Answer:
The quadrilateral is a SQUARE.
Step-by-step explanation:
Given
Four points
A(4,1)
B(1,5)
C(-3,2)
D(0, -2)
The quadrilateral formed will be ABCD with sides AB, BC, CD, AD. In order to prove if a quadrilateral is a square we have to prove that all sides of the quadrilateral are equal.
We will use the two-point distance formula to calculate lengths of sides of quadrilateral.
The distance formula:
d= √((x_2- x_1)^2+(y_2- y_1)^2 )
So, for side AB
AB= √((1- 4)^2+(5- 1)^2 )
= √((-3)^2+(4)^2 )
= √(9+16)
= √25
= 5 units
For BC
BC= √((-3- 1)^2+(2- 5)^2 )
= √((-4)^2+(-3)^2 )
= √(16+9)
= √25
= 5 units
For CD
BC= √((0-(-3))^2+(-2-2)^2 )
= √((0+3)^2+(-4)^2 )
= √(9+16)
= √25
= 5 units
For AD
AD= √((0-4)^2+(-2-1)^2 )
= √((-4)^2+(-3)^2 )
= √(16+9)
= √25
= 5 units
As all the sides are equal
AB=BC=CD=AD
= 5 units
So the quadrilateral is a square.
2 dot.
Answer:
The quadrilateral is a SQUARE.
Step-by-step explanation:
Given
Four points
A(4,1)
B(1,5)
C(-3,2)
D(0, -2)
The quadrilateral formed will be ABCD with sides AB, BC, CD, AD. In order to prove if a quadrilateral is a square we have to prove that all sides of the quadrilateral are equal.
We will use the two-point distance formula to calculate lengths of sides of quadrilateral.
The distance formula:
d= √((x_2- x_1)^2+(y_2- y_1)^2 )
So, for side AB
AB= √((1- 4)^2+(5- 1)^2 )
= √((-3)^2+(4)^2 )
= √(9+16)
= √25
= 5 units
For BC
BC= √((-3- 1)^2+(2- 5)^2 )
= √((-4)^2+(-3)^2 )
= √(16+9)
= √25
= 5 units
For CD
BC= √((0-(-3))^2+(-2-2)^2 )
= √((0+3)^2+(-4)^2 )
= √(9+16)
= √25
= 5 units
For AD
AD= √((0-4)^2+(-2-1)^2 )
= √((-4)^2+(-3)^2 )
= √(16+9)
= √25
= 5 units
As all the sides are equal
AB=BC=CD=AD
= 5 units
So the quadrilateral is a square.
2 dot.
Step-by-step explanation:
what is Convert 32º 15’ 45” to decimal
Answer:
N\77777
Step-by-step explanation:
Answer:
N\77777
Step-by-step explanation:
a direct variation includes the points (4,20) and (1,n). find n
[tex]\bf \qquad \qquad \textit{direct proportional variation} \\\\ \textit{\underline{y} varies directly with \underline{x}}\qquad \qquad y=kx\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}[/tex]
[tex]\bf (\stackrel{x}{4},\stackrel{y}{20})\qquad \textit{we know that } \begin{cases} x=4\\ y=20 \end{cases}\implies 20=k4\implies \cfrac{20}{4}=k \\\\\\ 5=k~\hspace{10em} therefore\qquad \boxed{y=5x} \\\\\\ (\stackrel{x}{1},\stackrel{y}{n})~~\textit{when x = 1, what is \underline{y}?}\qquad y=5(1)\implies \stackrel{n}{y}=5[/tex]
2 3/4 x 6 2/3 what would be the answer
Answer:
do the work
Step-by-step explanation:
convert the 2 fractions
then multiply vetically
Answer:
18 1/3
Step-by-step explanation:
Multiply the two fractions together
Stephen takes a walk around the block. The rectangular block is 80m long and 115m wise. How far does Stephen walk? whoever answer I give them brainliest
Answer:
Option A. [tex]390\ m[/tex]
Step-by-step explanation:
we know that
To find how far Stephen walk, calculate the perimeter of the block
Remember that
The perimeter of rectangle (block) is equal to
[tex]P=2(L+W)[/tex]
we have
[tex]L=80\ m[/tex]
[tex]W=115\ m[/tex]
substitute the values
[tex]P=2(80+115)=390\ m[/tex]
In triangle DEF the measure of angle DFE is 12.4 degrees and the measure of angle DEF is 92.1 degrees what is the measure of angle EDF in degrees
The sum of the angle of the triangle is 180 degrees. Then the measure of angle ∠D is 75.5°.
What is the triangle?Triangle is a polygon that has three sides and three angles. The sum of the angle of the triangle is 180 degrees.
Given
In triangle DEF, the measure of angle ∠F is 12.4° and the measure of angle ∠E is 92.1°.
Then the measure of angle ∠D will be.
We know that the sum of the angle of the triangle is 180 degrees. Then
∠D + ∠E + ∠F = 180°
∠D + 92.1° + 12.4° = 180°
On simplifying, we have
∠D = 180 - 92.1 - 12.4
∠D = 75.5°
Thus, the measure of angle ∠D is 75.5°.
More about the triangle link is given below.
https://brainly.com/question/25813512
Final answer:
The measure of angle EDF in triangle DEF, given the measures of angles DFE and DEF, is 75.5 degrees, found by subtracting the sum of the known angles from 180 degrees.
Explanation:
To find the measure of angle EDF in triangle DEF where the measure of angle DFE is 12.4 degrees and the measure of angle DEF is 92.1 degrees, we can use the fact that the sum of the internal angles in any triangle is always 180 degrees. By subtracting the measures of angles DFE and DEF from 180 degrees, we can find the remaining angle's measure.
Angle EDF = 180 degrees - (Angle DFE + Angle DEF) = 180 - (12.4 + 92.1) degrees = 180 - 104.5 degrees = 75.5 degrees.
The exact value for the density of aluminum is 2.669g/cm3. Working in the science lab at school, Joseph finds the density of a piece of aluminum to be 2.75g/cm3. What is Joseph's percent error?
The formula for percent error is (M-A)/A X 100
M= the amount of the sample measured
A= the exact amount of the sample
so, 2.75-2.699=0.51/cm3
051/2.699=.01889
.01889 x 100=1.9% :)))
At the beginning of January, Kesia Records paid $148,950 to acquire the exclusive rights to a new album. It costs them $1.13 to print a copy of this album, which they can sell for $9.75. The following chart shows the sales of that record, along with the overhead expenses of running a record studio, not counting production costs. Month Albums Sold Expenses Jan. 5,486 $27,714 Feb. 8,191 $21,689 Mar. 4,796 $25,195 Apr. 7,490 $28,766 May 6,272 $24,604 Jun. 5,131 $29,040 In whch month did Kesia Records first break even? a. January b. March c. April d. May
Answer:
d. May
Step-by-step explanation:
To find when Kesia records got to break even, we first need to find how much they made total per month.
Now we need to first find how much they made on January.
The production cost of January will be:
Production cost = 5486 x 1.13
Production cost = $6199.18
Now that we know the production cost, we need to solve first for the total revenue.
Total Sales Revenue = 5486 x 9.75
Total Sales Revenue = $53488.50
Now that we have both the revenue and the production cost, we need can find how much profit by:
Profit = Total Sales Revenue - Production cost - Overhead
Profit = 53488.50 - 6199.18 - 27714
Profit = $19575.32
So they made a profit of $19575.32 by the end of January.
Now we move on to the other months.
Production cost = 8191 x 1.13
Production cost = $9255.83
Total Sales Revenue = 8191 x 9.75
Total Sales Revenue = $79862.25
Profit = 79862.25 - 9255.83 - 21689
Profit = $48917.42
Now that we have the profit for 2 months, we simply add them together.
Current Value = 19575.32 + 48917.42
Current Value = 68492.74
By doing the same process with the rest of the months, we get:
Refer to Image.
We can see in the image that by May they reach a total profit of $149897.77.
Since Kesia records paid $148950, the company got to break even at the month of May.
Answer:
d
Step-by-step explanation:
i need help with all the problems shown before 6:00am tomorrow morning
Calculate the standard deviation of the data set below. (7, 9, 10, 11, 13) The standard deviation is 4. The standard deviation is 2. The standard deviation is 10.
Answer:
"The standard deviation is 2"
Step-by-step explanation:
To get Standard Deviation (SD), we follow the steps shown below:
We need to find the difference of each number from the mean and then square it. Then take the sum of all of these values. Then divide by the number of numbers. Then take square root of that.The mean is summing up all the numbers and dividing by the number of numbers. Hence, mean is [tex]\frac{7+9+10+11+13}{5}=10[/tex]
Now, [tex](7-10)^2 + (9-10)^2 + (10-10)^2 + (11-10)^2 +(13-10)^2\\=9+1+0+1+9\\=20[/tex]
Then, [tex]\frac{20}{5}=4[/tex]
Next, [tex]\sqrt{4} \\=2[/tex]
So, the standard deviation is 2
Answer:
The standard deviation is 2.
Step-by-step explanation:
The standard deviation of 7, 9, 10, 11, 13
We first calculate the mean
Mean = (7+9+10+11+13)/5
= 10
Then we find the deviation of the values from the mean,
= (7-10), (9-10), (10-10), (11-10), (13-10)
= -3, -1, 0, 1, 3
The we get the square of deviations;
= (-3)², (-1)², 0², 1², 3²
= 9, 1, 0, 1, 9
We then get the sum of the square of deviations
= 9 + 1 + 0 + 1 + 9
= 20
Standard deviation = √(sum of the square of deviations/(x-1))
= √(20/(5-1)
= √5
= 2.2
Therefore; The standard deviation is 2
Which point has the coordinates (-3 1/2,2)
♫ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ♫
➷The answer is point X.
Explanation: If you can see the graph, You can see that there are two points that are on the left, which is negative for the first number. Then, the second number, the Y position, which is 2, goes up, not down. So the right one is point X.
✽
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
DOGE
The point X has the given coordinates (-3 1/2, 2).
How do we read a graph in the Coordinate (x-y) plane?A point on the graph can be read as a point (x, y) where y is the perpendicular distance of the point from the x-axis and x is the perpendicular distance of the point from the y-axis.
If the point is left to the y-axis, we take the distance negative.
If the point is below the x-axis, we take the distance negative.
How do we solve the given question?We are asked which point in the graph represents the point (- 3 1/2, 2).
To answer the question, we will analyze all the points to determine their coordinates.
Point W:
The perpendicular distance from the y-axis (x) = 2 units.
The perpendicular distance from the x-axis (y) = 3 1/2 units.
∴ The point W is (2, 3 1/2).
Point X:
The perpendicular distance from the y-axis (x) = 3 1/2 units.
The perpendicular distance from the x-axis (y) = 2 units.
∵ The perpendicular distance from the y-axis (x) is on the left side of the y-axis, we take x = 3 1/2 as negative, that is, x = -3 1/2.
∴ The point X is (-3 1/2, 2).
Point Y:
The perpendicular distance from the y-axis (x) = 2 units.
The perpendicular distance from the x-axis (y) = 3 units.
∵ The perpendicular distance from the y-axis (x) is on the left side of the y-axis, we take x = 2 as negative, that is, x = -2.
∵ The perpendicular distance from the x-axis (y) is below the x-axis, we take y = 3 as negative, that is, y = -3.
∴ The point Y is (-2, -3).
Point Z:
The perpendicular distance from the y-axis (x) = 2 units.
The perpendicular distance from the x-axis (y) = 3 units.
∵ The perpendicular distance from the x-axis (y) is below the x-axis, we take y = 3 as negative, that is, y = -3.
∴ The point Z is (2, -3).
∴ We can say that point X has the given coordinates (-3 1/2, 2).
Learn more about the reading of graphs at
brainly.com/question/11234618
#SPJ2
least to greatest 20%, 1/4,1/8,.31,32%
Answer: 1/8, 20%, 1/4, .31, 32%.
I need the answer to number 4
Answer: 6.3
Step-by-step explanation
I did this today and it's easy but you have to show a lot of work well I did but you don't have to you can just circle it in
Find the mean absolute deviation for each data set. The number of kittens in 10 litters: 4, 5, 5, 6, 6, 7, 8, 8, 8, and 9
Answer:
The answer is 6.6
Step-by-step explanation:
u add all of them up then u divide your answer into how many data points there are
I reallly neeeeeeed help so anybody??
Answer:
D
Step-by-step explanation:
Since the ordered pairs are linear then the slope m between corresponding points will be equal.
To calculate m use the slope formula
m = ( y₂ - y₁ ) / (x₂ - x₁ )
with (x₁, y₁ ) = (6, 7) and (x₂, y₂ ) = (2, 5)
m = [tex]\frac{5-7}{2-6}[/tex] = [tex]\frac{-2}{-4}[/tex] = [tex]\frac{1}{2}[/tex]
Repeat with (x₁, y₁ ) = (6, 7) and (x₂, y₂ ) = (k, 11)
m = [tex]\frac{11-7}{k-6}[/tex] = [tex]\frac{1}{2}[/tex], that is
[tex]\frac{4}{k-6}[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )
k - 6 = 8 ( add 6 to both sides )
k = 14 → D
what is the measure of angle F in degrees and please explain step by step
A canoe can go 24 KM downstream in three hours. The return trip takes four hours. What is the speed of the current?
Answer:
The speed of the current 1 km/hr
Step-by-step explanation:
It is given that,
A canoe can go 24 KM downstream in three hours. The return trip takes four hours.
Points to remember
Let speed of canoe in still water = x km/hr
Speed of stream or current = y km/hr
Downstream speed with stream speed = x + y
Upstream speed against stream speed = x - y
To find the speed of current
From the given information we can write,
Downstream speed = x + y = 24/3 = 8 km/hr
upstream speed =x - y = 24/4 = 6 km/hr
y = [(x + y) - (x -y)]/2 = (8 - 6)/2 = 1
Therefore the speed of the current = 1 km/hr
Here is a picture of a cube, and the net of this cube.
What is the surface area of this cube?
Enter your answer in the box.
ft²
A cube and a net of the cube are shown. The edge length of the cube is labeled 16 feet. The net consists of 4 squares connected vertically, and 1 square is attached to the right of the third square and 1 square is attached to the left of the second square. One square in the net is labeled with a side labeled 16 feet.
Answer:
96 ft²
Step-by-step explanation:
in a cube all sides are congruent so you take one measurement and multiply it by the number of sides, so you do 16 × 6 equals 96.
Answer:
Step-by-step explanation: other people said...
96ft but the real answer is...
1536 like is this helped
HELP ASAP!!! What is the value of x?
Enter your answer in the box.
x =
Answer:
8
Step-by-step explanation:
Pythagoras theorem states a²+b²=c²
In this example c² is given to us (10) and a² is given to us (6)
To work out x we have to √10²-6² which is 8
-5/12-(-9/3) Reduce to simplest form
Answer:
2 7/12
Step-by-step explanation:
−512−−93=?
Since the the second fraction is negative and you are subtracting, remove the negative sign and switch the operation to addition.
The equivalent equation is
−512+93=?
The fractions have unlike denominators. First, find the Least Common Denominator and rewrite the fractions with the common denominator.
LCD(-5/12, 9/3) = 12
Multiply both the numerator and denominator of each fraction by the number that makes its denominator equal the LCD. This is basically multiplying each fraction by 1.
(−5/12×1/1)+(9/3×4/4)=?
Complete the multiplication and the equation becomes
−5/12+36/12=?
The two fractions now have like denominators so you can subtract the numerators.
Then:
−5+36/12=31/12
This fraction cannot be reduced.
The fraction
31/12
is the same as
31÷12
Convert to a mixed number using
long division for 31 ÷ 12 = 2R7, so
31/12=2 7/12
Therefore:
−5/12−−9/3=2 7/12
You choose a movie disk at random from a case containing 8 comedy discs, 5 science fiction discs, and 7 adventure discs. The disc is not a comedy.
Answer:
i think it is adventure
Step-by-step explanation:
your welcome
Tabitha received $2,200 from her aunt as a birthday gift. She decided to put the money in an account to save for college. The account has a fixed interest rate of 7.8%, compounded semi-annually. How much money will be in the account after five years?
3225.36
Step-by-step explanation:
Two points on a line are chosen to find the slope. The rise is 8 and the run is 12. What is the slope of the line?
Answer:
[tex]\large\boxed{The\ slope\ m=\dfrac{2}{3}}[/tex]
Step-by-step explanation:
[tex]\text{The slope}\ m=\dfrac{rise}{run}\\\\\text{We have}\ riese=8\ \text{and}\ run=12.\ \text{Substitute:}\\\\m=\dfrac{8}{12}=\dfrac{8:4}{12:4}=\dfrac{2}{3}[/tex]
Answer:
The Slope is [tex]\frac{2}{3}[/tex]
Step-by-step explanation:
Slope is calculated by the formula [tex]m=\frac{rise}{run} \\[/tex]
Here the rise = 8 ad the run = 12. So the slope can be calculated as
[tex]m = \frac{rise}{run} = \frac{8}{12} = \frac{2}{3}\\[/tex]
to learn more about slope, visit https://brainly.com/question/1884491
#SPJ2
If a circle has a diameter of 16 feet which expression gives its area in square feet
Answer: [tex] (8)^2\pi\ feet^2[/tex]
or
[tex]64\pi \ feet ^2[/tex]
Step-by-step explanation:
We are given that the diameter of a circle = 16 feet
Then the radius of the circle = [tex]r=\dfrac{d}{2}=\dfrac{16}{2}=\ 8 feet[/tex]
Also, the area of a circle is given by :_
[tex]A=\pi r^2[/tex] , where r is radius of the circle .
For r = 8 feet
The area of the circle = [tex]\pi (8)^2=\pi (64)=64\pi \ feet ^2[/tex]
Hence, the expression that gives its area in square feet =
[tex] (8)^2\pi \ feet^2[/tex]
or
[tex]64\pi \ feet ^2[/tex]
indicate in standard form the equation of the line passing through the given points (6,2) m=-1/2
Answer:
x + 2y = 10Step-by-step explanation:
The standard form of an equation of a line:
[tex]Ax+By=C[/tex]
The point-slope form of an equation of a line:
[tex]y-y_1=m(x-x_1)[/tex]
m - slope
(x₁, y₁) - point
We have the point (6, 2) and the slope m = -1/2. Substitute:
[tex]y-2=-\dfrac{1}{2}(x-6)[/tex]
Convert to the standard form:
[tex]y-2=-\dfrac{1}{2}(x-6)[/tex] multiply both sides by 2
[tex]2y-4=-(x-6)[/tex]
[tex]2y-4=-x+6[/tex] add 4 to both sides
[tex]2y=-x+10[/tex] add x to both sides
[tex]x+2y=10[/tex]
Solve the equation for x.
x3 = 64
X = 21.3333333333..... Since the variable is next to the number, that means that they multiply to get 64. So to find x you need to divide 64 by 3.
what is the valume of that?
Answer:
960 in^3
Step-by-step explanation:
Multiply the base by the height
Base: (12*8)/2=48
Height: 20
The volume of a triangular prism is the area of the base multiplied by the height.
Let's first identify our values:
20 in = height of prism
12 in = base of triangle
8 in = height of triangle
First, we need to calculate the area of the triangle. To calculate the area of the triangle, we multiply the base of the triangle by the height of the triangle. In this case, the base is 12 and the height is 8 so 12 × 8 = 96 and then we divide 96 by 2 and we will get a quotient of 48.
Finally, we will multiply the area of the triangle which is 48 by 20.
48 × 20 = 960[tex]in^{2}[/tex].
Which expression is equivalent to(6x + 2) + (3x + 7)
Answer:
9x+9
Step-by-step explanation
Combine like terms (6x and 3x, 2 and 7)
There are an infinite number of expressions that are equivalent to it. A few of them are:
-- 3(2x + x + 3)
-- (9x + 9)
-- 3(3x + 3)
-- 9(x + 1)
-- (18x + 18) / 2
-- 3√(x² + 6x + 9)
Without seeing the list of choices that you neglected to post along with the rest of the question, it's not possible for us to guide you to the correct choice.
simplify (-5xsquared-3x-7)+(-2x to the third +6xsquared -8)
Answer:
[tex]\large\boxed{(-5x^2-3x-7)+(-2x^3+6x^2-8)=-2x^3+x^2-3x-15}[/tex]
Step-by-step explanation:
[tex](-5x^2-3x-7)+(-2x^3+6x^2-8)\\\\=-5x^2-3x-7-2x^3+6x^2-8\qquad\text{combine like terms}\\\\=-2x^3+(-5x^2+6x^2)-3x+(-7-8)\\\\=-2x^3+x^2-3x-15[/tex]
on the subway eight out of 11 people are carrying a briefcase based on this information if there are 700 people on the subway then about how many do not have a briefcase
509 people.
[tex]700 \div 11 = 63.6363[/tex]
[tex]8 \times 63.6363 = 509.094[/tex]
you can't have 0.094 of someone so we round the answer off the 509.
What is the approximate area of the shaded region
ANSWER
The correct answer is
21.5 square centimeters
EXPLANATION
The shaded area is the area of the square minus the area of the Circle.
Area of shaded region
[tex] = {l}^{2} - \pi \: {r}^{2} [/tex]
From the diagram,
[tex]l = 10cm[/tex]
and
[tex]r = \frac{l}{2} = \frac{10}{2} = 5cm[/tex]
This implies that,
Area of shaded region
[tex] = {10}^{2} - \pi \times {5}^{2} [/tex]
[tex] = 100 -25 \pi [/tex]
[tex] \approx21.5 {cm}^{2} [/tex]
The answer would be 21.5 square centimeters. Hope this helps!