of remote control cars which is 5. The total number of toys is the sum of all the toys, which are 4 Lego sets + 6 video games + 5 remote control cars = 15 toys in total.

The probability is therefore calculated as:

Probability of choosing a remote control car = 5 (number of remote control cars) / 15 (total number of toys) = 1/3

Hence, the correct answer is C. 1/3.

To solve the literal equation 5x = 7t + 6, what is the first step that you must do?
Can anyone help me?

Answers

Under the assumption that the equation is looking to be solved in "t," the first step toward isolating the "t" variable would be to subtract 6 from both sides. This would leave 5x-6 = 7t, and is one step closer to isolating the "t." Dividing by 7 would be the second step, giving (5x-6)/7 = t.

Milk cartons come in crates of 24. how many crates does a school need to order to serve to 400 students

Answers

divide 400 by 24

400 / 24 = 16.666

 so they would need to buy 17 crates

The two numbers with a product of 30 and a sum of 17 are

Answers

Answer:  The numbers are:  "15" and "2" .
_____________________________________________
  15 * 2 = 30 .

  15 + 2 = 17 .
______________________________________________

The required numbers are "15" and "2".

What is the number system?

A number system is defined as a way to represent numbers on the number line using a set of symbols and approaches. These symbols, which are known as digits, are numbered 0 through 9.

Let the first number would be x and the second number would be y

We have been given that the two numbers with a product of 30,

So, x × y = 30

x = 1/y   .....(i)

And the sum of 17, then x + y = 17   .....(ii)

Take both equations, then solves them and we get the values that are:

x = 15 and y = 2

So, 15 × 2 = 30 and 15 + 2 = 17

Thus, the required numbers are "15" and "2".

Learn more about the number system here:

https://brainly.com/question/21751836

#SPJ5

whats the area of a cardboard In one carton if the length is 9 inches height is 9inches width is 4 inches and is 240 ml as well as also in a 946 ml container and a 1.89 L container?

Answers

Assuming that the cardboard forms a regular rectangle, therefore the area of the cardboard is simply taken to be the product of length and width. Therefore:

A = l w

A = (9 inches) * (4 inches)

A = 36 square inches = 36 inches^2

Expressions to Radical Form
I always have a hard time with radicals...

Answers

To do this, take the cube root of every term:

The cube root of -64 is -4
The cr of x^6 is x^2
The cr of y^9 is y^3

Now put these all together:

-4x^2y^3

Hope this helped!

A wire is first bent into the shape of a triangle. Each side of the triangle is
12cm long. Then the wire is unbent and reshaped into a square. What is the length of a side of the square?

Answers

First find the area of the wire. The wire is 36 square root of 3 or approximately 62.35 cm. Then divide that by 4.
The length of a side is 9 square root of 3 or approximately 15.588 cm

Final answer:

By dividing the total length of the wire (36 cm) by the number of sides of a square (4), we find that the length of one side of the square is 9 cm.

Explanation:

We start by calculating the total length of the wire when it was bent into an equilateral triangle. Since each side is 12 cm long and there are three sides, the total wire length is 3 × 12 cm = 36 cm. When the wire is unbent and reshaped into a square, the total wire length remains the same; thus, the perimeter of the square is also 36 cm. A square has four equal sides, so the length of each side of the square is the perimeter divided by four.

Length of one side of the square = Total wire length ÷ 4

Length of one side of the square = 36 cm ÷ 4

Length of one side of the square = 9 cm

two parallel lines are coplanar (always,sometimes, or never true)

Answers

Two lines are parallel lines if they are coplanar and do not intersect. Lines that are not coplanar and do not intersect are called skew lines. Two planes that do not intersect are called parallel planes. Therefore two parallel lines are always coplaner.

Hope this helps! If you have any questions just ask!
never true i think i mean if you look at it good you would know what i mean

The trinomial x2 – 3x – 4 is represented by the model. What are the factors of the trinomial?

Answers

x^2 – 3x – 4 = (x - 4)(x +1 )
cause
(x - 4)(x +1 ) = x^2 - 4x + x - 4 = x^2 - 3x - 4

answer
 (x - 4)(x +1 ) are factors of x^2 – 3x – 4

Answer:

[tex](x+1)[/tex] and [tex](x-4)[/tex].

Step-by-step explanation:

We have been a trinomial [tex]x^2-3x-4[/tex]. We are asked to find the factors of our given trinomial.

We will use split the middle term to solve our given problem. We need to two number whose sum is [tex]-3[/tex] and whose product is [tex]-4[/tex]. We know such two numbers are [tex]-4\text{ and }1[/tex].

Split the middle term:

[tex]x^2-4x+x-4[/tex]

Make two groups:

[tex](x^2-4x)+(x-4)[/tex]

Factor out GCF of each group:

[tex]x(x-4)+1(x-4)[/tex]

[tex](x-4)(x+1)[/tex]

Therefore, factors of our given trinomial are [tex](x+1)[/tex] and [tex](x-4)[/tex].

How is the parent function y=x2 related to the given function Y=3(x+1)2?

Answers

parent function: y = f(x) = x^2

given function: y = g(x) = 3 (x+1)^2

=> g(x) = 3 * f(x + 1)^2

So, from the point of view of graphs, the given function, g(x), is the parent function, f(x) = x^2, shifted one unit to the left and amplified by a factor of 3.


Tony ran laps around a track to raise money for a hospital. Tony raised $15 plus $1.50 per lap that he ran. He raised a total of $255.

Let x represent the number of laps Tony ran.

What expression completes the equation to determine the total number of laps Tony ran?

How many laps did Tony run?

Answers

Let x represent the number of laps Tony ran,

15 + 1.5x = 255
1.5x = 240
x = 160

Tony ran 160 laps.

15 + 1.5x = 255

and 160 laps


In the number 12,005,999 what is the value of the 2

Answers

2 million. The 2 is in the millions place value

Mei draws three pairs of parallel lines that are each intersected by a third line. In each figure, she measures a pair of angles. What is a reasonable conjecture for Mei to make by recognizing a pattern and using inductive reasoning? A. When a pair of parallel lines are intersected by a third line, the alternate interior angles are congruent. B. When a pair of parallel lines are intersected by a third line, the alternate interior angles are acute. C. When a pair of parallel lines are intersected by a third line, all of the angles formed are obtuse. D. When a pair of parallel lines are intersected by a third line, all of the angles formed are congruent.

Answers

The only correct statement among the choices is:

A. When a pair of parallel lines are intersected by a third line, the alternate interior angles are congruent.

 

This statement can actually be proven by measuring the angles of the alternate interior angles. We can actually see that they have equal measurements. While the adjacent interior angles are supplementary angles.

The ratio of boy to girls in a class is 3 : 2. There are 15 boys in the class. How many total boys and girls are in the class?

Answers

There should be 15 boys and 10 girls in the class, so there is 25 students in the class total.
if there are 15 boys then there are 10 girls so there are 25 boys and girls in the class

Suppose that receiving stations​ X, Y, and Z are located on a coordinate plane at the points ​(3,3​), ​(-13​, −5​), and ​(-5​,3), respectively. The epicenter of an earthquake is determined to be 5 units from X​, 13 units from​ Y, and  5 units from Z. Where on the coordinate plane is the epicenter​ located?

Answers

Final answer:

The epicenter is located at (-5, 1) on the coordinate plane.

Explanation:

To find the coordinates of the epicenter, we need to find the average of the coordinates of the three receiving stations. The x-coordinate of the epicenter is (3 - 13 - 5)/3 = -5, and the y-coordinate is (3 - 5 + 3)/3 = 1. Therefore, the epicenter is located at (-5, 1) on the coordinate plane.

Learn more about Coordinates of the epicenter here:

https://brainly.com/question/14795712

#SPJ11

The coordinates of the epicenter of earthquake are (-1, 0).

The epicenter of the earthquake is the point that is equidistant from stations X, Y, and Z. This is essentially the solution to a system of three equations representing the distances from the epicenter to each of the three stations.

The equations are derived from the distance formula, [tex]d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex] ,

where [tex](x_1,y_1)[/tex] and [tex](x_2, y_2)[/tex] are the coordinates of the two points and d is the distance between them.

For station X at (3,3), the distance to the epicenter (x,y) is 5 units. So, the equation is:

[tex](x - 3)^2 + (y - 3)^2 = 5^2 = 25 \text{ ....(1)}[/tex]

For station Y at (-13,-5), the distance to the epicenter is 13 units. So, the equation is:

[tex](x + 13)^2 + (y + 5)^2 = 13^2 = 169\text{ ....(2)}[/tex]

For station Z at (-5,3), the distance to the epicenter is 5 units. So, the equation is:

[tex](x + 5)^2 + (y - 3)^2 = 5^2=25 \text{ ....(3)}[/tex]

Solving this system of equations will give the coordinates of the epicenter.

Subtract equation (1) from equation (2), we get:

[tex](x^2+26x+169+y^2+10y+25)-(x^2-6x+9+y^2-6y+9) = 144\\\\\text{Simplifying, we get:}\\32x+16y+176=144\\32x+16y = -32\\\text{Divide by 16 on both sides of the equation, we get:}\\2x + y = -2[/tex]

Subtract equation (1) from equation (3), we get:

[tex](x+5)^2+(y-3)^2-(x-3)^2-(y-3)^2 = 0\\x^2+10x+25-(x^2-6x+9)=0\\16x + 16 = 0\\\text{Dividing by 1 on both sides, we get}\\x + 1 =0\\\text{We get:}\\x = -1[/tex]

Putting x = -1 in the equation 2x + y = -2, we get:

2(-1) + y = -2

We get,

y = 0

So, the coordinates of the epicenter of earthquake are (-1, 0).

Find the slope of the line that passes through the pair of points.

Answers

Slope :  y2 - y1 / x2 - x1

( 2 , 6 ) (7 , 0) 

0 - 6 /  7 - 2

- 6 / 5 is the slope 

Answer:

Option B is correct

Slope of the lines that passes through the given points is, [tex]\frac{-6}{5}[/tex]

Step-by-step explanation:

Given: The points (2 , 6) and (7 ,0).

Slope of a line identify the direction of a line. To find the slope, you divide the difference of the y-coordinates of two points on a line by the difference of the x- coordinates of those same two  points.

For any two points [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] the slope(m) of a line is given by;

[tex]m = \frac{y_2 -y_1}{x_2 -x_1}[/tex]

Now, substitute the point (2 ,6 ) and ( 7, 0) in the slope formula we have;

[tex]m = \frac{y_2 -y_1}{x_2 -x_1}=\frac{0 - 6}{7-2}[/tex] = [tex]\frac{-6}{5}[/tex]

therefore, the slope of the line that passes through the pair of points is;   [tex]\frac{-6}{5}[/tex]

Suppose that a box contains one fair coin and one coin with a head on each side. suppose that a coin is selected at random and that when it is tossed three times, a head is obtained three times. determine the probability that the coin is the fair coin.

Answers

there is a 50% chance it is the fair coin

Evaluate ƒ(x) = 3x + 8 for x = 1.

Answers

f equals 11 because it three times 1 plus eight.

Answer:  The required value of f(x) for x = 1 is 11.

Step-by-step explanation:  We are given to evaluate f(x) for x = 1, where

[tex]f(x)=3x+8~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

To evaluate the required value, we need to substitute x = 1 in expression (i).

So, putting x = 1 in (i), we get

[tex]f(1)=3\times1+8=3+8=11.[/tex]

Thus, the required value of f(x) for x = 1 is 11.

How many solutions are there in the equation below 8x+11=8x+8

Answers

That is a no solution set, you have been bamboozled!

A Web music store offers two versions of a popular song. The size of the standard version is 2.1 megabytes (MB). The size of the high-quality version is 4.1 MB. Yesterday, there were 1010 downloads of the song, for a total download size of 2761 MB. How many downloads of the high-quality version were there?

Answers

If the number of downloads of the standard version is x, and the high quality is x, 2.1*x+4.1*y=2761 (not 1010 due to that this is multiplied by 2.1 and 4.1, therefore representing the total amount of megabytes) In addition, there are 1010 total downloads, and it's either 2.1 MB or 4.1 MB, so x+y=1010.

We have 
2.1x+4.1y=2761
x+y=1010

Multiplying the second equation by -2.1 and adding it to the first equation, we get 2y=2761-1010*2.1=640 and by dividing both sides by 2 we get y=320 downloads of the high quality version


What is the r (common ratio) for the geometric sequence: -3, -15, -75, -375, -1875...

Answers

The common ratio is the multiplicity of 5

hope this helps

3 x 5 = 15
15 x 5 = 75
75 x 5 = 375
etc

Find the lowest common denominator of and . A. x3y4 B. x2y3 C. xy4 D. x4y5

Answers

Lowest Common Denominator refers to lowes t common multiple. These expressions have two terms 'x' and 'y' and we want to choose the expression that has the highest power such that the other expressions can be multiplied into the common denominator.

For the 'x' term, the highest power is x⁴ and for the 'y' term, the highest power is y⁵

Common denominator of A, B, C, and D: x⁴y⁵




Answer:15 2 3

Step-by-step explanation:

Other Questions
Aidan drives to school and back each day. The school is 16 miles from his home. He averages 40 miles per hour on his way to school. If his total trip takes 1 hour, at approximately what speed does Aidan drive home?17 mph27 mph32 mph56 mph Round 754 to the nearest ten which of the following is an example of an open question? What was one of the goals of the united states during the war of 1812? What biblical event was carved on the sword beowulf used to kill grendels mother? Bill gates makes approximately $12 billion a year. On average, how much does he make per minute Which was a reason that rice farmers helped promote the spread of slavery Last year at this time we had 250 employees. Due to attrition , we lost 12% of our workforce. How many employees are working now Lines AB and EB share a common point at B therefore we say that these lines If a substance is changing from a vapor to a liquid, like steam on a mirror, it is said to be _______.volatilecondensingcrystallizedchanging pigmentation Which of the following words is not a conjunctive adverb?Question 10 options:thereforehenceandinstead The Neolithic Revolution is characterized bythe domestication of animals and the start of agriculture.the development of urban civilizations.the use of iron tools.hunting and gathering. A politician states "taxes should be raised to provide more spending on school lunch programs." this is What is 3/10 divided by 4/5 Mendeleev left several blank spaces in his original periodic table. what did those spaces represent? elements with unknown physical properties elements that did not fit into his pattern elements that had yet to be discovered elements with variable atomic masses 5 1/2 ft equals how many inches what was the first musical instrument used by prehistoric man and woman to recreate sounds of nature?A. drumB. human voiceC. hollow logD. flute How many ounces are in 4 pints the point (1,1) is the image under the image under rhe translation (x,y) (x+3,y-3) A pedestrian crossing sign is an example of a regulatory sign. A. True B. False