Answer:
The Microscope...
In plant cells what forms midway between the divided nuclei during cytokinesis
Answer:
Cell plate
Explanation:
Cell plate is a plate that forms during the cytokinesis of the plants, and helps in separation of chromosomes in two new cells and in new cell wall formation. Vesicles that contain components for the new cell wall and cell membrane) are transported from the Golgi apparatus to the to the plane of cell division. Vesicles fuse within the plate. Direction of the cell plate growth is from the center towards the plasma membrane. This growth depends on phragmoplast, structure that acts as a scaffold. When cytokinesis is complete, cell plate becomes the new cell wall.
In plant cells, a structure known as the cell plate forms midway between the divided nuclei during cytokinesis. This process involves Golgi vesicles coming together at the former metaphase plate, forming a phragmoplast. The cell plate, formed from the fusion of these vesicles, grows outwards to the cell walls, eventually becoming the new cell wall.
Explanation:During cytokinesis in plant cells, following the division of the nucleus, a structure known as the cell plate forms midway between the divided nuclei. This important process is facilitated through the help of Golgi vesicles that coalesce at the former metaphase plate, creating a structure referred to as a phragmoplast.
The cell plate, created by the fusion of these vesicles, grows from the center towards the cell walls. The membranes of the Golgi vesicles effectively fuse to form a new plasma membrane that divides the parent cell into two daughter cells. The cell plate further develops into the newly formed cell wall that separates the two newly created cells post cell division.
Learn more about Cytokinesis in Plant Cells here:https://brainly.com/question/33513921
#SPJ12
Chemicals released into the space between nerve cells that bind to receptors are called
A. neurotransmitters.
B. action potentials.
C. platelets.
D. neurochemicals.
Answer:
A
Explanation:
Neurotransmitters are your body's chemical messengers. They carry messages from one nerve cell across a space to the next nerve, muscle or gland cell. Therefore, option (A) is correct.
What are neurotransmitter ?Without chemical messengers, also known as neurotransmitters, your body simply cannot work properly. They are in charge of carrying chemical "messages" from one neuron (nerve cell) to the subsequent target cell in the chain of cells. It's possible that the next cell to be targeted is a gland, a muscle cell, or even another nerve cell.
Neurotransmitters are molecules that go between cells and attach themselves to particular receptors located on the cells they are trying to communicate with. Every neurotransmitter has its own specific receptor that it binds to. Dopamine molecules, for instance, bind themselves to dopamine receptors in the brain. When they attach to one another, it sets off a chain reaction in the cells that they are targeting.
Therefore, chemicals released into the space between nerve cells that bind to receptors are called neurotransmitters.
Learn more about neurotransmitter, here:
https://brainly.com/question/9725469
#SPJ2
When anton asks vincent , “how are you doing this “how does vincent answer
Answer:
"I never saved anything for the swim back."
Answer:
hihi
Explanation:
When an amoeba undergoes reproduction, the end result are two totally independent organisms. Which term best describes the amoeba's reproductive strategy?
A. Meiosis
B. Fusion
C. Fission
D. Sexual reproduction
Answer:
C. Fission
Explanation:
Amoeba reproduces by asexual reproduction method - binary fission. After replicating its genetic material through mitosis, the cell divides into two independent equal sized daughter cells.
Answer:
C. Fission
Explanation:
bc when cells pull apart from each other its called binary fission
When Mendel crossed yellow-seeded and green-seeded pea plants, what happened?
Answer:
Offspring in F1 generation had yellow-seeded pea plants.
Explanation:
When Mendel used yellow-seeded and green-seeded pea plants as parents plants he noticed that all of the offspring of the first generation (F1) were yellow-seeded plants. In the next following generation (F2), phenotype ratio was 3:1 (yellow:green).
After this observation Mendel conclude that yellow-seeded plants are dominant over green-seeded plants. Since he used purebred plants, genotypes were:
P: AA x aa
F1: Aa Aa Aa Aa
F2: AA Aa Aa aa
AA and Aa are genotypes for the yellow seeds, while aa is genotype for green seeds.
Which statement correctly distinguishes the roles of protein kinases and protein phosphatases in signal transduction pathways?
A) Protein kinases activate enzymes by phosphorylating or adding phosphate groups to them. Protein phosphatases dephosphorylate or remove phosphate groups from enzymes, including protein kinases.
B) Protein kinases are involved in signal transduction in unicellular eukaryotes such as yeast. Protein phosphatases are involved in signal transduction in multicellular eukaryotes.
C) Protein kinases are more critical than protein phosphatases to signal transduction enzymes.
Final answer:
The correct statement is that protein kinases activate enzymes by phosphorylating them, and protein phosphatases deactivate enzymes by dephosphorylating them, playing complementary roles in signal transduction pathways.
Explanation:
The statement that correctly distinguishes the roles of protein kinases and protein phosphatases in signal transduction pathways is:
Protein kinases activate enzymes by phosphorylating or adding phosphate groups to them. Protein phosphatases dephosphorylate or remove phosphate groups from enzymes, including protein kinases.During signal transduction, protein kinases catalyze the transfer of phosphate groups to proteins, often changing their shape and activity, typically activating them. Phosphorylation can affect enzymes directly or create binding sites that interact with components in the signaling cascade. On the other hand, protein phosphatases serve as the counterpart by removing these phosphate groups, essentially reversing the effect of phosphorylation, and therefore playing a crucial role in modulating cellular responses by deactivating proteins or making them available for subsequent activation.
Cells in the pancreas produce insulin (a protein) for export. which structure is required for this function?
Which two substances bind using a lock-and-key mechanism?
Enzymes and Substrates! Hope this helps, and have a nice day.
What characteristics can you observe in the gills that make them an efficient respiratory organ?
Answer:
Lots of folding = lots of surface area for diffusion.
Lots of vascularization.
Countercurrent exchange system.
Located off of the throat to help water get rammed down the throat in a single direction, across the gills
Gills are highly efficient at facilitating gas exchange due to their large surface area, highly branched and folded structure, and proximity to blood capillaries allowing for rapid diffusion of dissolved oxygen from water into the bloodstream.
The gills of aquatic organisms such as fish are highly efficient respiratory organs. These gills are thin tissue filaments that are highly branched and folded, which increases the surface area for gas exchange. This extensive surface area is critical for allowing sufficient oxygen intake. It is said that the surface area of some fish gills can be as expansive as a handball court, indicating just how large the area for gas exchange can be.
Gills function by having water flow over them, where the dissolved oxygen is rapidly diffused from the water into the bloodstream of the fish. This occurs because of the close proximity of the capillaries to the gill surfaces, with a minimal diffusion distance that facilitates quick and efficient oxygen transfer. The oxygen that enters the bloodstream can be efficiently distributed throughout the body. Moreover, gills are constantly in contact with water, which allows them to take up oxygen without the organism needing to breathe air.
An injury from an unforeseeable risk can not be compensated by the law of negligence because there is no cause in fact.
a. True
b. False
the answer is F. companies hire pros. 2 evaluate customer risk..example, risk associated with a revolving door...
What sorts of living things are made up of prokaryotic cells? Give two examples.
Which of the following is a characteristic feature of a carrier protein in a plasma membrane?
A) It is a peripheral membrane protein.
B) It exhibits a specificity for a particular type of molecule.
C) It requires the expenditure of cellular energy to function.
D) It works against diffusion.
E) It has few, if any, hydrophobic amino acids.
Answer:
Hello there!
The correct answer is B.
Explanation:
We know that carrier proteins are proteins that facilitate the movement of specific molecules across a permeable membrane. With that said, D is incorrect because they perform facilitated diffusion. C is incorrect because diffusion should never require energy, no matter what form or molecule. E is incorrect because the cell membrane has hydrophilic (water-loving) heads and hydrophobic (water-repelling) tails, so the molecule must contain certain amino acid types in order to pass substances through. They are not peripheral membrane proteins because they usually stay on the membrane and never leave it (under most cases). This leaves B to be the only correct answer.
I hope I helped!
Feel free to ask me for help with any other question(s) you may have. :)
A characteristic feature of a carrier protein in a plasma membrane is the fact that it exhibits specificity for a particular type of molecule (Option B).
Carrier proteins are cell membrane proteins that are responsible for the transport of substances in and out of cells. These proteins (carriers) move molecules by both passive transport (facilitated diffusion) and active transport mechanisms. For example, the sodium-glucose cotransporter is a carrier protein that mediates the specific movement of sodium ions and glucose molecules across cell membranes.In conclusion, a carrier protein in a plasma membrane exhibits specificity for a particular type of molecule (Option B).
Learn more in:
https://brainly.com/question/241437?referrer=searchResults
fill in the blank below with the word the best completes the sentence
___ determine how cells are identified
Answer:
science
Explanation:
this question is very vague. I'm so sorry if this is what the school was asking on a question. but cells are identified by humans, through science.
Answer:
the answer is genes
Explanation:
just did it on my assignment
Paleontologists find a fossil ape with long arms. What type of environment can they infer it inhabited?
a. woodlandb. swampc. savannad. grassland
Answer:
a. woodland
Explanation:
Long arms indicate that these apes were adapted and specialized to live on the trees. Long arms are suitable for them to swing from branch to branch. Usually, apes with long arm also have long fingers and toes, which are also useful for life in woodland.
A threadlike structure of dna that carries genes is called
a chromosome is the answer
Answer:
chromosome
Hope this helps
A city was intensively sprayed with DDT to control houseflies. The number of houseflies was immediately greatly reduced. Each year thereafter, the city was sprayed again, but the flies gradually increased in numbers until 10 years later, when they were almost as abundant as they were when the control program began. Which explanation applies to this situation?The DDT killed most flies. The few that were already naturally resistant survived and passed this resistance on to their offspring.Flies from other areas moved in and replaced the ones killed by DDT.The DDT caused new mutations to occur in the surviving flies, resulting in resistance to DDT.The few flies that were affected by DDT but survived developed antibodies to DDT, which they passed on to their descendants.
Answer:
The DDT killed most flies. The few that were already naturally resistant survived and passed this resistance on to their offspring
Explanation:
Natural selection is evolutionary mechanism which favours traits of an organism that help him survive and reproduce. In the example, above, naturally resistant DDT flies that survived after the use of pesticide had the favuoruable trait (resistance) by natural selection.
30) Which of these is NOT a way that large molecules, like glucose, can enter a cell? A) diffusion through the cell membrane. B) facilitated diffusion through protein channels in the cell membrane. C) endocytosis, when the cell engulfs the particles with pseudopods. D) active transport, when the cell pumps large molecules in through the membrane.
Answer:
the answer is B.
Explanation:
Which of the following best describes egg production in the female reproductive system?
A diploid cell undergoes meiosis to produce one egg and 3 polar bodies with 23 chromosomes each.
A diploid cell undergoes meiosis to produce four egg cells with 23 chromosomes each.
A haploid cell undergoes meiosis to produce four egg cells with 23 chromosomes each.
A haploid cell undergoes meiosis to produce one egg and 3 polar bodies with 23 chromosomes each.
Answer:
A diploid cell undergoes meiosis to produce one egg and 3 polar bodies with 23 chromosomes each.
Explanation:
During egg formation in the ovary, Primary oocyte (diploid) having 46 chromosomes undergoes meiosis I to form one secondary oocyte and one first polar body. Both the secondary oocyte and one polar body are haploid having 23 chromosomes. Both daughter cells then undergo meiosis II, the first polar body divides to give two polar bodies and the secondary oocyte divides by meiosis II to form one ovum. Therefore, during egg formation in the reproductive system, a diploid cell (a primary oocyte) undergoes meiosis to produce one egg and 3 polar bodies with 23 chromosomes each.
How have fruits contributed to the success of angiosperms?
Fruits have helped angiosperms spread their seeds.
Fruit bodies of plants are mature ovaries which is usually fleshy or not. the color/smell/taste of fruit attracts animals to eat the fruit and ingest the seeds. Through evolutionary processes plants “know” that animals travel, so when the animal poops out the seed, the seed will be able to germinate into a new plant in a new area, thus spreading it
The success of angiosperms can largely be attributed to the evolution of their reproductive structures, mainly flowers and fruits. Their numerous dispersal strategies, resulting from their varied fruit structures, in addition to their unique double fertilization process contribute to their wide distribution and dominance in terrestrial habitats.
Explanation:The success of angiosperms, or flowering plants, which comprise about 90 percent of all plant species, is significantly attributed to the evolution of flowers and fruits. Flowers have allowed plants to establish cooperative evolutionary relationships with animals, particularly insects, for the effective dispersion of their pollen. On the other hand, fruits serve dual purpose - they protect the developing embryos and function as agents of dispersal. The differing structures of fruits reflect the varied dispersal strategies that assist in seed distribution, contributing to the widespread success of angiosperms.
Many fruits, such as tomatoes, green peppers, corn, and avocados, are formed to attract animals that eat the fruit and then distribute the seeds through their digestive systems. Other fruits like rice, wheat, and nuts are classified as dry fruits and are designed for wind dispersal. This variety in fruit structure and reflects angiosperms' versatile modes of seed dispersal.
Furthermore, the unique double fertilization process in angiosperms, the creation of a diploid zygote and formation of a triploid cell endosperm, contributes to the resilient success of angiosperms, making them the dominant plant life in terrestrial habitats.
Learn more about Angiosperms here:https://brainly.com/question/29250052
#SPJ6
The human body has about 10 bacterial cells for every eukaryotic cell. Bacteria coat our skin, gut, and mouth. Also present are protists, Archaeans, and viruses. Collectively, these organisms are our microbiota. For most members of our microbiota, our body provides their environment (or space to live). They, in turn, have no effect on us. This is an example of: predation. mutualism. commensalism. an antagonistic relationship.
Answer:
commensalism
Explanation:
Commensalism is a type of ecological interaction between two species in which one speices benefits while other is unaffected. Commensalism also can be considered as a type of symbiosis-two species that live together. The interaction between human and its microbiota is beneficial for microbiota while it has no effects on humans.
Although, some bacteria (gut bacteria) can help in digestion. In this case, interaction with human is mutualism (both have benefits).
After duplication, at what point does a cell become two cells with identical DNA? starting in prophase end of anaphase end of cytokinesis
Answer:
end of cytokinesis
Explanation:
Telophase is the last stage of cell division. It ends with cytokinesis which is the splitting of the mother cells into two daughter cells. The cell pinches in the equator region with the help of a ring of contractile protein filaments. The formed cleavage furrow grows until the two cells pinch off completely.
Answer:
The correct answer is: end of cytokinesis
Which of the following is the muscle protein that binds and stores oxygen to maintain aerobic conditions in actively contracting muscle?
a. calmodulin
b. myoglobin
c. hemoglobin
d. troponin
Your answer should be B. “Myoglobin”
mark me brainliest please!
Carbohydrates, more commonly known as sugars, are made up of carbon, oxygen, and hydrogen atoms. The smallest unit of a carbohydrate is a monosaccharide. Two monosaccharides make up a disaccharide, and many monosaccharides make up a polysaccharide. Disaccharides and polysaccharides can be hydrolyzed back into the individual monosaccharide units. Part A Select the statement that is incorrect. View Available Hint(s) Select the statement that is incorrect. Complex sugars are carbohydrates. All carbohydrates have the general formula Cn(H2O)n. Simple sugars are carbohydrates. Carbohydrates contain only carbon, oxygen, and hydrogen atoms.
Answer:
All carbohydrates have the general formula Cn(H2O)n
Explanation:
The basic unit of carbohydrates-monosaccharides have the formula C nH 2nO n while the basic general formula of carbohydrates is Cm(H2O)n .
Monosaccharides are basic units (components) of carbohydrates. Those are simple sugars such as glucose, fructose, galactose. Two monosaccharides can join together via glycosylic bond and make disaccharides. Some of the disaccharides are: sucrose (glucose + fructose), lactose (galactose + glucose), maltose (glucose + glucose).
Disaccharides can be broken down to monosaccharides by an enzyme called a disaccharidase.
Longer chains of monosaccharides form oligosaccharides (usually as glycolipids ) and polysaccharides (starch, glycogen,cellulose, chitin).
Carbohyrates are important biomolecules included in metabolism, energy storage, they are also structural components, have role in immune response, as coenzymes etc.
Carbohydrates are organic molecules made up of carbon, hydrogen, and oxygen atoms. They are classified into monosaccharides, disaccharides, and polysaccharides. Monosaccharides are the smallest carbohydrate unit, while disaccharides and polysaccharides are made up of multiple monosaccharides joined together.
Explanation:Carbohydrates, also known as sugars, are organic molecules composed of carbon, hydrogen, and oxygen atoms. They are classified into three types: monosaccharides, disaccharides, and polysaccharides. Monosaccharides are the smallest unit of carbohydrates and include glucose, fructose, and galactose. Disaccharides, such as sucrose and lactose, are formed by the linkage of two monosaccharide units. Polysaccharides, like starch and cellulose, are made up of many monosaccharides joined together in long chains.
Learn more about Carbohydrates here:https://brainly.com/question/33874241
#SPJ6
Much of the energy that the brain expends is used for
Answer:
signaling processes
Explanation:
Neurons within the brain are constantly processing and transmitting information. Electrical impulses that pass from one neuron to another consume a lot of energy. So, sending, receiving and processing the signals are the main events of brain energy expenditure. Neurons also use the energy for the maintenance of themselves and the surrounding glial cells.
Glucose is the main energy source in the brain.
Bile salts aid in the digestion of fats by ________ large fat droplets.
binding
emulsifying
anabolizing
dehydrating
combining
Answer:
emulsifying
Explanation:
Bile salts secreted from the bill has an important role in emulsification of lipids. They have the ability to aggregate around lipids thanks to their amphipatic nature. Amphipatic nature means that they have hydrophobic side which binds directly to lipids and hydrophilic side which are faced outwards. Lipids enveloped with bile salts are called micelles.
Formation of micelles increases the surface area of fat, which is appropriate for the the action of the enzyme pancreatic lipase (perform digestion of triglycerides).
Bile salts assist in fat digestion by emulsifying, or breaking down, large fat droplets into smaller ones, increasing the surface area for enzymes to work on. This makes the fats more easily digestible and absorbable by the body.
Explanation:Bile salts aid in the digestion of fats by emulsifying large fat droplets. Emulsification is the process of breaking down large fat droplets into smaller ones, enhancing the surface area for enzymes to act upon. Bile salts, produced by the liver and stored in the gallbladder, surround and break down the large fat droplets, making them more accessible to the digestive enzymes. After the action of bile, these smaller droplets of fats can be further digested by the enzyme lipase into fatty acids and glycerol. So, bile salts play a crucial role in the digestion and absorption process of fats in the body.
Learn more about Bile salts and fat digestion here:https://brainly.com/question/32258737
#SPJ3
How does primary succession occur?
Answer:
Primary succession occurs in areas without any soil where basically nothing is there. After an event such as a volcanic eruption, pioneer species such as lichens and mosses are able to colonize the land since they can grow without soil and are primitive. Lichens can break down rock to form soil and they can add small amounts of organic matter to the rocks when they decompose to make even more soil. Simple plants like ferns can then grow in the created soil. After these simple plants die, more organic material is added to the soil and the soil thickens, allowing grasses, wildflowers, and other plants to begin to take over. Next, after these plants die, enough nutrients are added to the soil for trees and shrubs to survive. Finally, insects, small birds, and mammals begin to move into the area and form a community, so what was once bare rock can now support a variety of life.
Do earthworms have a front and a back end? Explain your answer.
Yes, earthworms have a front and a back end. The front end is called the anterior end and the back end is called the posterior end. The anterior end has a mouth for consuming food and sensory organs, while the posterior end has an anus for excreting waste.
Explanation:Yes, earthworms have a front and a back end. The front end of an earthworm is called the anterior end, while the back end is called the posterior end.
At the anterior end, earthworms have a mouth that they use to consume food. They also have sensory organs called prostomium and peristomium that help them detect their environment.
At the posterior end, earthworms have a small opening called the anus through which they excrete waste.
Learn more about Earthworm anatomy here:https://brainly.com/question/36359338
#SPJ6
Tara's friend, Sally, came to school with a cold and sat in the desk next to Tara's all morning blowing her nose. At lunch, they went outside to sit in the sun and eat. Sally blew her nose again and then gave Tara her cookie since she didn't feel like eating it. Tara ate it and then carried Sally's things back inside for her. Several days later Tara came down with the cold. At what point was it most likely that the virus infected Tara? (2 points) A. When she sat near Sally as she blew her nose allowing the virus to collect on the tissue B. When she ate the cookie which Sally had touched, leaving the virus on it C. When she took the cookie from Sally and gave the virus a chance to penetrate her skin D. When she carried Sally's things and rubbed the virus off them onto her clothes
Answer:
The best Choice is probably C
Explanation:
Viruses are definitely hardy particles, but against skin they don't pose the worse threat. Its when viruses get closer to your "innards" - in other words like your mouth that they can wreak more havoc. Having virus on clothes, on a tissue the sick person is using, and penetrating the skin shouldnt do as much as actually eating the virus. But, depending on the virus penetrating the skin might actually do more damage.The main I reason I say C is becuase the virus sounds like it infects the nasal passages or the facial area which is something that would be in danger moreso if you "ate" the virus rather than just touching it.
Answer:
in the case that it is about how she got sick then its b but this guy up above is right t-.-t
Explanation:
To have an impact on the evolution of a species what criteria does a behavior have to meet
A behavior must affect an organisms fitness and have a genetic basis.
Answer:
For evolution to happen the main points are as follows:
-High rate of reproduction
- Struggle for existence
- Variation
- Survival of the fittest
- Natural selection
Explanation:
The success in survival and reproduction depends upon the characteristic traits of an organism, for example only those rabbits will survive which are fastest. There is struggle for existence and in this there will be survival of the fittest. The phrase survival of fittest was first used by Herbert Spencer. The same context was asserted by Darwin as Natural selection.
An area of land or water set aside for the protection of an ecosystem is a _____.
This is called a preserve
Hope this helped!
~Just a girl in love with Shawn Mendes