The distance required for a car to come to a stop will vary depending on how fast the car is moving. Suppose that a certain car traveling down the road at a speed of 10 m / s can come to a complete stop within a distance of 20 m . Assuming the road conditions remain the same, what would be the stopping distance required for the same car if it were moving at speeds of 5 m / s , 20 m / s , or 40 m / s ?

Answers

Answer 1

Answer:

5 m

80 m

320 m

Explanation:

[tex]v_{o}[/tex] = Initial speed of the car = 10 ms⁻¹

[tex]v_{f}[/tex] = Final speed of the car = 0 ms⁻¹

[tex]d[/tex] = Stopping distance of the car = 20 m

[tex]a[/tex] = acceleration of the car

On the basis of above data, we can use the kinematics equation

[tex]v_{f}^{2} = v_{o}^{2} + 2 a d\\0^{2} = 10^{2} + 2 (20) a\\a = - 2.5 ms^{-2}[/tex]

[tex]v_{o}[/tex] = Initial speed of the car = 5 ms⁻¹

[tex]v_{f}[/tex] = Final speed of the car = 0 ms⁻¹

[tex]d'[/tex] = Stopping distance of the car

[tex]a[/tex] = acceleration of the car = - 2.5 ms⁻²

On the basis of above data, we can use the kinematics equation

[tex]v_{f}^{2} = v_{o}^{2} + 2 a d'\\0^{2} = 5^{2} + 2 (- 2.5) d'\\d' = 5 m[/tex]

[tex]v_{o}[/tex] = Initial speed of the car = 20 ms⁻¹

[tex]v_{f}[/tex] = Final speed of the car = 0 ms⁻¹

[tex]d''[/tex] = Stopping distance of the car

[tex]a[/tex] = acceleration of the car = - 2.5 ms⁻²

On the basis of above data, we can use the kinematics equation

[tex]v_{f}^{2} = v_{o}^{2} + 2 a d''\\0^{2} = 20^{2} + 2 (- 2.5) d''\\d'' = 80 m[/tex]

[tex]v_{o}[/tex] = Initial speed of the car = 40 ms⁻¹

[tex]v_{f}[/tex] = Final speed of the car = 0 ms⁻¹

[tex]d'''[/tex] = Stopping distance of the car

[tex]a[/tex] = acceleration of the car = - 2.5 ms⁻²

On the basis of above data, we can use the kinematics equation

[tex]v_{f}^{2} = v_{o}^{2} + 2 a d'''\\0^{2} = 40^{2} + 2 (- 2.5) d'''\\d''' = 320 m[/tex]


Related Questions

A cylinder with a movable piston contains 2.00 g of helium, He, at room temperature. More helium was added to the cylinder and the volume was adjusted so that the gas pressure remained the same. How many grams of helium were added to the cylinder if the volume was changed from 2.00 L to 4.10 L ? (The temperature was held constant.)

Answers

Answer:

0.358g

Explanation:

Density of Helium = 0.179g/L

ρ=m/v

m=ρv

when the volume was 2L

m1= 0.179*2

m1=0.358g

when the volume increased to 4L

m2= 0.179*4

m2=0.716g

gram of helium added = 0.716g-0.358g

=0.358g

Calculate the final temperature of a mixture of 0.350 kg of ice initially at 218°C and 237 g of water initially at 100.0°C.

Answers

Answer:

115 ⁰C

Explanation:

Step 1: The heat needed to melt the solid at its melting point will come from the warmer water sample. This implies

[tex]q_{1} +q_{2} =-q_{3}[/tex] -----eqution 1

where,

[tex]q_{1}[/tex] is the heat absorbed by the solid at 0⁰C

[tex]q_{2}[/tex] is the heat absorbed by the liquid at 0⁰C

[tex]q_{3}[/tex] the heat lost by the warmer water sample

Important equations to be used in solving this problem

[tex]q=m *c*\delta {T}[/tex], where -----equation 2

q is heat absorbed/lost

m is mass of the sample

c is specific heat of water, = 4.18 J/0⁰C

[tex]\delta {T}[/tex] is change in temperature

Again,

[tex]q=n*\delta {_f_u_s}[/tex] -------equation 3

where,

q is heat absorbed

n is the number of moles of water

tex]\delta {_f_u_s}[/tex] is the molar heat of fusion of water, = 6.01 kJ/mol

Step 2: calculate how many moles of water you have in the 100.0-g sample

[tex]=237g *\frac{1 mole H_{2} O}{18g} = 13.167 moles of H_{2}O[/tex]

Step 3: calculate how much heat is needed to allow the sample to go from solid at 218⁰C to liquid at 0⁰C

[tex]q_{1} = 13.167 moles *6.01\frac{KJ}{mole} = 79.13KJ[/tex]

This means that equation (1) becomes

79.13 KJ + [tex]q_{2} = -q_{3}[/tex]

Step 4: calculate the final temperature of the water

[tex]79.13KJ+M_{sample} *C*\delta {T_{sample}} =-M_{water} *C*\delta {T_{water}[/tex]

Substitute in the values; we will have,

[tex]79.13KJ + 237*4.18\frac{J}{g^{o}C}*(T_{f}-218}) = -350*4.18\frac{J}{g^{o}C}*(T_{f}-100})[/tex]

79.13 kJ + 990.66J* [tex](T_{f}-218})[/tex] = -1463J*[tex](T_{f}-100})[/tex]

Convert the joules to kilo-joules to get

79.13 kJ + 0.99066KJ* [tex](T_{f}-218})[/tex] = -1.463KJ*[tex](T_{f}-100})[/tex]

[tex]79.13 + 0.99066T_{f} -215.96388= -1.463T_{f}+146.3[/tex]

collect like terms,

2.45366[tex]T_{f}[/tex] = 283.133

∴[tex]T_{f} =[/tex] = 115.4 ⁰C

Approximately the final temperature of the mixture is 115 ⁰C

A rock of mass m is thrown straight up into the air with initial speed |v0 | and initial position y = 0 and it rises up to a maximum height of y = h. A second rock with mass 2m (twice the mass of the original) is thrown straight up with an initial speed of 2|v0 |. What maximum height does the second rock reach?

Answers

Answer:

Explanation:

Case 1:

mass = m

initial velocity = vo

final velocity = 0

height = y

Use third equation of motion

v² = u² - 2as

0 = vo² - 2 g y

y = vo² / 2g       ... (1)

Case 2:

mass = 2m

initial velocity = 2vo

final velocity = 0

height = y '

Use third equation of motion

v² = u² - 2as

0 = 4vo² - 2 g y'

y ' = 4vo² / 2g

y' = 4 y

Thus, the second rock reaches the 4 times the distance traveled by the first rock.

The maximum height the second rock reach is :

-4 times the distance traveled by the first rock.

"Mass"

Case 1:

mass = m

initial velocity = vo

final velocity = 0

height = y

using Third equation of motion

v² = u² - 2as

0 = vo² - 2 g y

y = vo² / 2g       ... (1)

Case 2:

mass = 2m

initial velocity = 2vo

final velocity = 0

height = y '

Use third equation of motion

v² = u² - 2as

0 = 4vo² - 2 g y'

y ' = 4vo² / 2g

y' = 4 y

Therefore, the second rock reaches the 4 times the distance traveled by the first rock.

Learn more about "Mass":

https://brainly.com/question/15959704?referrer=searchResults

Suppose you are standing a few feet away from a bonfire on a cold fall evening. Your face begins to feel hot. What is the mechanism that transfers heat from the fire to your face? (Hint: Is the air between you and the fire hotter or cooler than your face?)

•A. convection
•B. radiation
•C. conduction
•D. none of the above

Answers

B. Radiation. It is not touching so it cannot be conduction

A swimming pool heater has to be able to raise the temperature of the 40 000 gallons of water in the pool by 10.0 C°.

How many kilowatt-hours of energy are required?

(One gallon of water has a mass of approximately 3.8 kg and the specific heat of water is 4 186 J/kg⋅°C.)
a. 1 960 kWh
b. 1 770 kWh
c. 330 kWh
d. 216 kWh

Answers

Answer:

b. 1 770 kWh

Explanation:

The heat needed to change the temperature of a certain amount of a substance is given by:

[tex]Q=mC\Delta T[/tex]

Here m is the mass of the susbtance, C is the specific heat of the substance and [tex]\Delta T[/tex] is the temperature change

[tex]Q=(40000*3.8kg)(4186\frac{J}{kg\cdot ^\circ C})(10^\circ C)\\Q=6.36*10^9J[/tex]

Recall that one watt hour is equivalent to 1 watt (1 W) of power sustained for 1 hour. One watt is equal to 1 J/s. So, one watt hour is equal to 3600 J and one kilowatt hour is equal to [tex]3600*10^3 J[/tex]

[tex]Q=6.36*10^9J*\frac{1kW\cdot h}{3600*10^3J}\\Q=1766.66kW\cdot h[/tex]

Final answer:

To heat 40,000 gallons of water by 10.0 C° in a swimming pool, 1,767 kilowatt-hours of energy are required, rounding to the nearest so, option gives (b) 1,770 kWh as the answer.

Explanation:

The question asks: How many kilowatt-hours of energy are required to raise the temperature of 40,000 gallons of water in a pool by 10.0 C°? To solve this, we need to calculate the energy needed using the formula for heat energy: Q = mcΔT, where m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature.

Firstly, convert the volume of water from gallons to kilograms. 40,000 gallons is approximately 40,000 x 3.8 kg = 152,000 kg. Next, use the specific heat of water (4,186 J/kg°C) and the temperature change (10.0 C°) to find the energy in joules: Q = 152,000 kg x 4,186 J/kg°C x 10.0 C° = 6,362,720,000 J.

To convert joules to kilowatt-hours, divide the total joules by 3,600,000 (the number of joules in one kilowatt-hour): 6,362,720,000 J / 3,600,000 J/kWh = 1,767 kWh. Therefore, the energy required is 1,767 kWh, making option (b) 1,770 kWh the nearest correct answer.

You are playing a speed-based card game with your 64-year-old grandfather. The object of the game is to get rid of your cards as fast as you can. Once the first card is turned over, each player tries to play by deciding on which pile to play his or her card. When you were younger, your grandfather always beat you in this game. Now, you always beat him. Your grandfather is likely experiencing a slight decline in_____________.

Answers

Now, you always beat him. Your grandfather is likely experiencing a slight decline in perceptual speed.

Explanation:

The speed of perception refers to the capacity to accurately (and completely) compare words letter, digits, objects, images, etc. When testing, these objects can be displayed simultaneously or one after the other. This type of test can be included in the proficiency test.

For example, we have also seen all the puzzles that ask the reader to notice the differences between the two pictures. The time it takes to recognize these differences is a measure of the speed of perception. Likewise, in getting rid of cards at the given situation, grandfather experiences a less decline in his perceptual speed.

Your grandfather is likely experiencing a slight decline in; Perceptual speed.

The grandfather is playing a speed based card game.

Now we are told that the object of the game is to get rid of the cards as fast as possible.

We are told that when you were younger your grandfather used to beat you always in the game. This means that his speed in comparing the cards to know which one to get rid of was fast before but has declined now since he can't beat you again.

Finally, we can say that his perceptual speed has declined because perceptual speed is defined as the ability to compare letters, numbers, objects, patterns e.t.c

Read more about Perceptual speed at; https://brainly.com/question/14560154

Why is it impossible for an astronaut inside an orbiting space station to go from one end to the other by walking normally?A. In an orbiting station, the gravitational force is too large and the astronaut can't take his feet off the floor.B. It is impossible to walk inside an orbiting space station because its rotation is too fast.C. In an orbiting station, after one foot pushes off there isn't a friction force to move forward. The astronaut "jumps" on the same place.D. In an orbiting station, after one foot pushes off there isn't a force to bring the astronaut back to the "floor" for the next step.

Answers

Final answer:

An astronaut cannot walk normally in a space station because there's no frictional force to move forward in the near-weightless environment. To move, astronauts use handholds and walls, pushing against them to create a reaction force.

Explanation:

It is impossible for an astronaut inside an orbiting space station to go from one end to the other by walking normally because C. In an orbiting station, after one foot pushes off there isn't a friction force to move forward. The astronaut would indeed "jump" in place due to the lack of friction between their feet and the floor of the space station, which is a result of the near-weightlessness they experience. In space, normal walking is ineffective because walking relies on gravity to pull the body back down to the floor after each step, which isn't present in the same way on a space station in orbit.

In order to move in such an environment, an astronaut must push against a solid object, creating a reaction force in the opposite direction according to Newton's third law of motion. This principle allows the astronaut to propel and steer themselves around the space station using handholds and walls. The environment inside the ISS is similar to that inside a freely falling box where gravity still exists, but occupants do not feel its effects because they are in free fall around Earth, which creates the sensation of weightlessness.

Final answer:

Astronauts cannot walk normally in an orbiting space station due to the lack of gravity and friction. They are in a state of free fall, creating a sensation of weightlessness. Movement can be achieved by utilizing the conservation of momentum and Newton's third law of motion. Therefore option C is the correct answer.

Explanation:

The reason it is impossible for an astronaut inside an orbiting space station to walk from one end to the other by walking normally is C. In an orbiting station, after one foot pushes off there isn't a friction force to move forward. The astronaut cannot walk from one end to the other by walking normally because, in the microgravity environment of an orbiting spacecraft, traditional walking, which relies on the force of gravity and friction between the feet and the ground, does not work. Instead, astronauts move about by pushing off surfaces or floating through the air.

In orbit, the International Space Station (ISS) and everything inside it, including the astronauts, are in a state of free fall. They are falling around Earth at the same rate as the space station, creating a sensation of weightlessness. This is akin to the sensation of temporary weightlessness one experiences at the topmost point of a roller coaster ride or when an elevator suddenly descends.

Achieving locomotion for an astronaut stranded in the center of the station without contact with any solid surface would necessitate a method that does not rely on gravity or friction. The astronaut would have to utilize the principle of conservation of momentum. For instance, by throwing an object in one direction, the astronaut would move in the opposite direction, as described by Newton's third law of motion: for every action, there is an equal and opposite reaction.

A circular coil of radius r = 5 cm and resistance R = 0.2 is placed in a uniform magnetic field perpendicular to the plane of the coil. The magnitude of the field changes with time according to B = 0.5 e-0.2t T. What is the magnitude of the current induced in the coil at the time t = 2 s? A circular coil of radius r = 5 cm and resistance R = 0.2 is placed in a uniform magnetic field perpendicular to the plane of the coil. The magnitude of the field changes with time according to B = 0.5 e-0.2t T. What is the magnitude of the current induced in the coil at the time t = 2 s? 1.3 mA 7.5 mA 2.6 mA 4.2 mA 9.2 mA

Answers

Answer:

the question is incomplete, the complete question is

"A circular coil of radius r = 5 cm and resistance R = 0.2 ? is placed in a uniform magnetic field perpendicular to the plane of the coil. The magnitude of the field changes with time according to B = 0.5 e^-t T. What is the magnitude of the current induced in the coil at the time t = 2 s?"

2.6mA

Explanation:

we need to determine the emf induced in the coil and y applying ohm's law we determine the current induced.

using the formula be low,

[tex]E=-\frac{d}{dt}(BACOS\alpha )\\[/tex]

where B is the magnitude of the field and A is the area of the circular coil.

First, let determine the area using [tex]\pi r^{2} \\[/tex] where r is the radius of 5cm or 0.05m

[tex]A=\pi *(0.05)^{2}\\ A=0.00785m^{2}\\[/tex]

since we no that the angle is at [tex]0^{0}[/tex]

we determine the magnitude of the magnetic filed

[tex]B=0.5e^{-t} \\t=2s[/tex]

[tex]E=-(0.5e^{-2} * 0.00785)[/tex]

[tex] E=-0.000532v\\[/tex]

the Magnitude of the voltage is 0.000532V

Next we determine the current using ohm's law

[tex]V=IR\\R=0.2\\I=\frac{0.000532}{0.2} \\I=0.0026A[/tex]

[tex]I=2.6mA[/tex]

Final answer:

The magnitude of the induced current in the coil at t = 2s in the given scenario is 2.4 mA. This is calculated using Faraday's law of electromagnetic induction and Ohm's law.

Explanation:

To find the magnitude of the current induced in the coil, we need to consider Faraday's law of electromagnetic induction. This law states that the induced electromotive force (emf) in any closed circuit is equal to the rate of change of the magnetic flux through the circuit.

In this situation, we have: B = 0.5 e-0.2t T, and the time derivative of the magnetic field is dB/dt = -0.1 e-0.2t T/s. The area A of the coil is πr²= π(0.05)² m². The induced emf (ε) equals -A dB/dt. Thus, we have ε = -π(0.05)² × -0.1 e-0.2t = 0.0007875 e-0.2t V.

Now, according to Ohm's law, I = ε/R, where R is the resistance of the coil. Substituting the given values, we have I = 0.0007875 e-0.2t / 0.2 = 0.0039375 e-0.2t A. At t=2s, we can substitute into the equation to get I = 0.0039375 e-0.4 = 0.0024 A or 2.4 mA. Therefore, the magnitude of the induced current at t = 2s is 2.4 mA.

Learn more about Electromagnetic Induction here:

https://brainly.com/question/32444953

#SPJ3

A boy is whirling a stone around his head by means of a string. The string makes one complete revolution every second; and the magnitude of the tension in the string is F. The boy then speeds up the stone, keeping the radius of the circle unchanged, so that the string makes two complete revolutions every second. What happens to the tension in the sting?

(A) The magnitude of the tension increases to four times its original value, 4F.
(B) The magnitude of the tension reduces to half of its original value, F/2.
(C) The magnitude of the tension is unchanged.
(D) The magnitude of the tension reduces to one-fourth of its original value, F/4.
(E) The magnitude of the tension increases to twice its original value, 2F.

Answers

Final answer:

When a stone is whirled at double the speed, the tension in the string increases to four times its original value, assuming the radius of the whirl remains the same.

Explanation:

The tension in a string whirling a stone in a circle at a constant speed is directly proportional to the square of the speed. If the boy doubles the speed in the scenario you gave, keeping the radius of the circle unchanged, the tension in the string would increase as the square of that factor. So, between the options given, if the boy increases the speed of the stone so that it makes two complete revolutions every second instead of one, the magnitude of the tension in the string increases to four times its original value. Thus, the correct answer is (A) the magnitude of the tension increases to four times its original value, 4F.

Learn more about Centripetal Force here:

https://brainly.com/question/31417673

#SPJ12

Final answer:

The tension in the string of a whirling stone increases by a factor of four when the speed of rotation doubles and the radius remains the same. It is because the tension is directly proportional to the square of the speed of the stone.

Explanation:

The tension in the string of a whirling stone is related to the centripetal force, which is directly proportional to the square of the speed of rotation and the mass of the stone, and inversely proportional to the radius of the circle. If the speed of rotation doubles (from one revolution per second to two revolutions per second) and the radius of the circle remains the same, the resulting tension in the string (centripetal force) increases by a factor of four.

Hence, the answer is (A) The magnitude of the tension increases to four times its original value, 4F.

Learn more about Centripetal Force here:

https://brainly.com/question/11324711

#SPJ11

Recall that force is a change in momentum over a change in time, the force due to radiation pressure reflected off of a solar sail can be calculated as 2 times the radiative momentum striking the sail per second. What is the approximate magnitude of the pressure on the sail in the vicinity of Earth’s Orbit?

Answers

Answer:

magnitude of the pressure on the sail in the vicinity of Earth’s Orbit= [tex]\frac{2I}{c}[/tex]

Explanation:

The momentum of a photon is:

p = E/c

E = the photon energy

c = the speed of light.

take the time derivative (gives the force)

F = dp/dt = (dE/dt)/c

F = 2(dE/dt)/c (is doubled for complete reflection of the light)

Intensity has the units of energy per unit time per unit area

=  I

then,

Force/unit area = 2I/c

magnitude of the pressure on the sail in the vicinity of Earth’s Orbit= [tex]\frac{2I}{c}[/tex]

Calculate the rotational inertia of a meter stick, with mass 0.71 kg, about an axis perpendicular to the stick and located at the 18 cm mark. (Treat the stick as a thin rod.)

Answers

To solve this problem we will use the parallel axis theorem for which the inertia of a point of an object can be found through the mathematical relation:

[tex]I = I_{cm} +mx^2[/tex]

Where

[tex]I_{cm}[/tex] = Inertia at center of mass

m = mass

x = Displacement of axis.

Our mass is given as 0.71kg,

m = 0.71kg

Para a Stick with length (L) the Moment of Inertia of the stick about and axis passing through the center and perpendicular to stick is

[tex]I_{cm} = \frac{1}{12} mL^2[/tex]

[tex]I_{cm} = \frac{1}{12} (0.71)(1)^2[/tex]

[tex]I_{cm} = 0.05916Kg\cdot m^2[/tex]

The distance between center of mass to the specific location is  

[tex]x = 50cm - 18cm[/tex]

[tex]x = 38cm = 0.38m[/tex]

So, from parallel axis theorem ,

[tex]I = I_{cm} + mx^2[/tex]

[tex]I =0.05916Kg\cdot m^2+ (0.71kg)(0.38m)^2[/tex]

[tex]I = 0.161684Kg\cdot m^2[/tex]

Therefore the rotational inertia is [tex]0.161684Kg\cdot m^2[/tex]

A 100 g aluminum calorimeter contains 250 g of water. The two substances are in thermal equilibrium at 10°C. Two metallic blocks are placed in the water. One is a 50 g piece of copper at 75°C. The other sample has a mass of 66 g and is originally at a temperature of 100°C. The entire system stabilizes at a final temperature of 20°C. Determine the specific heat of the unknown second sample. (Pick the answer closest to the true value.)A. 1950 joules Co/kgB. 975 joules Co/kgC. 3950 joules Co/kgD. 250 joules Co/kgE. 8500 joules Co/kg

Answers

Answer:

A. 1,950 J/kgºC

Explanation:

Assuming that all materials involved, finally arrive to a final state of thermal equilibrium, and neglecting any heat exchange through the walls of the calorimeter, the heat gained by the system "water+calorimeter" must be equal to the one lost by the copper and the unknown metal.

The equation that states how much heat is needed to change the temperature of a body in contact with another one, is as follows:

Q = c * m* Δt

where m is the mass of the body, Δt is the change in temperature due to the external heat, and c is a proportionality constant, different for each material, called specific heat.

In our case, we can write the following equality:

(cAl * mal * Δtal) + (cH₂₀*mw* Δtw) = (ccu*mcu*Δtcu) + (cₓ*mₓ*Δtₓ)

Replacing by the givens , and taking ccu = 0.385 J/gºC and cAl = 0.9 J/gºC, we have:

Qg= 0.9 J/gºC*100g*10ºC + 4.186 J/gºC*250g*10ºC  = 11,365 J(1)

Ql = 0.385 J/gºC*50g*55ºC + cₓ*66g*80ºC = 1,058.75 J + cx*66g*80ºC (2)

Based on all the previous assumptions, we have:

Qg = Ql

So, we can solve for cx, as follows:

cx = (11,365 J - 1,058.75 J) / 66g*80ºC = 1.95 J/gºC (3)

Expressing (3) in J/kgºC:

1.95 J/gºC * (1,000g/1 kg) = 1,950 J/kgºC

Final answer:

The specific heat of the unknown metal can be determined from the equilibrium of heat transfer in the system. The heat lost by the hot substances is equal to the heat gained by the cooler substances. Solving for the specific heat of the unknown substance involves calculating the heat gained and lost and equating their values.

Explanation:

The specific heat of a substance is a measure of the amount of heat energy required to raise the temperature of a certain mass of the substance by a certain amount. In this case, we're solving for the specific heat (c) of an unknown substance. As the system is in thermal equilibrium, the heat lost by hot substances (copper and unknown metal) is equal to the heat gained by the cooler substances (water and the calorimeter).

The specific heat (c) of the unknown substance can therefore be determined by setting the heat gained (Q_gained = m*c*ΔT) by the cooler substances equal to the heat lost (Q_lost = m*c*ΔT) by the hot substances and solving for the specific heat (c) of the unknown substance. Given that ΔT is the change in temperature, m is the mass, and c is the specific heat, and using the specific heat values for water, aluminum, and copper.

Learn more about Specific Heat here:

https://brainly.com/question/28852989

#SPJ3

Did you think about this over Christmas? I did (-: Before Christmas a 65kg student consumes 2500 Cal each day and stays at the same weight. For three days in a row while visiting her parents she eats 3500 Cal and, wanting to keep from gaining weight decides to "work off" the excess by jumping up and down at the Christmas tree. With each jump she accelerates to a speed of 3.2 m/s before leaving the ground. a) How high will she jump each jump? b) How many jumps must she do to keep her weight? Assume that the efficiency of the body in using energy is 25%. c) Do you suggest that is a reasonable way for the student not to gain weight over Christmas? d) Possible enhancement: What other way/ways would you suggest for the student to keep her weight?

Answers

Answer:

a)  Em = 332.8 J , b) # jump = 13, c)   It is reasonable since there are not too many jumps , d) lower the calories consumed

Explanation:

a) Let's use energy conservation

Initial. On the floor

             Em₀ = K = ½ m v²

Final. The highest point

             Emf = U = m g h

Energy is conserved

             Em₀ = Emf

             ½ m v² = m g h

             h = ½ v² / g

            h = ½ 3.2² /9.8

            h = 0.52 m

b) When he was at home he maintained his weight with 2500 cal / day. In his parents' house he consumes 3500 cal / day, the excess of calories is

            Q = 3500 -2500 = 1000cal / day

Let's reduce this value to the SI system

             Q = 1000 cal (4,184 J / 1 cal) = 4186 J / day

Now the energy in each jump is

               Em = K = ½ m v²

               Em = ½ 65 3.2²

               Em = 332.8 J

They indicate that the body can only use 25% of this energy

              Em effec = 0.25 332.8 J

              Em effec = 83.2 J

This is the energy that burns the body

Let's use a Proportion Rule (rule of three), if a jump spends 83.2J how much jump it needs to spend 1046 J

              # jump = 1046 J (1 jump / 83.2 J)

              # jump = 12.6 jumps / day

              # jump = 13  

c) It is reasonable since there are not too many jumps

d) That some days consume more vegetables to lower the calories consumed

Suppose that you lift four boxes individually, each at a constant velocity. The boxes have weights of 3.0 N, 4.0 N, 6.0 N, and 2.0 N, and you do 12 J of work on each. Match each box to the vertical distance through which it is lifted.

Answers

Answer:

The vertical distance of weight 3.0 N = 4 m, vertical distance of weight 4.0 N = 3 m, vertical distance of weight 6.0 N = 2 m, vertical distance of weight 2.0 N = 6 m

Explanation:

Worked : work can be defined as the product of force and distance.

The S.I unit of work is Joules (J).

Mathematically it can be represented as,

W = F×d.................. Equation 1

d = W/F.............................. Equation 2

where W = work, F = force, d = distance.

Given: W = 12 J

(i) for the 3.0 N weight,

using equation 2

d = 12/3

d= 4 m.

(ii) for the 4.0 N weight,

d = 12/4

d = 3 m.

(iii) for the 6.0 N weight,

d = 12/6

d = 2 m.

(iv) for the 2.0 N weight,

d = 12/2

d = 6 m

Therefore vertical distance of weight 3.0 N = 4 m, vertical distance of weight 4.0 N = 3 m, vertical distance of weight 6.0 N = 2 m, vertical distance of weight 2.0 N = 6 m

A navy seal of mass 80 kg parachuted into an enemy harbor. At one point while he was falling, the resistive force of air exerted on him was 520 N. What can you determine about the motion?

Answers

Answer:

The motion of the parachute = 3.3 m/s²

Explanation:

Weight of the parachute - Resistive force of air = ma

W - Fₐ  = ma.................... Equation 1

making a the subject of formula in equation 1

a = (W- Fₐ)/m.................. Equation 2

Where W = weight of the parachute, Fₐ = resistive force of air, m = mass of the parachute, a = acceleration of the parachute

Constant: g = 9.8 m/s²

Given: Fₐ = 520 N, m = 80 kg

W = mg = 80 × 9.8 = 784 N,

Substituting these values into equation 2

a = (784-520)/80

a = 264/80

a = 3.3 m/s²

Therefore the motion of the parachute = 3.3 m/s²

Car drag racing takes place over a distance of a mile (402 m) from a standing start. If a car (mass 1600 kg) could be propelled forward with a pulling force equal to that of gravity, what would be the change in kinetic energy and the terminal speed of the car (in mph) at the end of the race be? (For comparison, a modern, high-performance sports car may reach a terminal speed of just over 100 mph = 44.7 m/s.)

Answers

Answer:

v = 88.76 m / s ,  K = 6.30 10⁶ J

Explanation:

For this exercise the force that is applied is that necessary for the acceleration of the car to be the acceleration of gravity, they do not indicate that there is friction, we look for the final speed

       v² = v₀² + 2 a x

Since the car starts from rest, the initial speed is zero, vo = 0

       v = √ 2 a x

       v = √ (2 9.8 402)

       v = 88.76 m / s

Let's look for kinetic energy

       K = ½ m v²

       K = ½ 160kg 88.76²

       K = 6.30 10⁶ J

If a nucleus decays by gamma decay to a daughter nucleus, which of the following statements about this decay are correct? (There may be more than one correct choice.)

a)The daughter nucleus has fewer protons than the original nucleus.

b)The daughter nucleus has the same number of nucleons as the original nucleus.

c)The daughter nucleus has more protons than the original nucleus.

d)The daughter nucleus has fewer neutrons than the original nucleus. The daughter nucleus has more neutrons than the original nucleus

Answers

Answer: Option (b) is the correct answer.

Explanation:

A gamma particle is basically a photon of electromagnetic radiation with a short wavelength.

Symbol of a gamma particle is [tex]^{0}_{0}\gamma[/tex]. Hence, charge on a gamma particle is also 0.

For example, [tex]^{234}_{91}Pa \rightarrow ^{234}_{91}Pa + ^{0}_{0}\gamma + Energy[/tex]

So, when a nucleus decays by gamma decay to a daughter nucleus then there will occur no change in the number of protons and neutrons of the parent atom but there will be loss of energy as a nuclear reaction has occurred.

Thus, we can conclude that the statement daughter nucleus has the same number of nucleons as the original nucleus., is correct about if  a nucleus decays by gamma decay to a daughter nucleus.

Answer: Option (b) is the correct answer.

Explanation:

A gamma particle is basically a photon of electromagnetic radiation with a short wavelength.

I am standing next to the edge of a cliff. I throw a ball upwards and notice that 4 seconds later it is traveling downwards at 10 m/s. Where is the ball located at this time? (Pick the answer closest to the true value.)A. 120 meters above me B. 30 meters below meC. 30 meters above meD. 120 meters below meE. At the same height that it started

Answers

Answer:

Explanation:

Given

Velocity after t=4 sec is v=10 m/s downward

assuming u is the initial upward velocity

[tex]v=u+at[/tex]

[tex]-10=u-gt[/tex]

[tex]u=9.8\times 4-10=29.2 m/s[/tex]

[tex]v^2-u^2=2 as[/tex]

[tex](-10)^2-(29.2)^2=2\times (-9.8)\cdot s[/tex]

[tex]s=\frac{29.2^2-10^2}{2\times 9.8}[/tex]

[tex]s=38.4 m[/tex]

i.e. 38.4 m above the initial thrown Position  

A 1 m long wire of diameter 1mm is submerged in an oil bath of temperature 25-degC. The wire has an electrical resistance per unit length of 0.01 Ω/m. If a current of 100 A flows through the wire and the convection coefficient is 500W/m2K, what is the steady state temperature of the wire? From the time the current is applied, how long does it take for the wire to reach a temperature within 1-degC of the steady state value? The density of the wire is 8,000kg/m3, its heat capacity is 500 J/kgK and its thermal condu

Answers

To determine the steady state temperature of the wire, one can use the power dissipation formula and the convection heat transfer equation. The time for the wire to reach within 1-degree Celsius of steady state involves transient heat transfer calculations using the given material properties.

The student has asked about the steady state temperature of a 1-meter-long wire with a 1mm diameter submerged in an oil bath at 25 degrees Celsius when a current of 100A flows through it. We also need to calculate how long it takes for the wire to reach within 1-degree Celsius of the steady state temperature. To find the steady state temperature, we use the formula P = I2R, where P is the power, I is the current, and R is the resistance. Given that R = 0.01
Ω/m and I = 100A, we find P = (100A)2 x 0.01
Ω/m = 100W/m. Then, using the convection heat transfer equation Q = hA(Ts - T
bath), where Q is the heat transfer rate, h is the convection coefficient, A is the surface area, Ts is the wire surface temperature, and Tbath is the oil bath temperature, we equate Q to P since the wire is in steady state, and solve for Ts. The time to reach within 1-degree Celsius of steady state temperature requires calculating the transient heat transfer, which involves solving the heat transfer equation with the given material properties such as density, heat capacity, and thermal conductivity.

The steady-state temperature of the wire is approximately [tex]\(343.471 {°C}\)[/tex], and it takes approximately [tex]\(1.539[/tex],  for the wire to reach within 1°C of the steady-state value.

Steady-State Temperature Calculation:

  - Calculate the radius [tex](\(r\))[/tex] of the wire:

   [tex]\[ r = \frac{d}{2} = \frac{0.001 \, \text{m}}{2} = 0.0005 \, \text{m} \][/tex]

  - Calculate the surface area [tex](\(A\))[/tex] of the wire:

   [tex]\[ A = 2\pi r l = 2\pi \times 0.0005 \times 1 = 0.00314 \, \text{m}^2 \][/tex]

  - Calculate the heat transfer rate [tex](\(q\))[/tex]:

   [tex]\[ q = I^2 R = (100)^2 \times 0.01 = 1000 \, \text{W} \][/tex]

  - Calculate the steady-state temperature [tex](\(T_{\text{wire}}\))[/tex]:

    [tex]\[ T_{\text{wire}} = \frac{q}{hA} + T_{\text{fluid}} \][/tex]

    [tex]\[ T_{\text{wire}} \approx \frac{1000}{500 \times 0.00314} + 298.15 \][/tex]

    [tex]\[ T_{\text{wire}} \approx 343.471 \, \text{°C} \][/tex]

Time to Reach Within 1°C of Steady-State:

  - Calculate the volume [tex](\(V\))[/tex] of the wire:

    [tex]\[ V = \pi r^2 l = \pi \times (0.0005)^2 \times 1 = 7.854 \times 10^{-7} \, \text{m}^3 \][/tex]

  - Calculate the thermal time constant [tex](\(\tau\))[/tex]:

    [tex]\[ \tau = \frac{\rho V c}{hA} \][/tex]

   [tex]\[ \tau \approx \frac{8000 \times 7.854 \times 10^{-7} \times 500}{500 \times 0.00314} \][/tex]

    [tex]\[ \tau \approx 0.7854 \, \text{s} \][/tex]

  - Calculate the time [tex](\(t\))[/tex] it takes for the wire to reach within 1°C of the steady-state value:

    [tex]\[ t = \tau \ln\left(\frac{T_{\text{steady}} - T_{\text{initial}}}{T_{\text{steady}} - T_{\text{fluid}}}\right) \][/tex]

    [tex]\[ t \approx 0.7854 \times \ln\left(\frac{343.471 - 25}{343.471 - 298.15}\right) \][/tex]

   [tex]\[ t \approx 0.7854 \times \ln\left(\frac{318.471}{45.321}\right) \][/tex]

   [tex]\[ t \approx 0.7854 \times \ln(7.032) \][/tex]

   [tex]\[ t \approx 1.539 \, \text{s} \][/tex]

The headlights of a car are 1.6 m apart and produce light of wavelength 575 nm in vacuum. The pupil of the eye of the observer has a diameter of 4.0 mm and a refractive index of 1.4. What is the maximum distance from the observer that the two headlights can be distinguished?

Answers

To solve this problem it is necessary to apply the concepts related to angular resolution, for which it is necessary that the angle is

[tex]\theta = 1.22\frac{\lambda}{nd}[/tex]

Where

d = Diameter of the eye

n = Index of refraction

D = Distance between head lights

[tex]\lambda[/tex]= Wavelength

Replacing with our values we have that

[tex]\theta = 1.22 \frac{(1.22)(575*10{-9})}{1.4(4*10^{-3})}[/tex]

[tex]\theta = 1.252*10^{-4}rad[/tex]

Using the proportion of the arc length we have to

[tex]L = \frac{D}{\theta}[/tex]

Where L is the maximum distance, therefore

[tex]L = \frac{1.6}{1.252*10^{-4}}[/tex]

[tex]L = 12.77km[/tex]

Therefore the maximum distance from the observer that the two headlights can be distinguished is 12.77km

Which of the following statements correctly describes the law of conservation of energy? Group of answer choicesa. Mass cannot be created but it can be destroyed under extreme pressures.b. Mass cannot be conserved during a chemical reaction; a little bit of mass is always lost.c. The mass of a closed system cannot change over time; mass cannot be created nor destroyed.d. When added to a system, energy can destroy mass.

Answers

To solve this problem we will also apply the concept related to the conservation of the mass, which announces that: "In an isolated system, during any ordinary chemical reaction, the total mass in the system remains constant, that is, the mass consumed by the reagents is equal to the mass of the products obtained. "

If the mass is in a closed system, it cannot change. This assessment should not be confused with the transformation of the matter within it, for which it is possible that over time the matter will change from one form to another. For example during a chemical reaction, there is a rupture of links to reorganize into another, but said mass in the closed system is maintained.

The correct answer is:

C. "The mass of a closed system cannot change over time; mass cannot be created or destroyed."

The following statements correctly describe the law of conservation of energy - c. The mass of a closed system cannot change over time; mass cannot be created nor destroyed

The law of conservation of mass states that the mass is an isolated system that can not be created nor destroyed.

conserved means saved, so according to the law of conservation of mass refers to the "saving" of mass.

Thus, The following statements correctly describe the law of conservation of energy - c. The mass of a closed system cannot change over time; mass cannot be created nor destroyed

Learn more:

https://brainly.com/question/13416057

A forward-biased silicon diode is connected to a 12.0-V battery through a resistor. If the current is 12 mA and the diode potential difference is 0.70 V, what is the resistance?

Answers

To solve this problem we will use the concepts related to Ohm's law for which voltage, intensity and resistance are related.

Mathematically this relationship is given as

[tex]V = IR \rightarrow R= \frac{V}{I}[/tex]

Where,

V= Voltage

I = Current

R = Resistance

The value of the given voltage is 12V, while the current is 12mA, therefore the resistance would be

[tex]R = \frac{12}{12*10^{-3}}[/tex]

[tex]R = 1000 \Omega[/tex]

Therefore the resistance is [tex]1000\Omega[/tex]

A 30 gram bullet is shot upward at a wooden block. The bullet is launched at the speed vi. It travels up 0.40 m to strike the wooden block. The wooden block is 20 cm wide and 10 cm high and its thickness gives it a mass of 500 g. The center of mass of the wooden block with the bullet in it travels up a distance of 0.60 m before reaching its maximum height. a. What is the launch speed of the bullet? b. How much mechanical energy does the bullet and the block system have before all of the processes? Use the surface the block rests on as the reference for where gravitational potential energy is zero. c. How much mechanical energy does the bullet and the block system have after all of the processes? d. How much mechanical energy was lost from beginning to end?

Answers

Answer:

Explanation:

Mass of bullet m = .03 kg

Mass of wooden block M = 0.5 kg

Since the center of mass of the wooden block with the bullet in it travels up a distance of 0.60 m before reaching its maximum height

Velocity of wooden block + bullet just after impact = √2gH

=√(2 x 9.8 x 0.6)

= 3.43 m / s

Let the launch velocity of bullet be v₁

If v₂ be the velocity with which bullet hits the block

Applying law of conservation of momentum

.03 x v₂ = .530 x 3.43

v₂ = 60.6 m /s

if v₁ be initial velocity

v₂² = v₁² - 2 gh

v₁² = v₂² + 2 gh

= 60.6 ² + 2 x 9.8 x 0.4

v₁ = 60.65 m /s this is launch speed.

b )

Initial kinetic energy of bullet

= 1/2 m v²

= .5 x .03 x 3680

= 55 J

Potential energy of bullet + block = 0

Total energy = 5 J

c)

Kinetic energy of bullet block system

1/2 m v²

= .5 x .53 x  3.43

= 3.11 J

d )

Loss of energy in the impact =  Total mechanical energy  lost from beginning to end?

3.11 J  - 5

= 1.89 J

10 kg of liquid water is in a container maintained at atmospheric pressure, 101325 Pa. The water is initially at 373.15 K, the boiling point at that pressure.The latent heat of water -> water vapor is 2230 J/g. The molecular weight of water is 18 g.103 J of heat is added to the water.1)How much of the water turns to vapor?mass(vapor)=

Answers

Answer:

[tex]m=0.0462\ g[/tex] of water is converted into vapour.

Explanation:

Given:

mass of water, [tex]m_w=10\ kg[/tex]pressure conditions, [tex]P=101325\ Pa[/tex]temperature conditions, [tex]T=373.15\ K[/tex]latent heat of vapourization of water, [tex]L=2230\ J.g^{-1}[/tex]amount of heat supplied to the water, [tex]103\ J[/tex]

Now using the equation of heat considering latent heat only:

(since water already at boiling point at atmospheric temperature)

[tex]Q=m.L[/tex]

[tex]103=m\times 2230[/tex]

[tex]m=0.0462\ g[/tex] of water is converted into vapour.

Final answer:

In the situation provided, about 46.2 grams of the water will have transitioned from a liquid to a vapor after being supplied with 103 kJ of energy, given the specified latent heat of vaporization.

Explanation:

Given that the latent heat of water's vaporization is 2230 J/g and 103 J of energy was provided to the water, we first convert all our units to be consistent. Remember that the latent heat of vaporization is the amount of heat energy required to change one gram of a substetance from a liquid to a gas at constant mperature and pressure. In this case, we're transitioning water to water vapor.

The input energy is 103 kJ, and the latent heat of vaporization is 2.23 kJ/g, so we can calculate the mass of the water that was vaporized using the equation: mass (g) = energy input (kJ) / latent heat of vaporization (kJ/g). By plugging in the values we get: mass = 103 / 2.23 = 46.2 grams.

So, approximately 46.2 grams of the water will have transitioned from a liquid to a vapor given the provided energy input of 103 kJ.

Learn more about Latent Heat of Vaporization here:

https://brainly.com/question/35904400

#SPJ12

Twist-on connectors without the spring-steel coils (plastic threads only) are suitable for making branch-circuit connections.

A. TrueB. False

Answers

Answer:

if it is a plastic connector it wont work but if there is metal or steel it will work

Explanation:

8–4. The tank of the air compressor is subjected to an internal pressure of 90 psi. If the internal diameter of the tank is 22 in., and the wall thickness is 0.25 in., determine the stress components acting at point A. Draw a volume element of the material at this point, and show the results on the element.

Answers

Answer:

The stress S = 1935 [Psi]

Explanation:

This kind of problem belongs to the mechanical of materials field in the branch of the mechanical engineering.

The initial data:

P = internal pressure [Psi] = 90 [Psi]

Di= internal diameter [in] = 22 [in]

t = wall thickness [in] = 0.25 [in]

S = stress = [Psi]

Therefore

ri = internal radius = (Di)/2 - t = (22/2) - 0.25 = 10.75 [in]

And using the expression to find the stress:

[tex]S=\frac{P*D_{i} }{2*t} \\replacing:\\S=\frac{90*10.75 }{2*0.25} \\S=1935[Psi][/tex]

In the attached image we can see the stress σ1 & σ2 = S acting over the point A.

A projectile of mass m is fired straight upward from the surface of an airless planet of radius R and mass M with an initial speed equal to the escape speed vesc (meaning the projectile will just barely escape the planet's gravity -- it will asymptotically approach infinite distance and zero speed.) What is the correct expression for the projectile's kinetic energy when it is a distance 9R from the planet's center (8R from the surface). Ignore the gravity of the Sun and other astronomical bodies. KE (at r = 9R) is:a. GMm/9Rb. GMm/8Rc. 1/2mvesc^2d. -GMm/8Re. None of these

Answers

Answer:

K = G Mm / 9R

Explanation:

Expression for escape velocity V_e = [tex]\sqrt{\frac{2GM}{R} }[/tex]

Kinetic energy at the surface = 1/2 m V_e ²

= 1/2 x m x 2GM/R

GMm/R

Potential energy at the surface

= - GMm/R

Total energy = 0

At height 9R ( 8R from the surface )

potential energy

= - G Mm / 9R

Kinetic energy = K

Total energy will be zero according to law of conservation of mechanical energy

so

K  - G Mm / 9R = 0

K = G Mm / 9R

In the fastest measured tennis serve, the ball left the racquet at 73.14 m/s. A serve tennis ball is typically in contact with the racquet for 30.0 ms and starts from rest. Assume constant acceleration.(a) what was the ball's acceleration during this serve??(b) how far did the ball travel during the serve???

Answers

Answer:

a)  the acceleration is a= 2438 m/s²

b) the distance travelled during serve is d = 1.0971 m

Explanation:

a) since

v = vo + a*t ,

where v= velocity at time t , vo= velocity at time t=0 and a= acceleration

,then

a= (v-vo)/t

replacing values

a= (v-vo)/t = (73.14 m/s - 0 m/s)/( 30* 10⁻³ s) = 2438 m/s²

b) the distance travelled d is

v² = vo² + 2*a*d  

then

d = (v² - vo²) /(2*a) = (73.14 m/s)² - 0²)/(2*2438 m/s²)= 1.0971 m

a)  the acceleration is a= 2438 m/s²

b) the distance travelled during serve is d = 1.0971 m

What is acceleration?

Acceleration represents the rate at which velocity should be changed with time, with respect to both speed and direction. Since acceleration contains both a magnitude and a direction, it is a vector quantity.

Calculation of acceleration & distance:

a) since

[tex]v = vo + a\times t[/tex]

Here

v= velocity at time t ,

vo= velocity at time t=0

and a= acceleration

Now

[tex]a= (v-vo)\div t\\\\ =(73.14 m/s - 0 m/s)/( 30\times 10^{-3} s)[/tex]

= 2438 m/s²

b) Now the distance traveled d is

[tex]v^2 = vo^2 + 2\times a\times d \\\\d = (v^2 - vo^2) \div (2\timesa) \\\\=(73.14 m/s)^2 - 0^2)\div (2\times 2438 m/s^2)[/tex]

= 1.0971 m

Find out more information about the  Distance here :brainly.com/question/21470320?referrer=searchResults

The magnetic field in a plane monochromatic electromagnetic wave with wavelength λ = 598 nm, propagating in a vacuum in the z-direction is described by B =(B1sin(kz−ωt))(i^+j^) where B1 = 8.7 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively. What is k, the wavenumber of this wave?

Answers

Answer:

For this given plane monochromatic electromagnetic wave with wavelength λ=598 nm, the wavenumber is [tex]k=0,0105\ x\ 10^{-9}\ m^{-1}[/tex] .

Explanation:

For a plane electromagnetic wave we have that the electrical and magnetic field are:

[tex]E(r,t)=E_{0}\ cos ( wt-kr)\\\ B(r,t)=B_{0}\ cos(wt-kr)[/tex]

In this case we have the data for the magnetic field. We are told that the magnetic field in a plane electromagnetic wave with wavelength λ=598 nm, propagating in a vacuum in the z direction ([tex]\hat k[/tex]) is described by

         [tex]B=8.7\ x\ 10^{-6}\ T sin(kz-wt) (\hat i+\hat j)[/tex]

([tex]\hat i,\hat j, \hat k[/tex] are the unit vectors in the x,y,z directions respectively)

The wavenumber k is a measure of the spatial frequency of the wave, is defined as the number of radians per unit distance:

          [tex]k=\frac{2\pi}{\lambda}[/tex]

where λ is the wavelength

So we get that

[tex]k=\frac{2\pi}{\lambda} \rightarrow k=\frac{2\pi}{598 nm}  \rightarrow k=0,0105\ x\ 10^{9}\ m^{-1}[/tex]

The wavenumber is

            [tex]k=0,0105\ x\ 10^{9}\ m^{-1}[/tex] .

An observer sits in a boat watching wave fronts move past the boat. The distance between successive wave crests is 0.80 m, and they are moving at 2.2 m / s.

What is the wavelength of these waves?
a. 1.6 m
b. 2.2 m
c. 0.80 m

What is the frequency of these waves?
a. 0.36 Hz
b. 2.8 Hz
c. 0.80 Hz

What is the period of these waves?
a. 0.80 s
b. 0.36 s
c. 2.8 s

Answers

To solve this problem we will use the three requested concepts: Wavelength, frequency and period.

The wavelength is the distance between each crest, therefore it is already given and is 0.8m

The correct answer is C.

The frequency can be described as a relationship between wave speed and wavelength therefore

[tex]f = \frac{v}{\lambda}[/tex]

[tex]f = \frac{2.2}{0.8}[/tex]

[tex]f = 2.75Hz \approx 2.8Hz[/tex]

The correct answer is B.

The period is the inverse of the frequency therefore

[tex]T = \frac{1}{f}[/tex]

[tex]T = \frac{1}{2.8}[/tex]

[tex]T = 0.35s[/tex]

The correct answer is B.

(a) The wavelength of the wave is 0.80m and the right option is c.

(b) The frequency of the wave is 2.8 Hz and the right option is b.

(c) The period of the wave is 0.36 s and the right option is b

(a) The distance between successive wave crests = wavelength of the wave

From the question,

(a) Wavelength = 0.80 m

Hence the wavelength = 0.80 m

(b) Using,

     V = λf.............. Equation 1

Where V = Velocity of the wave, λ = wavelength of the wave, f = frequency of the wave.

f = V/λ.................... Equation 2

Given: V = 2.2 m/s, λ = 0.80 m

Substitute these values into equation 2

f = 2.2/0.8

f = 2.75 Hz.

f ≈ 2.8 Hz

Hence the frequency of the wave is 2.8 Hz

(c) f = 1/T.............. Equation 3

Where T = period.

Therefore,

T = 1/f .................. 4

Given: f = 2.8 Hz,

T = 1/2.8

T = 0.357

T ≈ 0.36 s

Hence the period of the wave = 0.36 s

Learn more about wave here: https://brainly.com/question/2820199

Other Questions
You have just been appointed as director of your company's corporate training division. The CEO of your company has been displeased with your company's prior training programs, so you are tasked with rehauling the entire training division. You convene a meeting of all training division managers to decide on the types of training that the division will implement. One of your managers is a firm supporter of e-training programs for employees in your company's international offices. He touts the benefits of e-programs by stressing that ________. __________ process characterizes groups in negative stereotypes rooted in racial ideology. it demeans the group and often time suggests by imagery that they are satanic or animalistic and exaggerate physical features and unattractive attitudes and behaviors What measure should financial managers use when they do not know the internal rate of return How fast must a 3000 kg elephant move to have the same kinetic energy as a 65 spinter running at 10ms? What sort of character is Circe? Why (aside from her magic) is she able to turn Odysseus' men into swine? What have they done to offend her, or what weakness do they show? Wire resistor A has twice the length and twice the cross sectional area of wire resistor B. Which of the following accurately compares the resistances of wire resistors A and B?a)Wire A has twice the resistance of wire B.b)Wire A has half the resistance of wire B.c)Wire A has the same resistance as wire B.d)None of the above 4. An object falls from the top of a storage cabinet 2 meters high. Howlong does it take to reach the floor? Which statement describes immigration to the United States between 1860 and 1900? Immigration stopped almost completely after the civil war. The Germans and the Irish made up the largest groups of immigrants. The Russians and the Chinese made up the largest groups of immigrants. Economic conditions in Europe had little effect on immigration. who were the contributing scientists that discovered how muscle contraction worked what is grendel compared to in the biblical allusions Which of Baumrind's parenting styles best describes a child-rearing situation in which parents let their children do pretty much what they want? Es el verano y hace buen tiempo, pues la fiesta_____(estar) en un parque cerca de nuestra casa. Enla fiesta, nosotros_____(tener) una piata,y muchos globos.What are the correct conjugations? Under what grounds does Daniel Webster (Document #1) oppose the doctrine of the ability of a state to nullify federal laws? What justifications does South Carolina (Document #2) employ to defend their decision to nullify federal laws? In comparing these two primary documents, whose arguments regarding the concept of nullification are most persuasive to you and why?Required : Less than or equal to a page.This assignment has several documents for you to read and view in order to answer the five required questions. Please follow any formatting guidelines and minimum length requirements as set by your professor. Please take your time to analyze these documents and submit thoughtful arguments supported by the evidence these documents provide. Because of the principle of "rule of law," A. states can choose whether to follow national lawsB. people can legally break laws they do not agree withC. even the president can be arrested and placed on trialD. trials are not often necessary because the law is the judge Prove that it is impossible to dissect a cube into finitely many cubes, no two of which are the same size. Mice who received a paired tone and shock 20 times and the same tone with no shock 20 times were not successfully conditioned to fear the tone. Mice who received a shock every time the tone sounded wereconditioned to fear the tone. This observation supports the _____ theoryof classical conditioning.A.PavlovianB. cognitiveC. emotion-basedD. original How does the sahara desert act like a barrier between North Africa and sub-saharan Africa. (10 points) Consider a roulette wheel consisting of 38 numbers 1 through 36, 0, and double 0. If Smith always bets that the outcome will be one of the numbers 1 through 12, what is the probability that a. Smith will lose his first 5 bets; b. his first win will occur on his fourth bet? Motivation at The Container Store There are many motivation theories. Part of what makes a given manager a high performer is his or her ability to motivate workers. The more managers understand about motivation, the better they are at choosing the appropriate motivational technique for given circumstances. The Container Store recognizes this and uses many types of motivational techniques. Because they are so successful at motivating employees, turnover at the Container Store is 11 percent in an industry which regularly sees 100% or greater turnover. How well can you identify the motivational theories that underlie the Container Stores efforts? Kip Tindell and Garrett Boone founded The Container Store in Dallas, Texas, in 1978, and Tindell currently serves as CEO and chairman (Boone is chairman emeritus). When they opened their first store, they were out on the floor, trying to sell customers their storage and organization products that would economize on space and time and make purchasers lives a little less complicated. The Container Store has grown to include 79 stores in U.S. markets from coast to coast; whereas the original store in Dallas had only 1,600 square feet, the stores today average around 25,000 square feet. The phenomenal growth in the size of the stores has been matched by impressive growth rates in sales and profits. Managers at The Container Store are often found on the shop floor, tidying shelves and helping customers carry out their purchases. And that, perhaps, is an important clue to the secret of their success. The Container Store has been consistently ranked among Fortunemagazines "100 Best Companies to Work For" for 17 years running. In 2016 The Container Store was 14th on this list. Early on, Tindell and Boone recognized that people are The Container Stores most valuable asset and that after hiring great people, one of the most important managerial tasks is motivating them. One would think motivating employees might be especially challenging in the retail industry, which has an average annual turnover rate of 100 percent or more. At The Container Store, however, annual voluntary turnover is less than 10 percent, a testament to Tindells and other managers ability to motivate When the Philadelphia City Council rebuilt Love Park with new benches and planters, what step in the policy cycle was it following? Steam Workshop Downloader