The coordinates of A, B, and C in the diagram are A(p, 4), B(6, 1), and C(9, q). Which equation correctly relates p and q?

The Coordinates Of A, B, And C In The Diagram Are A(p, 4), B(6, 1), And C(9, Q). Which Equation Correctly

Answers

Answer 1
Refer to the diagram shown below.

Calculate the slope of line segment AB as m₁.
[tex]m_{1} = \frac{4-1}{p-6}= \frac{3}{p-6} [/tex]

Calculate the slope of line segment BC as m₂.
[tex]m_{2} = \frac{q-1}{9-6} = \frac{q-1}{3} [/tex]

The product of the slopes of perpendicular lines is equal to -1.
Therefore
[tex]( \frac{3}{p-6})( \frac{q-1}{3})=-1 \\\\ \frac{q-1}{p-6}=-1 \\\\ q-1 = 6-q \\\\ p+q = 7 [/tex]

The equation that relates p and q is p+q = 7

Answer:  p + q = 7
The Coordinates Of A, B, And C In The Diagram Are A(p, 4), B(6, 1), And C(9, Q). Which Equation Correctly

Related Questions

what 5x(4+gy) if x= 1 g= 20 Y=14
please show work

Answers

To solve this one, we'll plug in the given x, g, and y values:
[tex]5x(4+gy)[/tex]
[tex]5(1)(4+(20)(14))=5(4+280)=5(284)=1420[/tex]
5•1(4+20•14) =1420 bc 20 • 14 is 280 + 4 = 284 • 5 is 1420

What can be used as a reason in a two-column proof?
Select each correct answer.
conjecture
postulate
definition
premise

Answers

Two column proofs are organized into statement and reason columns. Each statement must be justified in the reason column. The reason column will typically include "given", vocabulary definitions, and theorems.

Therefore, what can be used as a reason in a two-column proof are:

Postulates

Definitions

Answer:

Two column proofs are organized into statement and reason columns. Each statement must be justified in the reason column. The reason column will typically include "given", vocabulary definitions, and theorems.

Therefore, what can be used as a reason in a two-column proof are:

Postulates

Definitions

What is the answer to the problem below?

Solve the system of equations graphically.

x=3
y=4

Answers

Hi there!

They already give us the answer, which is (3,4). So all we have to do is graph it on the graph. 3 is for x and 4 is for y.

Check the picture below.
Here we're given the solution on a silver platter:

(3,4)

You could solve this graphically by graphing the vertical line x = 3 and the horiz. line y = 4.  A visual check would show that these two lines intersect at (3,4).

how can I adjust a quotient to solve a division problem

Answers

Ask them to first estimate the quotient and then to find the actual

Given sina=6/7 and cosb=-1/6, where a is in quadrant ii and b is in quadrant iii , find sin(a+b) , cos(a-b) and tan(a+b)

Answers

[tex]\bf sin(a)=\cfrac{\stackrel{opposite}{6}}{\stackrel{hypotenuse}{7}} \\\\\\ \textit{using the pythagorean theorem}\\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a\qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{7^2-6^2}=a\implies \pm\sqrt{13}=a \\\\\\ \textit{now, angle "a" is in the II quadrant, where the adjacent is negative} \\\\\\ -\sqrt{13}=a\qquad \qquad \boxed{cos(a)=\cfrac{-\sqrt{13}}{7}}[/tex]

now, keep in mind that, the hypotenuse is just a radius unit, and thus is never negative, so if a fraction with it is negative, is the other unit.  A good example of that is the second fraction here, -1/6, where the hypotenuse is 6, therefore the adjacent side is -1.  Anyhow, let's find the opposite side to get the sin(b).

[tex]\bf cos(b)=\cfrac{\stackrel{adjacent}{-1}}{\stackrel{hypotenuse}{6}} \\\\\\ \textit{using the pythagorean theorem}\\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-a^2}=b\qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{6^2-(-1)^2}=a\implies \pm\sqrt{35}=a \\\\\\ \textit{now, angle "b" is in the III quadrant, where the opposite is negative} \\\\\\ -\sqrt{35}=b\qquad \qquad \boxed{sin(b)=\cfrac{-\sqrt{35}}{6}}[/tex]

now

[tex]\bf \textit{Sum and Difference Identities} \\ \quad \\ sin({{ \alpha}} + {{ \beta}})=sin({{ \alpha}})cos({{ \beta}}) + cos({{ \alpha}})sin({{ \beta}}) \\ \quad \\ sin({{ \alpha}} - {{ \beta}})=sin({{ \alpha}})cos({{ \beta}})- cos({{ \alpha}})sin({{ \beta}}) \\ \quad \\ cos({{ \alpha}} + {{ \beta}})= cos({{ \alpha}})cos({{ \beta}})- sin({{ \alpha}})sin({{ \beta}}) \\ \quad \\ cos({{ \alpha}} - {{ \beta}})= cos({{ \alpha}})cos({{ \beta}}) + sin({{ \alpha}})sin({{ \beta}}) \\ \quad \\ [/tex]

[tex]\bf tan({{ \alpha}} + {{ \beta}}) = \cfrac{tan({{ \alpha}})+ tan({{ \beta}})}{1- tan({{ \alpha}})tan({{ \beta}})}\qquad tan({{ \alpha}} - {{ \beta}}) = \cfrac{tan({{ \alpha}})- tan({{ \beta}})}{1+ tan({{ \alpha}})tan({{ \beta}})}[/tex]

[tex]\bf sin(a+b)=\cfrac{6}{7}\cdot \cfrac{-1}{6}+\cfrac{-\sqrt{13}}{7}\cdot \cfrac{-\sqrt{35}}{6}\implies \cfrac{-1}{7}+\cfrac{\sqrt{455}}{42} \\\\\\ \cfrac{-6+\sqrt{455}}{42}\\\\ -------------------------------\\\\ cos(a-b)=\cfrac{-\sqrt{13}}{7}\cdot \cfrac{-1}{6}+\cfrac{6}{7}\cdot \cfrac{-\sqrt{35}}{6}\implies \cfrac{\sqrt{13}}{42}-\cfrac{\sqrt{35}}{7} \\\\\\ \cfrac{\sqrt{13}-6\sqrt{35}}{42}[/tex]

[tex]\bf -------------------------------\\\\ tan(a)=\cfrac{\frac{6}{7}}{-\frac{\sqrt{13}}{7}}\implies -\cfrac{6}{\sqrt{13}}\implies -\cfrac{6\sqrt{13}}{13} \\\\\\ tan(b)=\cfrac{\frac{-\sqrt{35}}{6}}{\frac{-1}{6}}\implies -\sqrt{35}\\\\ -------------------------------\\\\[/tex]

[tex]\bf tan(a+b)=\cfrac{-\frac{6}{\sqrt{13}}-\sqrt{35}}{1-\left( -\frac{6}{\sqrt{13}} \right)\left( -\sqrt{35} \right)}\implies \cfrac{\frac{-6-\sqrt{455}}{\sqrt{13}}}{1-\frac{6\sqrt{35}}{\sqrt{13}}} \\\\\\ \cfrac{\frac{-6-\sqrt{455}}{\sqrt{13}}}{\frac{\sqrt{13}-6\sqrt{35}}{\sqrt{13}}}\implies \cfrac{-6-\sqrt{455}}{\sqrt{13}-6\sqrt{35}}[/tex]

and now, let's rationalize the denominator of that one, hmmm let's see

[tex]\bf \cfrac{-6-\sqrt{455}}{\sqrt{13}-6\sqrt{35}}\cdot \cfrac{\sqrt{13}+6\sqrt{35}}{\sqrt{13}+6\sqrt{35}} \\\\\\ \cfrac{-6\sqrt{13}-36\sqrt{35}-\sqrt{5915}-6\sqrt{15925}}{({\sqrt{13}-6\sqrt{35}})({\sqrt{13}+6\sqrt{35}})} \\\\\\ \cfrac{-6\sqrt{13}-36\sqrt{35}-13\sqrt{35}-210\sqrt{13}}{(\sqrt{13})^2-(6\sqrt{35})^2} \\\\\\ \cfrac{-216\sqrt{13}-49\sqrt{35}}{13-210}\implies \cfrac{-216\sqrt{13}-49\sqrt{35}}{-197} \\\\\\ \cfrac{216\sqrt{13}+49\sqrt{35}}{197}[/tex]

sin(a+b) = -1/7 +√455/42 = 0.8721804464845457

cos(a-b) = √13/42 - √35/7 =  -0.7761476987942811

tan(a+b )= (6√13/13 + √35) / (1 - 6√455/13) = -0.525

Given sin(a) = 6/7 and cos(b) = -1/6, with a in quadrant II and b in quadrant III, we need to utilize trigonometric identities to find sin(a+b), cos(a-b), and tan(a+b).

Firstly, since a is in quadrant II, cos(a) is negative. We use the identity sin²(a) + cos²(a)=1 to find cos(a):

cos(a) = -√(1 - sin²(a)) = -√(1 - (6/7)²) = -√(1 - 36/49) = -√(13/49) = -√13/7

Similarly, since b is in quadrant III, sin(b) is also negative. We use the identity sin²(b) + cos²(b)=1 to find sin(b):

sin(b) = -√(1 - cos²(b)) = -√(1 - (-1/6)²) = -√(1 - 1/36) = -√(35/36) = -√35/6

Now we can use the angle addition and subtraction formulas:

1. sin(a + b) = sin(a)cos(b) + cos(a)sin(b)

sin(a + b) = (6/7)(-1/6) + (-√13/7)(-√35/6) = -1/7 + √(13×35)/(7×6) = -1/7 + √455/42 = -1/7 +√455/42

2. cos(a - b) = cos(a)cos(b) + sin(a)sin(b)

cos(a - b) = (-√13/7)(-1/6) + (6/7)(-√35/6) = √13/(7×6) - (6√35)/(7×6) = √13/42 - √35/7

3. tan(a + b) = (tan(a) + tan(b)) / (1 - tan(a)tan(b))

Using tan(a) = -sin(a)/cos(a) = -(6/7)/(-√13/7) = 6/√13 and tan(b) = sin(b)/cos(b) = (-√35/6)/(-1/6) = √35:tan(a + b) = (6/√13 + √35) / (1 - (6/√13)(√35)) = (6√13/13 + √35) / (1 - 6√455/13)

Round 5836197 to the nearest hundred

Answers

5838200 is to the nearest hundred.

Answer:

5836200.

Step-by-step explanation:

Given  :  5836197 .

To find : Round 5836197 to the nearest hundred.

Solution : We have given 5836197

Step 1 : First, we look for the rounding place which is the hundreds place.

Step 2 : Rounding place is 97.

Step 3 : 97  is greater than  50 then it would be rounded up mean next number to 97 would be increase to 1 and 97 become 00.

Step 4 : 5836200.

Therefore, 5836200.

How do you figure out what 1/10 of 1,7000.000 km squared is?

Answers

The first thing you would do is square 17,000, which is 298,000,000. Then you would multiply 298,000,000 by 0.10. (or divide the number by 10)

This would get you 28,900,000.

What's 24.67 to one significant figure?

Answers

24.67 is just barely before 25.00, so we should be able to round 20.00, which gives us only one significant digit.

Suppose you have two credit cards. The first has a balance of $415 and a credit limit of $1,000. The second has a balance of $215 and a credit limit of $750. What is your overall credit utilization?

Answers

Compute for the total balance:

total balance = $415 + $215 = $630

 

Then we compute for the total credit limit:

total credit limit = $1,000 + $750 = $1,750

 

The credit utilization would simply be the percentage ratio of total balance over total credit limit. That is:

credit utilization = ($630 / $1,750) * 100%

credit utilization = 36%

Determine whether the function f : z × z → z is onto if
a.f(m,n)=m+n. b)f(m,n)=m2+n2.
c.f(m,n)=m.
d.f(m,n) = |n|.
e.f(m,n)=m−n.

Answers

a. Yes; [tex]\mathbb Z[/tex] is closed under addition
b. No; [tex]m^2+n^2\ge0[/tex] for any integers [tex]m,n[/tex]
c. Yes; self-evident
d. No; similar to (b), because [tex]|n|\ge0[/tex] for any [tex]n\in\mathbb Z[/tex]
e. Yes; [tex]\mathbb Z[/tex] is closed under subtraction

15 children voted for their favorite color. The votes for red and blue together we're double the votes for green and yellow together. How did the children vote?

Answers

10 for red and blue together and 5 for green and yellow together
10 children voted for red and blue
and 5 voted gor green and yellow

605 mi in 11 hours at the same rate how many miles would he drive in 13 hours

Answers

First you need to find the unit rate

605/ 11= 55

55*13=715

In 13 hours, 715 miles will be traveled

A, B, and C are mutually exclusive. P(A) = .2, P(B) = .3, P(C) = .3. Find P(A ∪ B ∪ C). P(A ∪ B ∪ C) =

Answers

Events are said to be mutually exclusive if they can not occur at the same time, that is, the probability of those events occurring at the same time is zero.
In the question given above, 
P (A) = .2
P (B) = .3
P (C) = .3
P (A U B U C) = .2 + .3 + .3 = .8
Therefore, P (A U B U C) = 0.8.

$185 DVD player 6% markup

Answers

$196.10 dbdhdbrbhtbt
after the markup it will be 196.1$

i think.....
 
if it is right dont forget to give me brainliest

Find a solution x = x(t) of the equation x′ + 2x = t2 + 4t + 7 in the form of a quadratic function of t, that is, of the form x(t) = at2 + bt + c, where a, b, and c are to be determined.

Answers

The particular quadratic solution to the ODE is found as follows:

[tex]x=at^2+bt+c[/tex]
[tex]x'=2at+b[/tex]

[tex](2at+b)+2(at^2+bt+c)=t^2+4t+7[/tex]
[tex]2at^2+(2a+2b)t+(b+2c)=t^2+4t+7[/tex]

[tex]\begin{cases}2a=1\\2(a+b)=4\\b+2c=7\end{cases}\implies a=\dfrac12,b=\dfrac32,c=\dfrac{11}4[/tex]

Note that there's also the fundamental solution to account for, which is obtained from the characteristic equation for the ODE:

[tex]x'+2x=0\implies r+2=0\implies r=-2[/tex]

so that [tex]x_c=Ce^{-2t}[/tex] is a characteristic solution to the ODE, and the general solution would be

[tex]x=Ce^{-2t}+\dfrac{t^2}2+\dfrac{3t}2+\dfrac{11}4[/tex]

To find a, b, c for the solution:

Let's start by writing down the expression for the function x(t) and its derivative:

We have:

x(t) = at² + bt + c
and
x'(t) = 2at + b

Using x' and x into the differential equation x′ + 2x = t² + 4t + 7 gives us:

2at + b + 2*(at² + bt + c) = t² + 4t + 7
Expanding this gives:
2at² + 2bt + b + 4at + 2c = t² + 4t + 7

By equating the coefficients of equivalent powers of t on both sides, we get three equations:

For t² :
2a = 1
So, a = 1/2

For t:
2b + 4a = 4
Substitute a = 1/2 into the equation gives b = 1 - 2 = -1

For the constant term:
b + 2c = 7
Substituting b = -1 gives c = 4.

So the solution is a = 1/2, b = -1, c = 4.

So the specific solution of this differential equation is given by x(t) = (1/2)t² - t + 4.

What is the unit rate for 822.6 km in 18 hours? Enter your answer, as a decimal, in the box. Please Help

Answers

unit rate = 822.6 / 18 = 45.7

answer
unit rate = 45.7 km per hour
Find the unit rate by dividing 822.6 km by 18 hours:

822.6 km
-------------- = 45.7 km/hr
 18 hrs

Note:  this is approx         45.7 km/hr        0.625 mile
                                         --------------- * ----------------- = 28.6 mph 
                                                 1                   1 km

What is the expanded notation for 2.918?

Answers

 2 + 0.9+ 0.01+ 0.008

I hope this helps.

"unable to determine because x can't take on the value 5.5"

Answers

                    k
   f(x) = -------------------
                x - (5.5)

is an example where there's no finite limit if x approaches 5.5.

A, B, and C are polynomials, where A = n, B = 2n + 6, and C = n2 – 1. What is AB – C in simplest form? A=–n2 + 3n + 5 B=n2 + 6n + 1 C=2n2 + 6n – 1 D=3n2 + 5

Answers

A, B, and C are polynomials, where A = n, B = 2n + 6, and C = n2 – 1. What is AB – C in simplest form?      We want (n)(2n+6) - (n^2-1).  (Please note: n^2 is correct, while n2 is not.)

Multiplying out the first term:  2n^2 + 6n 
Subtracting n^2-1:                 - (n^2 -1)
                                             ----------------------
                                                  n^2 + 6n + 1     (answer) 

Answer:

B

Step-by-step explanation:

30 POINTS: The art club had an election to select a president. 25% of the 76 members of the club voted in the election. How many members voted?

Answers

Answer:

19 members voted.

Step-by-step explanation:

Percentage problems can be solved by a rule of three.

25% of the 76 members of the club voted in the election. How many members voted?

So 76 is 100% = 1. How much is 0.25?

76 - 1

x - 0.25

[tex]x = 76*0.25[/tex]

[tex]x = 19[/tex]

19 members voted.

What is the completely factored form of x3 – 64x? x(x – 8)(x – 8) (x-4)(x2+4x+16) x(x – 8)(x + 8) (x – 4)(x + 4)(x + 4)

Answers

After factoring x from both terms, you can factor the difference of two squares.

= x(x² -64)

= x(x -8)(x +8)

_____

It is worth remembering the "speciall form" that is the difference of two squares:

... a² - b² = (a -b)(a +b)

Answer:

x(x -8)(x +8)

Step-by-step explanation:

The perpendicular bisector of side AB of ∆ABC intersects side BC at point D. Find AB if the perimeter of ∆ABC is with 12 cm larger than the perimeter of ∆ACD.

Answers

Answer:

Hence, AB=12.

Step-by-step explanation:

We are given that the perpendicular bisector of side AB of ∆ABC intersects side BC at point D.

this means that side AE=BE.

Also we could clear;ly observe that

ΔBED≅ΔAED

( since AE=BE, side ED common, ∠BED=∠AED

so by SAS congruency the two triangles are congruent)

Now we are given that:

the perimeter of ∆ABC is 12 cm larger than the perimeter of ∆ACD.

i.e. AB+AC+BC=AC+AD+CD+12

AB+BC=AD+CD+12

as AD=BD

this means that AD+CD=BD+CD=BC

AB+BC=BC+12

AB=12

Hence AB=12



Answer:

The required length of [tex]AB[/tex] is [tex]12\rm\;{cm}[/tex].

Step-by-step explanation:

Given: The perpendicular bisector of side [tex]AB[/tex] of [tex]\bigtriangleup{ABC}[/tex] intersects side [tex]BC[/tex] at point [tex]D[/tex] and the perimeter of  [tex]\bigtriangleup{ACD}[/tex].

From the figure,

[tex]AE=BE[/tex]         .......(1)              (as [tex]DE[/tex] is perpendicular bisector of side [tex]AB[/tex])

Now, In [tex]\bigtriangleup{BED}[/tex] and [tex]\bigtriangleup{AED}[/tex]

     [tex]AE=BE[/tex]                                     ( from equation 1 )

[tex]\angle {BED} =\angle {AED}[/tex]                               ( Both [tex]90^\circ[/tex] )

    [tex]ED=ED[/tex]                                     ( Common side)

[tex]\bigtriangleup{BED}\cong\bigtriangleup{AED}[/tex]                              ( by SAS congruence rule)

      [tex]BD=AD[/tex]    .........(2)                   (by CPCT)

As per question,

The perimeter of ∆ABC is with 12 cm larger than the perimeter of ∆ACD.

[tex]AB+BC+AC=AC+CD+AD+12[/tex]

         [tex]AB+BC=AD+CD+12\\AD+CD=BD+CD\\AB+BC=BC+12\\[/tex]

                   [tex]AB=12\rm\;{cm}[/tex]

Hence, the length of [tex]AB[/tex] is [tex]12\rm\;{cm}[/tex].

For more information:

https://brainly.com/question/14682480?referrer=searchResults

If the radius of a circle measures 2 inches, what is the measure of its diameter?

Answers

the diameter of the circle would be 4 inches
The diameter will equal 4 inches because the radius is half of the diameter...hope this helps..Good luck!

~~Alexis

what is the answer of 9X23+3X39-28=n

Answers

9x23+3x39-28=n


n= 296

Answer: n=296

Step-by-step explanation: 9 x 23 + 3 x 39 - 28 + n = 296  

Hope this helps! <3

Mrs. Milleman looked at another hotel. She waited a week before she decided to book nights at that hotel, and now the prices have increased. The original price was $1195. The price for the same room and same number of nights is now $2075. What is the percent increase? Round to the nearest whole percent.

Answers

First we need to calculate the difference between the original price and the new price:
[tex]2075-1195=880[/tex]
Now we can set up a proportion and solve for x:
[tex] \frac{1195}{100} = \frac{880}{x} [/tex]
[tex]x= \frac{(880)(100)}{1195} [/tex]
[tex]x= 73.64 [/tex] which rounded to the nearest integer is 74%
We now can conclude that the price increased in 74%

The five-number summary for scores on a statistics test is 11, 35, 61, 70, 79. in all, 380 students took the test. about how many scored between 35 and 61

Answers

Answer: There are 95 students who scored between 35 and 61.

Step-by-step explanation:

Since we have given that

The following data : 11,35,61,70,79.

So, the median of this data would be = 61

First two data belongs to "First Quartile " i.e. Q₁

and the second quartile is the median i.e. 61.

The last two quartile belongs to "Third Quartile" i.e. Q₃

And we know that each quartile is the 25th percentile.

And we need "Number of students who scored between 35 and 61."

So, between 35 and 61 is 25% of total number of students.

So, Number of students who scored between 35 and 61 is given by

[tex]\dfrac{25}{100}\times 380\\\\=\dfrac{1}{4}\times 380\\\\=95[/tex]

Hence, There are 95 students who scored between 35 and 61.

The number of students who scored between 35 and 61 is 95

The 5 number summary is the value of the ;

Minimum Lower quartile Median Upper quartile and Maximum values of a distribution.

The total Number of students = 380

The lower quartile (Lower 25%) = 35

The median (50%) = 61

The Number of students who scored between 35 and 61 : 50% - 25% = 25%

This means that 25% of the total students scored between 35 and 61.

25% of 380 = 0.25 × 380 = 95

Hence, 95 students scored between 35 and 61.

Learn more : https://brainly.com/question/24582786

D is the midpoint of CE.E has coordinates (-3,-2), and D has coordinates (2 1/2, 1). Find the coordinate of C.

Answers

midpoint formula : (x1 + x2) / 2, (y1 + y2) / 2
(-3,-2)....x1 = -3 and y1 = -2
(x,y)......x2 = x and y2 = y
now we sub
(-3 + x) / 2, (-2 + y) / 2

(-3 + x) / 2 = 2 1/2
-3 + x = 5/2 * 2
-3 + x = 5
x = 5 + 3
x = 8

(-2 + y) / 2 = 1
-2 + y = 1 * 2
-2 + y = 2
y = 2 + 2
y = 4

so the coordinates of point C are : (8,4)

The coordinate of point C on line CE will be (8, 4).

What is Coordinates?

A pair of numbers which describe the exact position of a point on a cartesian plane by using the horizontal and vertical lines is called the coordinates.

Given that;

D is the midpoint of CE.

E has coordinates (-3,-2), and D has coordinates (2 1/2, 1).

Now, By the definition of midpoint;

Let the coordinate of point C = (x, y)

Then,

((x + (-3))/2 , (y + (-2))/2) = (2 1/2, 1)

By comparison we get;

x + (-3) / 2= 2 1/2

x - 3 = 2 (5/2)

x - 3 = 5

x = 3 + 5

x = 8

And, (y + (-2))/2 = 1

y - 2 = 2

y = 2 + 2

y = 4

Thus, The coordinate of point C = (x, y) = (8, 4)

So, The coordinate of point C on line CE will be (8, 4).

Learn more about the midpoint visit:

https://brainly.com/question/28034729

#SPJ2

write a fraction less than 1 with a denominator of 6 that is greater than 3/4

Answers

The answer would be 5/6.

Hope this helps!

Answer:= 5/6

Step-by-step explanation:hope this helps

The diagram represents a reduction of a triangle by using a scale factor of 0.8.

What is the height of the reduced triangle?
4.0 inches
4.8 inches
5.2 inches
7.5 inches

Answers

The reduction factor of 0.8 means the lengths in the reduced triangle are 0.8 times those of the original.

Then the original 6 inch length is reduced to 0.8×6 inches = 4.8 inches in the reduced triangle.

Answer:

4.8 inches

Step-by-step explanation:

The scale factors are used to convert a figure into another one with similar characteristics but different lengths, in this example is a triangle, and in order to calculate the measure of the height you just have to multiply the original height by the scale factor:

6 inches * scale factor

6 inches* 0.8= 4.8 inches

So the resultant triangle will have a height of 4.8 inches.

Use the chain rule to find dw/dt. w = xey/z, x = t7, y = 4 − t, z = 2 + 9t

Answers

Given

[tex]w = xe^{y/z},\ x = t^7,\ y = 4 - t, \ z = 2 + 9t \\ \\ \frac{dw}{dt} = \frac{dw}{dx} \cdot \frac{dx}{dt} + \frac{dw}{dy} \cdot \frac{dy}{dt} + \frac{dw}{dz} \cdot \frac{dz}{dt} \\ \\ \frac{dw}{dx}=e^{y/z} \\ \\ \frac{dw}{dy}= \frac{x}{z} e^{y/z} \\ \\ \frac{dw}{dz}=- \frac{xy}{z^2} e^{y/z} \\ \\ \frac{dx}{dt}=7t^6 \\ \\ \frac{dy}{dt}=-1 \\ \\ \frac{dz}{dt}=9[/tex]

Thus,

[tex] \frac{dw}{dt}=e^{y/z}\cdot7t^6+\frac{x}{z} e^{y/z}\cdot(-1)+- \frac{xy}{z^2} e^{y/z}\cdot(9) \\ \\ =7t^6e^{y/z}-\frac{x}{z} e^{y/z}-9\frac{xy}{z^2} e^{y/z} \\ \\ =\left(7t^6-\frac{x}{z}-9\frac{xy}{z^2}\right)e^{y/z}[/tex]

The derivative[tex]\( \frac{dw}{dt} \) is \( \frac{7t^6 e^{4-t}}{2+9t} - \frac{t^7 e^{4-t}}{2+9t} - \frac{9t^7 e^{4-t}}{(2+9t)^2} \).[/tex]

To find [tex]\( \frac{dw}{dt} \)[/tex] using the chain rule for the given function[tex]\( w = \frac{x e^y}{z} \), where \( x = t^7 \), \( y = 4 - t \), and \( z = 2 + 9t \)[/tex], follow these steps:

1. **Express ( w ) in terms of ( t ):**

  Substitute ( x ), ( y ), and ( z ) into ( w ):

[tex]\[ w = \frac{x e^y}{z} = \frac{(t^7) e^{(4 - t)}}{2 + 9t} \][/tex]

2. **Apply the chain rule:**

  The chain rule states that for a function ( w(t) ) defined implicitly by ( w = f(x(t), y(t), z(t)) ), the derivative [tex]\( \frac{dw}{dt} \)[/tex] is given by:

[tex]\[ \frac{dw}{dt} = \frac{\partial w}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial w}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial w}{\partial z} \cdot \frac{dz}{dt} \][/tex]

3. **Compute partial derivatives of ( w ) with respect to ( x ), ( y ), and ( z ):**

[tex]\( \frac{\partial w}{\partial x} = \frac{e^y}{z} \)[/tex]  

  [tex]\( \frac{\partial w}{\partial y} = \frac{x e^y}{z} \)[/tex]  

[tex]\( \frac{\partial w}{\partial z} = -\frac{x e^y}{z^2} \)[/tex]

4. **Compute [tex]\( \frac{dx}{dt} \), \( \frac{dy}{dt} \), and \( \frac{dz}{dt} \):**[/tex]

[tex]\( \frac{dx}{dt} = 7t^6 \)[/tex]  

[tex]\( \frac{dy}{dt} = -1 \)[/tex]

[tex]\( \frac{dz}{dt} = 9 \)[/tex]

5. **Substitute these into the chain rule formula:**

[tex]\[ \frac{dw}{dt} = \frac{e^y}{z} \cdot 7t^6 + \frac{x e^y}{z} \cdot (-1) + \left(-\frac{x e^y}{z^2}\right) \cdot 9 \][/tex]

6. **Substitute[tex]\( x = t^7 \), \( y = 4 - t \), \( z = 2 + 9t \)[/tex] into the expression:**

[tex]\( e^y = e^{4 - t} \)[/tex]

  Substitute these values into the formula for [tex]\( \frac{dw}{dt} \):[/tex]

[tex]\[ \frac{dw}{dt} = \frac{e^{4 - t}}{2 + 9t} \cdot 7t^6 - \frac{t^7 \cdot e^{4 - t}}{2 + 9t} - \frac{9t^7 \cdot e^{4 - t}}{(2 + 9t)^2} \][/tex]

Therefore, [tex]\( \frac{dw}{dt} \)[/tex] is:

[tex]{\frac{dw}{dt} = \frac{7t^6 e^{4 - t}}{2 + 9t} - \frac{t^7 e^{4 - t}}{2 + 9t} - \frac{9t^7 e^{4 - t}}{(2 + 9t)^2} } \][/tex]

Other Questions
Why does the process of mass wasting occur faster on a steep slope?Steep slopes are slippery.Landslides always move quickly.Mountains have a lot of rainfall.The force of gravity causes mass wasting to occur faster. 1.The Great Awakeningdivided the colonies on the basis of religionemphasized church doctrine and traditional teachingsemphasized a personal approach to salvation, challenged traditional authority, and churches began appointing their own ministersemphasized an intellectual approach to the scriptures2.Which of the following describes a major pattern of demographic change that characterized almost every early European effort to colonize North America?Colonists made little effort to accommodate American Indian cultureColonial populations were populated largely with married couplesAmerican Indian populations declined in huge numbersUnpaid laborers were given no opportunity to eventually win freedom Which two properties give insight into the general attraction of an atom for electrons? What is the definition of the word common in environmental science? A. A worthless resource B. A shared resource C. A typical resource D. An unusual resource Keiko y benkei taguchi / tokio, japn pierre y marie lebrun / montreal, canad carlos aragn / buenos aires, argentina elizabeth mitchell / londres, inglaterra (england) roberto morales / madrid, espa?a andrs y patricia padilla / quito, ecuador paula y cecilia robles / san juan, puerto rico conrad schmidt / berln, alemania (germany) antoinette y marie valois / pars, francia marta zedillo / guadalajara, mxico Define the function g(x) in terms of f(x) Because of the great prosperity during the 1920s, this time became known as why was the 30 years war fought? How honest will people be while being watched? Thylakoids are coin-shaped membrane-enclosed compartments inside the ________ What is the perimeter of a polygon with vertices at (-6,-1) (-3,-4) (6,5) and (3,8) ? Match each of the following jazz performance techniques with its definition.1. syncopation 2. blue note 3. improvisation 4. accenta flatted tone on the third, fifth, or seventh step of a major scale. melodies or rhythms created on the spot. rhythmic emphasis on notes that fall off the beat or notes held across the beat. rhythmic emphasis occurring in unexpected places, such as on the second and fourth beats. why did the algonquins become allies with the french 11/3 this is equivalent to 3.63.6-3.673.666 If I Row my canoe at 5 mph and I travel upstream at 3 mph, how fast will I be traveling downstream if I am rowing at the same rate ? Explain some differences in fighting a defensive and offensive battle/war. Only the Fahrenheit one plz An object is traveling at a steady speed of 8 2/3 miles per hour. How long will it take the object to travel to 5 1/5 miles Soy parte del equipo de futbol americano. Para poder lanzar el balon mejor How are agglutinins like security guards Steam Workshop Downloader